/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "picture-avx2.h" #include "strategyselector.h" #if COMPILE_INTEL_AVX2 # include "image.h" # include "strategies/strategies-common.h" # include /** * \brief Calculate SAD for 8x8 bytes in continuous memory. */ static INLINE __m256i inline_8bit_sad_8x8_avx2(const __m256i *const a, const __m256i *const b) { __m256i sum0, sum1; sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0)); sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1)); return _mm256_add_epi32(sum0, sum1); } /** * \brief Calculate SAD for 16x16 bytes in continuous memory. */ static INLINE __m256i inline_8bit_sad_16x16_avx2(const __m256i *const a, const __m256i *const b) { const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i); // Calculate in 4 chunks of 16x4. __m256i sum0, sum1, sum2, sum3; sum0 = inline_8bit_sad_8x8_avx2(a + 0 * size_of_8x8, b + 0 * size_of_8x8); sum1 = inline_8bit_sad_8x8_avx2(a + 1 * size_of_8x8, b + 1 * size_of_8x8); sum2 = inline_8bit_sad_8x8_avx2(a + 2 * size_of_8x8, b + 2 * size_of_8x8); sum3 = inline_8bit_sad_8x8_avx2(a + 3 * size_of_8x8, b + 3 * size_of_8x8); sum0 = _mm256_add_epi32(sum0, sum1); sum2 = _mm256_add_epi32(sum2, sum3); return _mm256_add_epi32(sum0, sum2); } /** * \brief Get sum of the low 32 bits of four 64 bit numbers from __m256i as uint32_t. */ static INLINE uint32_t m256i_horizontal_sum(const __m256i sum) { // Add the high 128 bits to low 128 bits. __m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1)); // Add the high 64 bits to low 64 bits. uint32_t result[4]; _mm_storeu_si128((__m128i*)result, mm128_result); return result[0] + result[2]; } static unsigned sad_8bit_8x8_avx2(const kvz_pixel *buf1, const kvz_pixel *buf2) { const __m256i *const a = (const __m256i *)buf1; const __m256i *const b = (const __m256i *)buf2; __m256i sum = inline_8bit_sad_8x8_avx2(a, b); return m256i_horizontal_sum(sum); } static unsigned sad_8bit_16x16_avx2(const kvz_pixel *buf1, const kvz_pixel *buf2) { const __m256i *const a = (const __m256i *)buf1; const __m256i *const b = (const __m256i *)buf2; __m256i sum = inline_8bit_sad_16x16_avx2(a, b); return m256i_horizontal_sum(sum); } static unsigned sad_8bit_32x32_avx2(const kvz_pixel *buf1, const kvz_pixel *buf2) { const __m256i *const a = (const __m256i *)buf1; const __m256i *const b = (const __m256i *)buf2; const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i); const unsigned size_of_32x32 = 32 * 32 / sizeof(__m256i); // Looping 512 bytes at a time seems faster than letting VC figure it out // through inlining, like inline_8bit_sad_16x16_avx2 does. __m256i sum0 = inline_8bit_sad_8x8_avx2(a, b); for (unsigned i = size_of_8x8; i < size_of_32x32; i += size_of_8x8) { __m256i sum1 = inline_8bit_sad_8x8_avx2(a + i, b + i); sum0 = _mm256_add_epi32(sum0, sum1); } return m256i_horizontal_sum(sum0); } static unsigned sad_8bit_64x64_avx2(const kvz_pixel * buf1, const kvz_pixel * buf2) { const __m256i *const a = (const __m256i *)buf1; const __m256i *const b = (const __m256i *)buf2; const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i); const unsigned size_of_64x64 = 64 * 64 / sizeof(__m256i); // Looping 512 bytes at a time seems faster than letting VC figure it out // through inlining, like inline_8bit_sad_16x16_avx2 does. __m256i sum0 = inline_8bit_sad_8x8_avx2(a, b); for (unsigned i = size_of_8x8; i < size_of_64x64; i += size_of_8x8) { __m256i sum1 = inline_8bit_sad_8x8_avx2(a + i, b + i); sum0 = _mm256_add_epi32(sum0, sum1); } return m256i_horizontal_sum(sum0); } static unsigned satd_8bit_4x4_avx2(const kvz_pixel *org, const kvz_pixel *cur) { __m128i original = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)org)); __m128i current = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)cur)); __m128i diff_lo = _mm_sub_epi16(current, original); original = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(org + 8))); current = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(cur + 8))); __m128i diff_hi = _mm_sub_epi16(current, original); //Hor __m128i row0 = _mm_hadd_epi16(diff_lo, diff_hi); __m128i row1 = _mm_hsub_epi16(diff_lo, diff_hi); __m128i row2 = _mm_hadd_epi16(row0, row1); __m128i row3 = _mm_hsub_epi16(row0, row1); //Ver row0 = _mm_hadd_epi16(row2, row3); row1 = _mm_hsub_epi16(row2, row3); row2 = _mm_hadd_epi16(row0, row1); row3 = _mm_hsub_epi16(row0, row1); //Abs and sum row2 = _mm_abs_epi16(row2); row3 = _mm_abs_epi16(row3); row3 = _mm_add_epi16(row2, row3); row3 = _mm_add_epi16(row3, _mm_shuffle_epi32(row3, KVZ_PERMUTE(2, 3, 0, 1) )); row3 = _mm_add_epi16(row3, _mm_shuffle_epi32(row3, KVZ_PERMUTE(1, 0, 1, 0) )); row3 = _mm_add_epi16(row3, _mm_shufflelo_epi16(row3, KVZ_PERMUTE(1, 0, 1, 0) )); unsigned sum = _mm_extract_epi16(row3, 0); unsigned satd = (sum + 1) >> 1; return satd; } static void hor_add_sub_avx2(__m128i *row0, __m128i *row1){ __m128i a = _mm_hadd_epi16(*row0, *row1); __m128i b = _mm_hsub_epi16(*row0, *row1); __m128i c = _mm_hadd_epi16(a, b); __m128i d = _mm_hsub_epi16(a, b); *row0 = _mm_hadd_epi16(c, d); *row1 = _mm_hsub_epi16(c, d); } static INLINE void ver_add_sub_avx2(__m128i temp_hor[8], __m128i temp_ver[8]){ // First stage for (int i = 0; i < 8; i += 2){ temp_ver[i+0] = _mm_hadd_epi16(temp_hor[i + 0], temp_hor[i + 1]); temp_ver[i+1] = _mm_hsub_epi16(temp_hor[i + 0], temp_hor[i + 1]); } // Second stage for (int i = 0; i < 8; i += 4){ temp_hor[i + 0] = _mm_add_epi16(temp_ver[i + 0], temp_ver[i + 2]); temp_hor[i + 1] = _mm_add_epi16(temp_ver[i + 1], temp_ver[i + 3]); temp_hor[i + 2] = _mm_sub_epi16(temp_ver[i + 0], temp_ver[i + 2]); temp_hor[i + 3] = _mm_sub_epi16(temp_ver[i + 1], temp_ver[i + 3]); } // Third stage for (int i = 0; i < 4; ++i){ temp_ver[i + 0] = _mm_add_epi16(temp_hor[0 + i], temp_hor[4 + i]); temp_ver[i + 4] = _mm_sub_epi16(temp_hor[0 + i], temp_hor[4 + i]); } } INLINE static void haddwd_accumulate_avx2(__m128i *accumulate, __m128i *ver_row) { __m128i abs_value = _mm_abs_epi16(*ver_row); *accumulate = _mm_add_epi32(*accumulate, _mm_madd_epi16(abs_value, _mm_set1_epi16(1))); } INLINE static unsigned sum_block_avx2(__m128i *ver_row) { __m128i sad = _mm_setzero_si128(); haddwd_accumulate_avx2(&sad, ver_row + 0); haddwd_accumulate_avx2(&sad, ver_row + 1); haddwd_accumulate_avx2(&sad, ver_row + 2); haddwd_accumulate_avx2(&sad, ver_row + 3); haddwd_accumulate_avx2(&sad, ver_row + 4); haddwd_accumulate_avx2(&sad, ver_row + 5); haddwd_accumulate_avx2(&sad, ver_row + 6); haddwd_accumulate_avx2(&sad, ver_row + 7); sad = _mm_add_epi32(sad, _mm_shuffle_epi32(sad, KVZ_PERMUTE(2, 3, 0, 1))); sad = _mm_add_epi32(sad, _mm_shuffle_epi32(sad, KVZ_PERMUTE(1, 0, 1, 0))); return _mm_cvtsi128_si32(sad); } INLINE static __m128i diff_row_avx2(const kvz_pixel *buf1, const kvz_pixel *buf2) { __m128i buf1_row = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)buf1)); __m128i buf2_row = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)buf2)); return _mm_sub_epi16(buf1_row, buf2_row); } INLINE static void diff_blocks_and_hor_transform_avx2(__m128i row_diff[8], const kvz_pixel * buf1, unsigned stride1, const kvz_pixel * buf2, unsigned stride2) { row_diff[0] = diff_row_avx2(buf1 + 0 * stride1, buf2 + 0 * stride2); row_diff[1] = diff_row_avx2(buf1 + 1 * stride1, buf2 + 1 * stride2); hor_add_sub_avx2(row_diff + 0, row_diff + 1); row_diff[2] = diff_row_avx2(buf1 + 2 * stride1, buf2 + 2 * stride2); row_diff[3] = diff_row_avx2(buf1 + 3 * stride1, buf2 + 3 * stride2); hor_add_sub_avx2(row_diff + 2, row_diff + 3); row_diff[4] = diff_row_avx2(buf1 + 4 * stride1, buf2 + 4 * stride2); row_diff[5] = diff_row_avx2(buf1 + 5 * stride1, buf2 + 5 * stride2); hor_add_sub_avx2(row_diff + 4, row_diff + 5); row_diff[6] = diff_row_avx2(buf1 + 6 * stride1, buf2 + 6 * stride2); row_diff[7] = diff_row_avx2(buf1 + 7 * stride1, buf2 + 7 * stride2); hor_add_sub_avx2(row_diff + 6, row_diff + 7); } static unsigned kvz_satd_8bit_8x8_general_avx2(const kvz_pixel * buf1, unsigned stride1, const kvz_pixel * buf2, unsigned stride2) { __m128i temp_hor[8]; __m128i temp_ver[8]; diff_blocks_and_hor_transform_avx2(temp_hor, buf1, stride1, buf2, stride2); ver_add_sub_avx2(temp_hor, temp_ver); unsigned sad = sum_block_avx2(temp_ver); unsigned result = (sad + 2) >> 2; return result; } // Function macro for defining hadamard calculating functions // for fixed size blocks. They calculate hadamard for integer // multiples of 8x8 with the 8x8 hadamard function. #define SATD_NXN_AVX2(n) \ static unsigned satd_8bit_ ## n ## x ## n ## _avx2( \ const kvz_pixel * const block1, const kvz_pixel * const block2) \ { \ unsigned x, y; \ unsigned sum = 0; \ for (y = 0; y < (n); y += 8) { \ unsigned row = y * (n); \ for (x = 0; x < (n); x += 8) { \ sum += kvz_satd_8bit_8x8_general_avx2(&block1[row + x], (n), &block2[row + x], (n)); \ } \ } \ return sum>>(KVZ_BIT_DEPTH-8); \ } static unsigned satd_8bit_8x8_avx2( const kvz_pixel * const block1, const kvz_pixel * const block2) { unsigned x, y; unsigned sum = 0; for (y = 0; y < (8); y += 8) { unsigned row = y * (8); for (x = 0; x < (8); x += 8) { sum += kvz_satd_8bit_8x8_general_avx2(&block1[row + x], (8), &block2[row + x], (8)); } } return sum>>(KVZ_BIT_DEPTH-8); \ } //SATD_NXN_AVX2(8) //Use the non-macro version SATD_NXN_AVX2(16) SATD_NXN_AVX2(32) SATD_NXN_AVX2(64) #endif //COMPILE_INTEL_AVX2 int kvz_strategy_register_picture_avx2(void* opaque, uint8_t bitdepth) { bool success = true; #if COMPILE_INTEL_AVX2 // We don't actually use SAD for intra right now, other than 4x4 for // transform skip, but we might again one day and this is some of the // simplest code to look at for anyone interested in doing more // optimizations, so it's worth it to keep this maintained. if (bitdepth == 8){ success &= kvz_strategyselector_register(opaque, "sad_8x8", "avx2", 40, &sad_8bit_8x8_avx2); success &= kvz_strategyselector_register(opaque, "sad_16x16", "avx2", 40, &sad_8bit_16x16_avx2); success &= kvz_strategyselector_register(opaque, "sad_32x32", "avx2", 40, &sad_8bit_32x32_avx2); success &= kvz_strategyselector_register(opaque, "sad_64x64", "avx2", 40, &sad_8bit_64x64_avx2); success &= kvz_strategyselector_register(opaque, "satd_4x4", "avx2", 40, &satd_8bit_4x4_avx2); success &= kvz_strategyselector_register(opaque, "satd_8x8", "avx2", 40, &satd_8bit_8x8_avx2); success &= kvz_strategyselector_register(opaque, "satd_16x16", "avx2", 40, &satd_8bit_16x16_avx2); success &= kvz_strategyselector_register(opaque, "satd_32x32", "avx2", 40, &satd_8bit_32x32_avx2); success &= kvz_strategyselector_register(opaque, "satd_64x64", "avx2", 40, &satd_8bit_64x64_avx2); } #endif return success; }