/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*
*/
#ifdef _WIN32
/* The following two defines must be located before the inclusion of any system header files. */
#define WINVER 0x0500
#define _WIN32_WINNT 0x0500
#include /* _setmode() */
#include /* _O_BINARY */
#endif
#include
#include
#include
#include
#include "checkpoint.h"
#include "global.h"
#include "config.h"
#include "threads.h"
#include "encoder.h"
#include "cabac.h"
#include "image.h"
#include "transform.h"
#include "scalinglist.h"
#include "strategyselector.h"
#include "cli.h"
/**
* \brief Program main function.
* \param argc Argument count from commandline
* \param argv Argument list
* \return Program exit state
*/
int main(int argc, char *argv[])
{
config_t *cfg = NULL; //!< Global configuration
FILE *input = NULL; //!< input file (YUV)
FILE *output = NULL; //!< output file (HEVC NAL stream)
encoder_control_t encoder;
uint64_t curpos = 0;
FILE *recout = NULL; //!< reconstructed YUV output, --debug
clock_t start_time = clock();
clock_t encoding_start_cpu_time;
CLOCK_T encoding_start_real_time;
clock_t encoding_end_cpu_time;
CLOCK_T encoding_end_real_time;
// Stdin and stdout need to be binary for input and output to work.
// Stderr needs to be text mode to convert \n to \r\n in Windows.
#ifdef _WIN32
_setmode( _fileno( stdin ), _O_BINARY );
_setmode( _fileno( stdout ), _O_BINARY );
_setmode( _fileno( stderr ), _O_TEXT );
#endif
CHECKPOINTS_INIT();
// Handle configuration
cfg = config_alloc();
// If problem with configuration, print banner and shutdown
if (!cfg || !config_init(cfg) || !config_read(cfg,argc,argv)) {
print_version();
print_help();
goto exit_failure;
}
// Add dimensions to the reconstructions file name.
if (cfg->debug != NULL) {
char dim_str[50]; // log10(2^64) < 20, so this should suffice. I hate C.
size_t left_len, right_len;
sprintf(dim_str, "_%dx%d.yuv", cfg->width, cfg->height);
left_len = strlen(cfg->debug);
right_len = strlen(dim_str);
cfg->debug = realloc(cfg->debug, left_len + right_len + 1);
if (!cfg->debug) {
fprintf(stderr, "realloc failed!\n");
goto exit_failure;
}
strcpy(cfg->debug + left_len, dim_str);
}
if (cfg->owf == -1) {
if (!config_set_owf_auto(cfg)) {
goto exit_failure;
}
}
// Do more validation to make sure the parameters we have make sense.
if (!config_validate(cfg)) {
goto exit_failure;
}
//Initialize strategies
if (!strategyselector_init(cfg->cpuid)) {
fprintf(stderr, "Failed to initialize strategies.\n");
goto exit_failure;
}
// Check if the input file name is a dash, this means stdin
if (!strcmp(cfg->input, "-")) {
input = stdin;
} else {
// Otherwise we try to open the input file
input = fopen(cfg->input, "rb");
}
// Check that input was opened correctly
if (input == NULL) {
fprintf(stderr, "Could not open input file, shutting down!\n");
goto exit_failure;
}
// Check if the output file name is a dash, this means stdout
if (!strcmp(cfg->output, "-")) {
output = stdout;
} else {
// Otherwise we try to open the output file
output = fopen(cfg->output, "wb");
}
// Check that output was opened correctly
if (output == NULL) {
fprintf(stderr, "Could not open output file, shutting down!\n");
goto exit_failure;
}
if (cfg->debug != NULL) {
recout = fopen(cfg->debug, "wb");
if (recout == NULL) {
fprintf(stderr, "Could not open reconstruction file (%s), shutting down!\n", cfg->debug);
goto exit_failure;
}
}
//Allocate and init exp golomb table
if (!init_exp_golomb(4096*8)) {
fprintf(stderr, "Failed to allocate the exp golomb code table, shutting down!\n");
goto exit_failure;
}
if (!encoder_control_init(&encoder, cfg)) {
goto exit_failure;
}
// Set output file
encoder.out.file = output;
// input init (TODO: read from commandline / config)
encoder.bitdepth = 8;
encoder.in.video_format = FORMAT_420;
// deblocking filter
encoder.deblock_enable = (int8_t)encoder.cfg->deblock_enable;
encoder.beta_offset_div2 = (int8_t)encoder.cfg->deblock_beta;
encoder.tc_offset_div2 = (int8_t)encoder.cfg->deblock_tc;
// SAO
encoder.sao_enable = (int8_t)encoder.cfg->sao_enable;
// RDO
encoder.rdoq_enable = (int8_t)encoder.cfg->rdoq_enable;
encoder.rdo = (int8_t)encoder.cfg->rdo;
encoder.sign_hiding = encoder.cfg->signhide_enable;
encoder.full_intra_search = (int8_t)encoder.cfg->full_intra_search;
// TR SKIP
encoder.trskip_enable = (int8_t)encoder.cfg->trskip_enable;
encoder.tr_depth_intra = (int8_t)encoder.cfg->tr_depth_intra;
// MOTION ESTIMATION
encoder.fme_level = (int8_t)encoder.cfg->fme_level;
// VUI
encoder.vui.sar_width = (int16_t)encoder.cfg->vui.sar_width;
encoder.vui.sar_height = (int16_t)encoder.cfg->vui.sar_height;
encoder.vui.overscan = encoder.cfg->vui.overscan;
encoder.vui.videoformat = encoder.cfg->vui.videoformat;
encoder.vui.fullrange = encoder.cfg->vui.fullrange;
encoder.vui.colorprim = encoder.cfg->vui.colorprim;
encoder.vui.transfer = encoder.cfg->vui.transfer;
encoder.vui.colormatrix = encoder.cfg->vui.colormatrix;
encoder.vui.chroma_loc = (int8_t)encoder.cfg->vui.chroma_loc;
// AUD
encoder.aud_enable = (int8_t)encoder.cfg->aud_enable;
encoder.vps_period = encoder.cfg->vps_period * encoder.cfg->intra_period;
encoder.in.file = input;
fprintf(stderr, "Input: %s, output: %s\n", cfg->input, cfg->output);
fprintf(stderr, " Video size: %dx%d (input=%dx%d)\n",
encoder.in.width, encoder.in.height,
encoder.in.real_width, encoder.in.real_height);
//Now, do the real stuff
{
encoder_state_t *encoder_states = malloc((encoder.owf + 1) * sizeof(encoder_state_t));
if (encoder_states == NULL) {
fprintf(stderr, "Failed to allocate memory.");
goto exit_failure;
}
int i;
int current_encoder_state = 0;
for (i = 0; i <= encoder.owf; ++i) {
encoder_states[i].encoder_control = &encoder;
if (i > 0) {
encoder_states[i].previous_encoder_state = &encoder_states[i-1];
} else {
//i == 0, use last encoder as the previous one
encoder_states[i].previous_encoder_state = &encoder_states[encoder.owf];
}
if (!encoder_state_init(&encoder_states[i], NULL)) {
goto exit_failure;
}
encoder_states[i].global->QP = (int8_t)encoder.cfg->qp;
}
for (i = 0; i <= encoder.owf; ++i) {
encoder_state_match_children_of_previous_frame(&encoder_states[i]);
}
//Initial frame
encoder_states[current_encoder_state].global->frame = -1;
GET_TIME(&encoding_start_real_time);
encoding_start_cpu_time = clock();
uint64_t bitstream_length = 0;
uint32_t frames_started = 0;
uint32_t frames_done = 0;
double psnr_sum[3] = { 0.0, 0.0, 0.0 };
// Start coding cycle while data on input and not on the last frame
while (cfg->frames == 0 || frames_started < cfg->frames) {
encoder_state_t *state = &encoder_states[current_encoder_state];
// Skip '--seek' frames before input.
// This block can be moved outside this while loop when there is a
// mechanism to skip the while loop on error.
if (frames_started == 0 && cfg->seek > 0) {
int frame_bytes = cfg->width * cfg->height * 3 / 2;
int error = 0;
if (!strcmp(cfg->input, "-")) {
// Input is stdin.
int i;
for (i = 0; !error && i < cfg->seek; ++i) {
error = !read_one_frame(input, &encoder_states[current_encoder_state]);
}
} else {
// input is a file. We hope. Proper detection is OS dependent.
error = fseek(input, cfg->seek * frame_bytes, SEEK_CUR);
}
if (error && !feof(input)) {
fprintf(stderr, "Failed to seek %d frames.\n", cfg->seek);
break;
}
GET_TIME(&encoding_start_real_time);
encoding_start_cpu_time = clock();
}
// If we have started as many frames as we are going to encode in parallel, wait for the first one we started encoding to finish before
// encoding more.
if (frames_started > cfg->owf) {
double frame_psnr[3] = { 0.0, 0.0, 0.0 };
encoder_compute_stats(&encoder_states[current_encoder_state], recout, frame_psnr, &bitstream_length);
frames_done += 1;
psnr_sum[0] += frame_psnr[0];
psnr_sum[1] += frame_psnr[1];
psnr_sum[2] += frame_psnr[2];
print_frame_info(state, frame_psnr);
}
frames_started += 1;
//Clear encoder
encoder_next_frame(&encoder_states[current_encoder_state]);
CHECKPOINT_MARK("read source frame: %d", encoder_states[current_encoder_state].global->frame + cfg->seek);
// Read one frame from the input
if (!read_one_frame(input, &encoder_states[current_encoder_state])) {
if (!feof(input))
fprintf(stderr, "Failed to read a frame %d\n", encoder_states[current_encoder_state].global->frame);
//Ignore this frame, which is not valid...
encoder_states[current_encoder_state].stats_done = 1;
break;
}
// The actual coding happens here, after this function we have a coded frame
encode_one_frame(&encoder_states[current_encoder_state]);
//Switch to the next encoder
current_encoder_state = (current_encoder_state + 1) % (encoder.owf + 1);
}
//Compute stats for the remaining encoders
{
int first_enc = current_encoder_state;
do {
double frame_psnr[3] = { 0.0, 0.0, 0.0 };
current_encoder_state = (current_encoder_state + 1) % (encoder.owf + 1);
encoder_state_t *state = &encoder_states[current_encoder_state];
if (!state->stats_done) {
encoder_compute_stats(state, recout, frame_psnr, &bitstream_length);
print_frame_info(state, frame_psnr);
frames_done += 1;
psnr_sum[0] += frame_psnr[0];
psnr_sum[1] += frame_psnr[1];
psnr_sum[2] += frame_psnr[2];
}
} while (current_encoder_state != first_enc);
}
GET_TIME(&encoding_end_real_time);
encoding_end_cpu_time = clock();
threadqueue_flush(encoder.threadqueue);
// Coding finished
fgetpos(output,(fpos_t*)&curpos);
// Print statistics of the coding
fprintf(stderr, " Processed %d frames, %10llu bits AVG PSNR: %2.4f %2.4f %2.4f\n",
frames_done, (long long unsigned int)bitstream_length * 8,
psnr_sum[0] / frames_done, psnr_sum[1] / frames_done, psnr_sum[2] / frames_done);
fprintf(stderr, " Total CPU time: %.3f s.\n", ((float)(clock() - start_time)) / CLOCKS_PER_SEC);
{
double encoding_time = ( (double)(encoding_end_cpu_time - encoding_start_cpu_time) ) / (double) CLOCKS_PER_SEC;
double wall_time = CLOCK_T_AS_DOUBLE(encoding_end_real_time) - CLOCK_T_AS_DOUBLE(encoding_start_real_time);
fprintf(stderr, " Encoding time: %.3f s.\n", encoding_time);
fprintf(stderr, " Encoding wall time: %.3f s.\n", wall_time);
fprintf(stderr, " Encoding CPU usage: %.2f%%\n", encoding_time/wall_time*100.f);
fprintf(stderr, " FPS: %.2f\n", ((double)frames_done)/wall_time);
}
fclose(input);
fclose(output);
if(recout != NULL) fclose(recout);
for (i = 0; i <= encoder.owf; ++i) {
encoder_state_finalize(&encoder_states[i]);
}
free(encoder_states);
}
// Deallocating
config_destroy(cfg);
encoder_control_finalize(&encoder);
free_exp_golomb();
strategyselector_free();
CHECKPOINTS_FINALIZE();
return EXIT_SUCCESS;
exit_failure:
if (cfg) config_destroy(cfg);
if (input) fclose(input);
if (output) fclose(output);
if (recout) fclose(recout);
strategyselector_free();
CHECKPOINTS_FINALIZE();
return EXIT_FAILURE;
}