/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2014 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Kvazaar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "search.h" #include #include #include #include "config.h" #include "bitstream.h" #include "picture.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "debug.h" // Temporarily for debugging. #define USE_INTRA_IN_P 1 //#define RENDER_CU encoder->frame==2 #define RENDER_CU 0 #define SEARCH_MV_FULL_RADIUS 0 #define IN_FRAME(x, y, width, height, block_width, block_height) \ ((x) >= 0 && (y) >= 0 \ && (x) + (block_width) <= (width) \ && (y) + (block_height) <= (height)) /** * This is used in the hexagon_search to select 3 points to search. * * The start of the hexagonal pattern has been repeated at the end so that * the indices between 1-6 can be used as the start of a 3-point list of new * points to search. * * 6 o-o 1 / 7 * / \ * 5 o 0 o 2 / 8 * \ / * 4 o-o 3 */ const vector2d large_hexbs[10] = { { 0, 0 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 }, { 1, -2 }, { 2, 0 } }; /** * This is used as the last step of the hexagon search. */ const vector2d small_hexbs[5] = { { 0, 0 }, { -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 } }; int calc_mvd_cost(int x, int y, const vector2d *pred) { int cost = 0; // Get the absolute difference vector and count the bits. x = abs(abs(x) - abs(pred->x)); y = abs(abs(y) - abs(pred->y)); while (x >>= 1) { ++cost; } while (y >>= 1) { ++cost; } // I don't know what is a good cost function for this. It probably doesn't // have to aproximate the actual cost of encoding the vector, but it's a // place to start. // Add two for quarter pixel resolution and multiply by two for Exp-Golomb. return (cost ? (cost + 2) << 1 : 0); } /** * \brief Do motion search using the HEXBS algorithm. * * \param depth log2 depth of the search * \param pic Picture motion vector is searched for. * \param ref Picture motion vector is searched from. * \param orig Top left corner of the searched for block. * \param mv_in_out Predicted mv in and best out. Quarter pixel precision. * * \returns Cost of the motion vector. * * Motion vector is searched by first searching iteratively with the large * hexagon pattern until the best match is at the center of the hexagon. * As a final step a smaller hexagon is used to check the adjacent pixels. * * If a non 0,0 predicted motion vector predictor is given as mv_in_out, * the 0,0 vector is also tried. This is hoped to help in the case where * the predicted motion vector is way off. In the future even more additional * points like 0,0 might be used, such as vectors from top or left. */ unsigned hexagon_search(unsigned depth, const picture *pic, const picture *ref, const vector2d *orig, vector2d *mv_in_out) { vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = -1; unsigned i; unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs. // Search the initial 7 points of the hexagon. for (i = 0; i < 7; ++i) { const vector2d *pattern = &large_hexbs[i]; unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + mv.x + pattern->x, orig->y + mv.y + pattern->y, block_width, block_width); cost += calc_mvd_cost(mv.x + pattern->x, orig->y + mv.y + pattern->y, mv_in_out); if (cost < best_cost) { best_cost = cost; best_index = i; } } // Try the 0,0 vector. if (!(mv.x == 0 && mv.y == 0)) { unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x, orig->y, block_width, block_width); cost += calc_mvd_cost(0, 0, mv_in_out); // If the 0,0 is better, redo the hexagon around that point. if (cost < best_cost) { best_cost = cost; best_index = 0; mv.x = 0; mv.y = 0; for (i = 1; i < 7; ++i) { const vector2d *pattern = &large_hexbs[i]; unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + pattern->x, orig->y + pattern->y, block_width, block_width); cost += calc_mvd_cost(pattern->x, pattern->y, mv_in_out); if (cost < best_cost) { best_cost = cost; best_index = i; } } } } // Iteratively search the 3 new points around the best match, until the best // match is in the center. while (best_index != 0) { unsigned start; // Starting point of the 3 offsets to be searched. if (best_index == 1) { start = 6; } else if (best_index == 8) { start = 1; } else { start = best_index - 1; } // Move the center to the best match. mv.x += large_hexbs[best_index].x; mv.y += large_hexbs[best_index].y; best_index = 0; // Iterate through the next 3 points. for (i = 0; i < 3; ++i) { const vector2d *offset = &large_hexbs[start + i]; unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + mv.x + offset->x, orig->y + mv.y + offset->y, block_width, block_width); cost += calc_mvd_cost(mv.x + offset->x, mv.y + offset->y, mv_in_out); if (cost < best_cost) { best_cost = cost; best_index = start + i; } ++offset; } } // Move the center to the best match. mv.x += large_hexbs[best_index].x; mv.y += large_hexbs[best_index].y; best_index = 0; // Do the final step of the search with a small pattern. for (i = 1; i < 5; ++i) { const vector2d *offset = &small_hexbs[i]; unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + mv.x + offset->x, orig->y + mv.y + offset->y, block_width, block_width); cost += calc_mvd_cost(mv.x + offset->x, mv.y + offset->y, mv_in_out); if (cost > 0 && cost < best_cost) { best_cost = cost; best_index = i; } } // Adjust the movement vector according to the final best match. mv.x += small_hexbs[best_index].x; mv.y += small_hexbs[best_index].y; // Return final movement vector in quarter-pixel precision. mv_in_out->x = mv.x << 2; mv_in_out->y = mv.y << 2; return best_cost; } unsigned search_mv_full(unsigned depth, const picture *pic, const picture *ref, const vector2d *orig, vector2d *mv_in_out) { vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = -1; int x, y; vector2d min_mv, max_mv; /*if (abs(mv.x) > SEARCH_MV_FULL_RADIUS || abs(mv.y) > SEARCH_MV_FULL_RADIUS) { best_cost = calc_sad(pic, ref, orig->x, orig->y, orig->x, orig->y, block_width, block_width); mv.x = 0; mv.y = 0; }*/ min_mv.x = mv.x - SEARCH_MV_FULL_RADIUS; min_mv.y = mv.y - SEARCH_MV_FULL_RADIUS; max_mv.x = mv.x + SEARCH_MV_FULL_RADIUS; max_mv.y = mv.y + SEARCH_MV_FULL_RADIUS; for (y = min_mv.y; y < max_mv.y; ++y) { for (x = min_mv.x; x < max_mv.x; ++x) { unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + x, orig->y + y, block_width, block_width); cost += calc_mvd_cost(x, y, mv_in_out); if (cost < best_cost) { best_cost = cost; mv.x = x; mv.y = y; } } } mv_in_out->x = mv.x << 2; mv_in_out->y = mv.y << 2; return best_cost; } /** * \brief */ void search_buildReferenceBorder(picture *pic, int32_t x, int32_t y, int16_t outwidth, pixel *dst, int32_t dststride, int8_t chroma) { int32_t left_col; // left column iterator pixel val; // variable to store extrapolated value int32_t i; // index iterator pixel dc_val = 1 << (g_bitdepth - 1); // default predictor value int32_t top_row; // top row iterator int32_t src_width = (pic->width >> (chroma ? 1 : 0)); // source picture width int32_t src_height = (pic->height >> (chroma ? 1 : 0)); // source picture height pixel *src_pic = (!chroma) ? pic->y_data : ((chroma == 1) ? pic->u_data : pic->v_data); // input picture pointer int16_t scu_width = LCU_WIDTH >> (MAX_DEPTH + (chroma ? 1 : 0)); // Smallest Coding Unit width int x_ctb = x >> MIN_SIZE; int y_ctb = y >> MIN_SIZE; pixel *src_shifted = &src_pic[x_ctb * scu_width + y_ctb * scu_width * src_width]; // input picture pointer shifted to start from the left-top corner of the current block int32_t width_in_scu = pic->width_in_lcu << MAX_DEPTH; // picture width in SCU // Fill left column if (x_ctb) { // Loop SCU's for (left_col = 1; left_col < outwidth / scu_width; left_col++) { // If over the picture height or block not yet searched, stop if ((y_ctb + left_col) * scu_width >= src_height || pic->cu_array[MAX_DEPTH][x_ctb - 1 + (y_ctb + left_col) * width_in_scu].type == CU_NOTSET) { break; } } // Copy the pixels to output for (i = 0; i < left_col * scu_width - 1; i++) { dst[(i + 1) * dststride] = src_shifted[i * src_width - 1]; } // if the loop was not completed, extrapolate the last pixel pushed to output if (left_col != outwidth / scu_width) { val = src_shifted[(left_col * scu_width - 1) * src_width - 1]; for (i = (left_col * scu_width); i < outwidth; i++) { dst[i * dststride] = val; } } } else { // If left column not available, copy from toprow or use the default predictor val = y_ctb ? src_shifted[-src_width] : dc_val; for (i = 0; i < outwidth; i++) { dst[i * dststride] = val; } } if (y_ctb) { // Loop top SCU's for (top_row = 1; top_row < outwidth / scu_width; top_row++) { if ((x_ctb + top_row) * scu_width >= src_width || pic->cu_array[MAX_DEPTH][x_ctb + top_row + (y_ctb - 1) * width_in_scu].type == CU_NOTSET) { break; } } for (i = 0; i < top_row * scu_width - 1; i++) { dst[i + 1] = src_shifted[i - src_width]; } if (top_row != outwidth / scu_width) { val = src_shifted[(top_row * scu_width) - src_width - 1]; for (i = (top_row * scu_width); i < outwidth; i++) { dst[i] = val; } } } else { val = x_ctb ? src_shifted[-1] : dc_val; for (i = 1; i < outwidth; i++) { dst[i] = val; } } // Topleft corner dst[0] = (x_ctb && y_ctb) ? src_shifted[-src_width - 1] : dst[dststride]; } void search_inter(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { picture *cur_pic = encoder->in.cur_pic; picture *ref_pic = encoder->ref->pics[0]; unsigned width_in_scu = NO_SCU_IN_LCU(ref_pic->width_in_lcu); cu_info *ref_cu = &ref_pic->cu_array[MAX_DEPTH][y_ctb * width_in_scu + x_ctb]; cu_info *cur_cu = &cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; vector2d orig, mv; orig.x = x_ctb * CU_MIN_SIZE_PIXELS; orig.y = y_ctb * CU_MIN_SIZE_PIXELS; mv.x = 0; mv.y = 0; if (ref_cu->type == CU_INTER) { mv.x = ref_cu->inter.mv[0]; mv.y = ref_cu->inter.mv[1]; } #if SEARCH_MV_FULL_RADIUS cur_cu->inter.cost = search_mv_full(depth, cur_pic, ref_pic, &orig, &mv); #else cur_cu->inter.cost = hexagon_search(depth, cur_pic, ref_pic, &orig, &mv); #endif cur_cu->inter.mv_dir = 1; cur_cu->inter.mv[0] = mv.x; cur_cu->inter.mv[1] = mv.y; } void search_intra(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { int x = x_ctb * (LCU_WIDTH >> MAX_DEPTH); int y = y_ctb * (LCU_WIDTH >> MAX_DEPTH); picture *cur_pic = encoder->in.cur_pic; uint32_t width = LCU_WIDTH >> depth; cu_info *cur_cu = &cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; // INTRAPREDICTION pixel pred[LCU_WIDTH * LCU_WIDTH + 1]; pixel rec[(LCU_WIDTH * 2 + 1) * (LCU_WIDTH * 2 + 1)]; pixel *recShift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1]; // Build reconstructed block to use in prediction with extrapolated borders search_buildReferenceBorder(encoder->in.cur_pic, x, y, width * 2 + 8, rec, width * 2 + 8, 0); cur_cu->intra[0].mode = (uint8_t) intra_prediction(encoder->in.cur_pic->y_data, encoder->in.width, recShift, width * 2 + 8, x, y, width, pred, width, &cur_cu->intra[0].cost); cur_cu->part_size = SIZE_2Nx2N; // Do search for NxN split. // This feature doesn't work yet so it is disabled. if (0 && depth == MAX_DEPTH) { // Disabled because coding NxN doesn't work yet. // Save 2Nx2N information to compare with NxN. int nn_cost = cur_cu->intra[0].cost; int nn_mode = cur_cu->intra[0].mode; int i; int cost = g_lambda_cost[encoder->QP] << 8; static vector2d offsets[4] = {{0,0},{1,0},{0,1},{1,1}}; width = 4; recShift = &rec[width * 2 + 8 + 1]; for (i = 0; i < 4; ++i) { int x_pos = x + offsets[i].x * width; int y_pos = y + offsets[i].y * width; search_buildReferenceBorder(encoder->in.cur_pic, x_pos, y_pos, width * 2 + 8, rec, width * 2 + 8, 0); cur_cu->intra[i].mode = (uint8_t) intra_prediction(encoder->in.cur_pic->y_data, encoder->in.width, recShift, width * 2 + 8, x_pos, y_pos, width, pred, width, &cur_cu->intra[i].cost); cost += cur_cu->intra[i].cost; } // Choose between 2Nx2N and NxN. if (nn_cost <= cost) { cur_cu->intra[0].cost = nn_cost; cur_cu->intra[0].mode = nn_mode; } else { cur_cu->intra[0].cost = cost; cur_cu->part_size = SIZE_NxN; } } } /** * \brief */ void search_tree(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border = border_x | border_y; // are we in any border CU picture *cur_pic = encoder->in.cur_pic; cu_info *cur_cu = &cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; cur_cu->intra[0].cost = 0xffffffff; cur_cu->inter.cost = 0xffffffff; // Force split on border if (depth != MAX_DEPTH) { if (border) { uint8_t change = 1 << (MAX_DEPTH - 1 - depth); search_tree(encoder, x_ctb, y_ctb, depth + 1); if (!border_x || border_split_x) { search_tree(encoder, x_ctb + change, y_ctb, depth + 1); } if (!border_y || border_split_y) { search_tree(encoder, x_ctb, y_ctb + change, depth + 1); } if (!border || (border_split_x && border_split_y)) { search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1); } return; } } if (cur_pic->slicetype != SLICE_I && depth >= MIN_INTER_SEARCH_DEPTH && depth <= MAX_INTER_SEARCH_DEPTH) { search_inter(encoder, x_ctb, y_ctb, depth); } if (depth >= MIN_INTRA_SEARCH_DEPTH && depth <= MAX_INTRA_SEARCH_DEPTH && (encoder->in.cur_pic->slicetype == SLICE_I || USE_INTRA_IN_P)) { search_intra(encoder, x_ctb, y_ctb, depth); } // Split and search to max_depth if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) { // Split blocks and remember to change x and y block positions uint8_t change = 1 << (MAX_DEPTH - 1 - depth); search_tree(encoder, x_ctb, y_ctb, depth + 1); search_tree(encoder, x_ctb + change, y_ctb, depth + 1); search_tree(encoder, x_ctb, y_ctb + change, depth + 1); search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1); } } /** * \brief */ uint32_t search_best_mode(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { cu_info *cur_cu = &encoder->in.cur_pic->cu_array[depth] [x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; uint32_t best_intra_cost = cur_cu->intra[0].cost; uint32_t best_inter_cost = cur_cu->inter.cost; uint32_t lambda_cost = (4 * g_lambda_cost[encoder->QP]) << 4; //<<5; //TODO: Correct cost calculation if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) { uint32_t cost = lambda_cost; uint8_t change = 1 << (MAX_DEPTH - 1 - depth); cost += search_best_mode(encoder, x_ctb, y_ctb, depth + 1); cost += search_best_mode(encoder, x_ctb + change, y_ctb, depth + 1); cost += search_best_mode(encoder, x_ctb, y_ctb + change, depth + 1); cost += search_best_mode(encoder, x_ctb + change, y_ctb + change, depth + 1); if (cost < best_intra_cost && cost < best_inter_cost) { // Better value was found at a lower level. return cost; } } // If search hasn't been peformed at all for this block, the cost will be // max value, so it is safe to just compare costs. It just has to be made // sure that no value overflows. if (best_inter_cost <= best_intra_cost) { inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu); return best_inter_cost; } else { intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu->intra[0].mode, cur_cu->part_size); return best_intra_cost; } } /** * \brief */ void search_slice_data(encoder_control *encoder) { int16_t x_lcu, y_lcu; FILE *fp = 0, *fp2 = 0; if (RENDER_CU) { fp = open_cu_file("cu_search.html"); fp2 = open_cu_file("cu_best.html"); } // Loop through every LCU in the slice for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) { for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) { uint8_t depth = 0; // Recursive function for looping through all the sub-blocks search_tree(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth); if (RENDER_CU) { render_cu_file(encoder, encoder->in.cur_pic, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp); } // Decide actual coding modes search_best_mode(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth); if (RENDER_CU) { render_cu_file(encoder, encoder->in.cur_pic, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp2); } encode_block_residual(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth); } } if (RENDER_CU && fp) { close_cu_file(fp); fp = 0; } if (RENDER_CU && fp2) { close_cu_file(fp2); fp2 = 0; } }