/***************************************************************************** * This file is part of uvg266 VVC encoder. * * Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS ****************************************************************************/ #include "rdo.h" #include #include #include #include #include "cabac.h" #include "context.h" #include "encode_coding_tree.h" #include "encoder.h" #include "imagelist.h" #include "inter.h" #include "uvg_math.h" #include "scalinglist.h" #include "strategyselector.h" #include "tables.h" #include "transform.h" #include "strategies/strategies-quant.h" #define QUANT_SHIFT 14 #define SCAN_SET_SIZE 16 #define LOG2_SCAN_SET_SIZE 4 #define SBH_THRESHOLD 4 #define RD_SAMPLING_MAX_LAST_QP 50 static FILE *fastrd_learning_outfile[RD_SAMPLING_MAX_LAST_QP + 1] = {NULL}; static pthread_mutex_t outfile_mutex[RD_SAMPLING_MAX_LAST_QP + 1]; const uint32_t uvg_g_go_rice_range[5] = { 7, 14, 26, 46, 78 }; const uint32_t uvg_g_go_rice_prefix_len[5] = { 8, 7, 6, 5, 4 }; static const uint32_t g_auiGoRiceParsCoeff[32] = { 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3 }; /** * Entropy bits to estimate coded bits in RDO / RDOQ (From VTM 13.0) */ const uint32_t uvg_entropy_bits[2*256] = { 0x0005c, 0x48000 , 0x00116, 0x3b520, 0x001d0, 0x356cb, 0x0028b, 0x318a9, 0x00346, 0x2ea40 , 0x00403, 0x2c531, 0x004c0, 0x2a658, 0x0057e, 0x28beb, 0x0063c, 0x274ce , 0x006fc, 0x26044, 0x007bc, 0x24dc9, 0x0087d, 0x23cfc, 0x0093f, 0x22d96 , 0x00a01, 0x21f60, 0x00ac4, 0x2122e, 0x00b89, 0x205dd, 0x00c4e, 0x1fa51 , 0x00d13, 0x1ef74, 0x00dda, 0x1e531, 0x00ea2, 0x1db78, 0x00f6a, 0x1d23c , 0x01033, 0x1c970, 0x010fd, 0x1c10b, 0x011c8, 0x1b903, 0x01294, 0x1b151 , 0x01360, 0x1a9ee, 0x0142e, 0x1a2d4, 0x014fc, 0x19bfc, 0x015cc, 0x19564 , 0x0169c, 0x18f06, 0x0176d, 0x188de, 0x0183f, 0x182e8, 0x01912, 0x17d23 , 0x019e6, 0x1778a, 0x01abb, 0x1721c, 0x01b91, 0x16cd5, 0x01c68, 0x167b4 , 0x01d40, 0x162b6, 0x01e19, 0x15dda, 0x01ef3, 0x1591e, 0x01fcd, 0x15480 , 0x020a9, 0x14fff, 0x02186, 0x14b99, 0x02264, 0x1474e, 0x02343, 0x1431b , 0x02423, 0x13f01, 0x02504, 0x13afd, 0x025e6, 0x1370f, 0x026ca, 0x13336 , 0x027ae, 0x12f71, 0x02894, 0x12bc0, 0x0297a, 0x12821, 0x02a62, 0x12494 , 0x02b4b, 0x12118, 0x02c35, 0x11dac, 0x02d20, 0x11a51, 0x02e0c, 0x11704 , 0x02efa, 0x113c7, 0x02fe9, 0x11098, 0x030d9, 0x10d77, 0x031ca, 0x10a63 , 0x032bc, 0x1075c, 0x033b0, 0x10461, 0x034a5, 0x10173, 0x0359b, 0x0fe90 , 0x03693, 0x0fbb9, 0x0378c, 0x0f8ed, 0x03886, 0x0f62b, 0x03981, 0x0f374 , 0x03a7e, 0x0f0c7, 0x03b7c, 0x0ee23, 0x03c7c, 0x0eb89, 0x03d7d, 0x0e8f9 , 0x03e7f, 0x0e671, 0x03f83, 0x0e3f2, 0x04088, 0x0e17c, 0x0418e, 0x0df0e , 0x04297, 0x0dca8, 0x043a0, 0x0da4a, 0x044ab, 0x0d7f3, 0x045b8, 0x0d5a5 , 0x046c6, 0x0d35d, 0x047d6, 0x0d11c, 0x048e7, 0x0cee3, 0x049fa, 0x0ccb0 , 0x04b0e, 0x0ca84, 0x04c24, 0x0c85e, 0x04d3c, 0x0c63f, 0x04e55, 0x0c426 , 0x04f71, 0x0c212, 0x0508d, 0x0c005, 0x051ac, 0x0bdfe, 0x052cc, 0x0bbfc , 0x053ee, 0x0b9ff, 0x05512, 0x0b808, 0x05638, 0x0b617, 0x0575f, 0x0b42a , 0x05888, 0x0b243, 0x059b4, 0x0b061, 0x05ae1, 0x0ae83, 0x05c10, 0x0acaa , 0x05d41, 0x0aad6, 0x05e74, 0x0a907, 0x05fa9, 0x0a73c, 0x060e0, 0x0a575 , 0x06219, 0x0a3b3, 0x06354, 0x0a1f5, 0x06491, 0x0a03b, 0x065d1, 0x09e85 , 0x06712, 0x09cd4, 0x06856, 0x09b26, 0x0699c, 0x0997c, 0x06ae4, 0x097d6 , 0x06c2f, 0x09634, 0x06d7c, 0x09495, 0x06ecb, 0x092fa, 0x0701d, 0x09162 , 0x07171, 0x08fce, 0x072c7, 0x08e3e, 0x07421, 0x08cb0, 0x0757c, 0x08b26 , 0x076da, 0x089a0, 0x0783b, 0x0881c, 0x0799f, 0x0869c, 0x07b05, 0x0851f , 0x07c6e, 0x083a4, 0x07dd9, 0x0822d, 0x07f48, 0x080b9, 0x080b9, 0x07f48 , 0x0822d, 0x07dd9, 0x083a4, 0x07c6e, 0x0851f, 0x07b05, 0x0869c, 0x0799f , 0x0881c, 0x0783b, 0x089a0, 0x076da, 0x08b26, 0x0757c, 0x08cb0, 0x07421 , 0x08e3e, 0x072c7, 0x08fce, 0x07171, 0x09162, 0x0701d, 0x092fa, 0x06ecb , 0x09495, 0x06d7c, 0x09634, 0x06c2f, 0x097d6, 0x06ae4, 0x0997c, 0x0699c , 0x09b26, 0x06856, 0x09cd4, 0x06712, 0x09e85, 0x065d1, 0x0a03b, 0x06491 , 0x0a1f5, 0x06354, 0x0a3b3, 0x06219, 0x0a575, 0x060e0, 0x0a73c, 0x05fa9 , 0x0a907, 0x05e74, 0x0aad6, 0x05d41, 0x0acaa, 0x05c10, 0x0ae83, 0x05ae1 , 0x0b061, 0x059b4, 0x0b243, 0x05888, 0x0b42a, 0x0575f, 0x0b617, 0x05638 , 0x0b808, 0x05512, 0x0b9ff, 0x053ee, 0x0bbfc, 0x052cc, 0x0bdfe, 0x051ac , 0x0c005, 0x0508d, 0x0c212, 0x04f71, 0x0c426, 0x04e55, 0x0c63f, 0x04d3c , 0x0c85e, 0x04c24, 0x0ca84, 0x04b0e, 0x0ccb0, 0x049fa, 0x0cee3, 0x048e7 , 0x0d11c, 0x047d6, 0x0d35d, 0x046c6, 0x0d5a5, 0x045b8, 0x0d7f3, 0x044ab , 0x0da4a, 0x043a0, 0x0dca8, 0x04297, 0x0df0e, 0x0418e, 0x0e17c, 0x04088 , 0x0e3f2, 0x03f83, 0x0e671, 0x03e7f, 0x0e8f9, 0x03d7d, 0x0eb89, 0x03c7c , 0x0ee23, 0x03b7c, 0x0f0c7, 0x03a7e, 0x0f374, 0x03981, 0x0f62b, 0x03886 , 0x0f8ed, 0x0378c, 0x0fbb9, 0x03693, 0x0fe90, 0x0359b, 0x10173, 0x034a5 , 0x10461, 0x033b0, 0x1075c, 0x032bc, 0x10a63, 0x031ca, 0x10d77, 0x030d9 , 0x11098, 0x02fe9, 0x113c7, 0x02efa, 0x11704, 0x02e0c, 0x11a51, 0x02d20 , 0x11dac, 0x02c35, 0x12118, 0x02b4b, 0x12494, 0x02a62, 0x12821, 0x0297a , 0x12bc0, 0x02894, 0x12f71, 0x027ae, 0x13336, 0x026ca, 0x1370f, 0x025e6 , 0x13afd, 0x02504, 0x13f01, 0x02423, 0x1431b, 0x02343, 0x1474e, 0x02264 , 0x14b99, 0x02186, 0x14fff, 0x020a9, 0x15480, 0x01fcd, 0x1591e, 0x01ef3 , 0x15dda, 0x01e19, 0x162b6, 0x01d40, 0x167b4, 0x01c68, 0x16cd5, 0x01b91 , 0x1721c, 0x01abb, 0x1778a, 0x019e6, 0x17d23, 0x01912, 0x182e8, 0x0183f , 0x188de, 0x0176d, 0x18f06, 0x0169c, 0x19564, 0x015cc, 0x19bfc, 0x014fc , 0x1a2d4, 0x0142e, 0x1a9ee, 0x01360, 0x1b151, 0x01294, 0x1b903, 0x011c8 , 0x1c10b, 0x010fd, 0x1c970, 0x01033, 0x1d23c, 0x00f6a, 0x1db78, 0x00ea2 , 0x1e531, 0x00dda, 0x1ef74, 0x00d13, 0x1fa51, 0x00c4e, 0x205dd, 0x00b89 , 0x2122e, 0x00ac4, 0x21f60, 0x00a01, 0x22d96, 0x0093f, 0x23cfc, 0x0087d , 0x24dc9, 0x007bc, 0x26044, 0x006fc, 0x274ce, 0x0063c, 0x28beb, 0x0057e , 0x2a658, 0x004c0, 0x2c531, 0x00403, 0x2ea40, 0x00346, 0x318a9, 0x0028b , 0x356cb, 0x001d0, 0x3b520, 0x00116, 0x48000, 0x0005c, }; // Entropy bits scaled so that 50% probability yields 1 bit. const float uvg_f_entropy_bits[256*2] = { 0.002807617187500, 9.000000000000000, 0.008483886718750, 7.415039062500000, 0.014160156250000, 6.678070068359375, 0.019866943359375, 6.192657470703125, 0.025573730468750, 5.830078125000000, 0.031341552734375, 5.540557861328125, 0.037109375000000, 5.299560546875000, 0.042907714843750, 5.093109130859375, 0.048706054687500, 4.912536621093750, 0.054565429687500, 4.752075195312500, 0.060424804687500, 4.607696533203125, 0.066314697265625, 4.476440429687500, 0.072235107421875, 4.356140136718750, 0.078155517578125, 4.245117187500000, 0.084106445312500, 4.142028808593750, 0.090118408203125, 4.045806884765625, 0.096130371093750, 3.955596923828125, 0.102142333984375, 3.870727539062500, 0.108215332031250, 3.790557861328125, 0.114318847656250, 3.714599609375000, 0.120422363281250, 3.642456054687500, 0.126556396484375, 3.573730468750000, 0.132720947265625, 3.508148193359375, 0.138916015625000, 3.445404052734375, 0.145141601562500, 3.385284423828125, 0.151367187500000, 3.327575683593750, 0.157653808593750, 3.272094726562500, 0.163940429687500, 3.218627929687500, 0.170288085937500, 3.167114257812500, 0.176635742187500, 3.117370605468750, 0.183013916015625, 3.069274902343750, 0.189422607421875, 3.022705078125000, 0.195861816406250, 2.977630615234375, 0.202331542968750, 2.933898925781250, 0.208831787109375, 2.891479492187500, 0.215362548828125, 2.850250244140625, 0.221923828125000, 2.810180664062500, 0.228515625000000, 2.771179199218750, 0.235137939453125, 2.733215332031250, 0.241790771484375, 2.696228027343750, 0.248443603515625, 2.660156250000000, 0.255157470703125, 2.624969482421875, 0.261901855468750, 2.590606689453125, 0.268676757812500, 2.557067871093750, 0.275482177734375, 2.524261474609375, 0.282318115234375, 2.492218017578125, 0.289184570312500, 2.460845947265625, 0.296081542968750, 2.430145263671875, 0.303039550781250, 2.400085449218750, 0.309997558593750, 2.370635986328125, 0.317016601562500, 2.341796875000000, 0.324035644531250, 2.313507080078125, 0.331115722656250, 2.285766601562500, 0.338226318359375, 2.258544921875000, 0.345367431640625, 2.231811523437500, 0.352539062500000, 2.205596923828125, 0.359741210937500, 2.179809570312500, 0.367004394531250, 2.154510498046875, 0.374298095703125, 2.129638671875000, 0.381622314453125, 2.105194091796875, 0.388977050781250, 2.081146240234375, 0.396362304687500, 2.057495117187500, 0.403808593750000, 2.034210205078125, 0.411285400390625, 2.011322021484375, 0.418792724609375, 1.988769531250000, 0.426361083984375, 1.966583251953125, 0.433959960937500, 1.944732666015625, 0.441589355468750, 1.923187255859375, 0.449249267578125, 1.901977539062500, 0.456970214843750, 1.881072998046875, 0.464721679687500, 1.860443115234375, 0.472534179687500, 1.840118408203125, 0.480377197265625, 1.820098876953125, 0.488250732421875, 1.800323486328125, 0.496185302734375, 1.780822753906250, 0.504150390625000, 1.761596679687500, 0.512145996093750, 1.742614746093750, 0.520233154296875, 1.723876953125000, 0.528320312500000, 1.705383300781250, 0.536468505859375, 1.687103271484375, 0.544677734375000, 1.669097900390625, 0.552917480468750, 1.651275634765625, 0.561218261718750, 1.633666992187500, 0.569549560546875, 1.616302490234375, 0.577941894531250, 1.599121093750000, 0.586364746093750, 1.582153320312500, 0.594848632812500, 1.565368652343750, 0.603393554687500, 1.548797607421875, 0.611968994140625, 1.532409667968750, 0.620635986328125, 1.516174316406250, 0.629302978515625, 1.500152587890625, 0.638061523437500, 1.484313964843750, 0.646850585937500, 1.468627929687500, 0.655700683593750, 1.453094482421875, 0.664611816406250, 1.437744140625000, 0.673583984375000, 1.422576904296875, 0.682586669921875, 1.407531738281250, 0.691650390625000, 1.392669677734375, 0.700805664062500, 1.377960205078125, 0.709991455078125, 1.363372802734375, 0.719238281250000, 1.348937988281250, 0.728546142578125, 1.334655761718750, 0.737915039062500, 1.320526123046875, 0.747344970703125, 1.306518554687500, 0.756835937500000, 1.292633056640625, 0.766387939453125, 1.278900146484375, 0.776000976562500, 1.265289306640625, 0.785675048828125, 1.251800537109375, 0.795440673828125, 1.238433837890625, 0.805236816406250, 1.225219726562500, 0.815124511718750, 1.212097167968750, 0.825073242187500, 1.199096679687500, 0.835083007812500, 1.186218261718750, 0.845184326171875, 1.173461914062500, 0.855346679687500, 1.160797119140625, 0.865570068359375, 1.148254394531250, 0.875885009765625, 1.135803222656250, 0.886260986328125, 1.123474121093750, 0.896697998046875, 1.111267089843750, 0.907257080078125, 1.099121093750000, 0.917846679687500, 1.087097167968750, 0.928527832031250, 1.075195312500000, 0.939300537109375, 1.063354492187500, 0.950164794921875, 1.051635742187500, 0.961090087890625, 1.040008544921875, 0.972106933593750, 1.028442382812500, 0.983184814453125, 1.016998291015625, 0.994384765625000, 1.005645751953125, 1.005645751953125, 0.994384765625000, 1.016998291015625, 0.983184814453125, 1.028442382812500, 0.972106933593750, 1.040008544921875, 0.961090087890625, 1.051635742187500, 0.950164794921875, 1.063354492187500, 0.939300537109375, 1.075195312500000, 0.928527832031250, 1.087097167968750, 0.917846679687500, 1.099121093750000, 0.907257080078125, 1.111267089843750, 0.896697998046875, 1.123474121093750, 0.886260986328125, 1.135803222656250, 0.875885009765625, 1.148254394531250, 0.865570068359375, 1.160797119140625, 0.855346679687500, 1.173461914062500, 0.845184326171875, 1.186218261718750, 0.835083007812500, 1.199096679687500, 0.825073242187500, 1.212097167968750, 0.815124511718750, 1.225219726562500, 0.805236816406250, 1.238433837890625, 0.795440673828125, 1.251800537109375, 0.785675048828125, 1.265289306640625, 0.776000976562500, 1.278900146484375, 0.766387939453125, 1.292633056640625, 0.756835937500000, 1.306518554687500, 0.747344970703125, 1.320526123046875, 0.737915039062500, 1.334655761718750, 0.728546142578125, 1.348937988281250, 0.719238281250000, 1.363372802734375, 0.709991455078125, 1.377960205078125, 0.700805664062500, 1.392669677734375, 0.691650390625000, 1.407531738281250, 0.682586669921875, 1.422576904296875, 0.673583984375000, 1.437744140625000, 0.664611816406250, 1.453094482421875, 0.655700683593750, 1.468627929687500, 0.646850585937500, 1.484313964843750, 0.638061523437500, 1.500152587890625, 0.629302978515625, 1.516174316406250, 0.620635986328125, 1.532409667968750, 0.611968994140625, 1.548797607421875, 0.603393554687500, 1.565368652343750, 0.594848632812500, 1.582153320312500, 0.586364746093750, 1.599121093750000, 0.577941894531250, 1.616302490234375, 0.569549560546875, 1.633666992187500, 0.561218261718750, 1.651275634765625, 0.552917480468750, 1.669097900390625, 0.544677734375000, 1.687103271484375, 0.536468505859375, 1.705383300781250, 0.528320312500000, 1.723876953125000, 0.520233154296875, 1.742614746093750, 0.512145996093750, 1.761596679687500, 0.504150390625000, 1.780822753906250, 0.496185302734375, 1.800323486328125, 0.488250732421875, 1.820098876953125, 0.480377197265625, 1.840118408203125, 0.472534179687500, 1.860443115234375, 0.464721679687500, 1.881072998046875, 0.456970214843750, 1.901977539062500, 0.449249267578125, 1.923187255859375, 0.441589355468750, 1.944732666015625, 0.433959960937500, 1.966583251953125, 0.426361083984375, 1.988769531250000, 0.418792724609375, 2.011322021484375, 0.411285400390625, 2.034210205078125, 0.403808593750000, 2.057495117187500, 0.396362304687500, 2.081146240234375, 0.388977050781250, 2.105194091796875, 0.381622314453125, 2.129638671875000, 0.374298095703125, 2.154510498046875, 0.367004394531250, 2.179809570312500, 0.359741210937500, 2.205596923828125, 0.352539062500000, 2.231811523437500, 0.345367431640625, 2.258544921875000, 0.338226318359375, 2.285766601562500, 0.331115722656250, 2.313507080078125, 0.324035644531250, 2.341796875000000, 0.317016601562500, 2.370635986328125, 0.309997558593750, 2.400085449218750, 0.303039550781250, 2.430145263671875, 0.296081542968750, 2.460845947265625, 0.289184570312500, 2.492218017578125, 0.282318115234375, 2.524261474609375, 0.275482177734375, 2.557067871093750, 0.268676757812500, 2.590606689453125, 0.261901855468750, 2.624969482421875, 0.255157470703125, 2.660156250000000, 0.248443603515625, 2.696228027343750, 0.241790771484375, 2.733215332031250, 0.235137939453125, 2.771179199218750, 0.228515625000000, 2.810180664062500, 0.221923828125000, 2.850250244140625, 0.215362548828125, 2.891479492187500, 0.208831787109375, 2.933898925781250, 0.202331542968750, 2.977630615234375, 0.195861816406250, 3.022705078125000, 0.189422607421875, 3.069274902343750, 0.183013916015625, 3.117370605468750, 0.176635742187500, 3.167114257812500, 0.170288085937500, 3.218627929687500, 0.163940429687500, 3.272094726562500, 0.157653808593750, 3.327575683593750, 0.151367187500000, 3.385284423828125, 0.145141601562500, 3.445404052734375, 0.138916015625000, 3.508148193359375, 0.132720947265625, 3.573730468750000, 0.126556396484375, 3.642456054687500, 0.120422363281250, 3.714599609375000, 0.114318847656250, 3.790557861328125, 0.108215332031250, 3.870727539062500, 0.102142333984375, 3.955596923828125, 0.096130371093750, 4.045806884765625, 0.090118408203125, 4.142028808593750, 0.084106445312500, 4.245117187500000, 0.078155517578125, 4.356140136718750, 0.072235107421875, 4.476440429687500, 0.066314697265625, 4.607696533203125, 0.060424804687500, 4.752075195312500, 0.054565429687500, 4.912536621093750, 0.048706054687500, 5.093109130859375, 0.042907714843750, 5.299560546875000, 0.037109375000000, 5.540557861328125, 0.031341552734375, 5.830078125000000, 0.025573730468750, 6.192657470703125, 0.019866943359375, 6.678070068359375, 0.014160156250000, 7.415039062500000, 0.008483886718750, 9.000000000000000, 0.002807617187500, }; // This struct is for passing data to uvg_rdoq_sign_hiding struct sh_rates_t { // Bit cost of increasing rate by one. int32_t inc[32 * 32]; // Bit cost of decreasing rate by one. int32_t dec[32 * 32]; // Bit cost of going from zero to one. int32_t sig_coeff_inc[32 * 32]; // Coeff minus quantized coeff. int32_t quant_delta[32 * 32]; }; int uvg_init_rdcost_outfiles(const char *dir_path) { #define RD_SAMPLING_MAX_FN_LENGTH 4095 static const char *basename_tmpl = "/%02i.txt"; char fn_template[RD_SAMPLING_MAX_FN_LENGTH + 1]; char fn[RD_SAMPLING_MAX_FN_LENGTH + 1]; int rv = 0, qp; // As long as QP is a two-digit number, template and produced string should // be equal in length ("%i" -> "22") assert(RD_SAMPLING_MAX_LAST_QP <= 99); assert(strlen(fn_template) <= RD_SAMPLING_MAX_FN_LENGTH); strncpy(fn_template, dir_path, RD_SAMPLING_MAX_FN_LENGTH); strncat(fn_template, basename_tmpl, RD_SAMPLING_MAX_FN_LENGTH - strlen(dir_path)); for (qp = 0; qp <= RD_SAMPLING_MAX_LAST_QP; qp++) { pthread_mutex_t *curr = outfile_mutex + qp; if (pthread_mutex_init(curr, NULL) != 0) { fprintf(stderr, "Failed to create mutex\n"); rv = -1; qp--; goto out_destroy_mutexes; } } for (qp = 0; qp <= RD_SAMPLING_MAX_LAST_QP; qp++) { FILE *curr; snprintf(fn, RD_SAMPLING_MAX_FN_LENGTH, fn_template, qp); fn[RD_SAMPLING_MAX_FN_LENGTH] = 0; curr = fopen(fn, "w"); if (curr == NULL) { fprintf(stderr, "Failed to open %s: %s\n", fn, strerror(errno)); rv = -1; qp--; goto out_close_files; } fastrd_learning_outfile[qp] = curr; } goto out; out_close_files: for (; qp >= 0; qp--) { fclose(fastrd_learning_outfile[qp]); fastrd_learning_outfile[qp] = NULL; } goto out; out_destroy_mutexes: for (; qp >= 0; qp--) { pthread_mutex_destroy(outfile_mutex + qp); } goto out; out: return rv; #undef RD_SAMPLING_MAX_FN_LENGTH } /** * \brief Calculate actual (or really close to actual) bitcost for coding * coefficients. * * \param coeff coefficient array * \param width coeff block width * \param type data type (0 == luma) * * \returns bits needed to code input coefficients */ static INLINE uint32_t get_coeff_cabac_cost( const encoder_state_t * const state, const coeff_t *coeff, int32_t width, int32_t type, int8_t scan_mode, int8_t tr_skip) { // Make sure there are coeffs present bool found = false; for (int i = 0; i < width*width; i++) { if (coeff[i] != 0) { found = 1; break; } } if (!found) return 0; // Take a copy of the CABAC so that we don't overwrite the contexts when // counting the bits. cabac_data_t cabac_copy; memcpy(&cabac_copy, &state->search_cabac, sizeof(cabac_copy)); // Clear bytes and bits and set mode to "count" cabac_copy.only_count = 1; int num_buffered_bytes = cabac_copy.num_buffered_bytes; int bits_left = cabac_copy.bits_left; // Execute the coding function. // It is safe to drop the const modifier since state won't be modified // when cabac.only_count is set. if(!tr_skip) { uvg_encode_coeff_nxn((encoder_state_t*) state, &cabac_copy, coeff, width, type, scan_mode, NULL, false); } else { uvg_encode_ts_residual((encoder_state_t* const)state, &cabac_copy, coeff, width, type, scan_mode); } if(cabac_copy.update) { memcpy((cabac_data_t *)&state->search_cabac, &cabac_copy, sizeof(cabac_copy)); } return (bits_left - cabac_copy.bits_left) + ((cabac_copy.num_buffered_bytes - num_buffered_bytes) << 3); } static INLINE void save_ccc(int qp, const coeff_t *coeff, int32_t size, uint32_t ccc) { pthread_mutex_t *mtx = outfile_mutex + qp; assert(sizeof(coeff_t) == sizeof(int16_t)); assert(qp <= RD_SAMPLING_MAX_LAST_QP); pthread_mutex_lock(mtx); fwrite(&size, sizeof(size), 1, fastrd_learning_outfile[qp]); fwrite(&ccc, sizeof(ccc), 1, fastrd_learning_outfile[qp]); fwrite( coeff, sizeof(coeff_t), size, fastrd_learning_outfile[qp]); pthread_mutex_unlock(mtx); } static INLINE void save_accuracy(int qp, uint32_t ccc, uint32_t fast_cost) { pthread_mutex_t *mtx = outfile_mutex + qp; assert(qp <= RD_SAMPLING_MAX_LAST_QP); pthread_mutex_lock(mtx); fprintf(fastrd_learning_outfile[qp], "%u %u\n", fast_cost, ccc); pthread_mutex_unlock(mtx); } /** * \brief Estimate bitcost for coding coefficients. * * \param coeff coefficient array * \param width coeff block width * \param type data type (0 == luma) * * \returns number of bits needed to code coefficients */ uint32_t uvg_get_coeff_cost(const encoder_state_t * const state, const coeff_t *coeff, int32_t width, int32_t type, int8_t scan_mode, int8_t tr_skip) { uint8_t save_cccs = state->encoder_control->cfg.fastrd_sampling_on; uint8_t check_accuracy = state->encoder_control->cfg.fastrd_accuracy_check_on; if (state->qp < state->encoder_control->cfg.fast_residual_cost_limit && state->qp < MAX_FAST_COEFF_COST_QP && !tr_skip) { // TODO: do we need to assert(0) out of the fast-estimation branch if we // are to save block costs, or should we just warn about it somewhere // earlier (configuration validation I guess)? if (save_cccs) { assert(0 && "Fast RD sampling does not work with fast-residual-cost"); return UINT32_MAX; // Hush little compiler don't you cry, not really gonna return anything after assert(0) } else { uint64_t weights = uvg_fast_coeff_get_weights(state); uint32_t fast_cost = uvg_fast_coeff_cost(coeff, width, weights); if (check_accuracy) { uint32_t ccc = get_coeff_cabac_cost(state, coeff, width, type, scan_mode, tr_skip); save_accuracy(state->qp, ccc, fast_cost); } return fast_cost; } } else { uint32_t ccc = get_coeff_cabac_cost(state, coeff, width, type, scan_mode, tr_skip); if (save_cccs) { save_ccc(state->qp, coeff, width * width, ccc); } return ccc; } } #define COEF_REMAIN_BIN_REDUCTION 5 /** Calculates the cost for specific absolute transform level * \param abs_level scaled quantized level * \param ctx_num_one current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC) * \param ctx_num_abs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC) * \param abs_go_rice Rice parameter for coeff_abs_level_minus3 * \returns cost of given absolute transform level * From VTM 13.0 */ INLINE int32_t uvg_get_ic_rate(encoder_state_t * const state, uint32_t abs_level, uint16_t ctx_num_gt1, uint16_t ctx_num_gt2, uint16_t ctx_num_par, uint16_t abs_go_rice, uint32_t reg_bins, int8_t type, int use_limited_prefix_length) { cabac_data_t * const cabac = &state->cabac; int32_t rate = 1 << CTX_FRAC_BITS; // cost of sign bit uint32_t base_level = 4; cabac_ctx_t *base_par_ctx = (type == 0) ? &(cabac->ctx.cu_parity_flag_model_luma[0]) : &(cabac->ctx.cu_parity_flag_model_chroma[0]); cabac_ctx_t *base_gt1_ctx = (type == 0) ? &(cabac->ctx.cu_gtx_flag_model_luma[1][0]) : &(cabac->ctx.cu_gtx_flag_model_chroma[1][0]); cabac_ctx_t* base_gt2_ctx = (type == 0) ? &(cabac->ctx.cu_gtx_flag_model_luma[0][0]) : &(cabac->ctx.cu_gtx_flag_model_chroma[0][0]); uint16_t go_rice_zero = 1 << abs_go_rice; int maxLog2TrDynamicRange = 15; if (reg_bins < 4) { uint32_t symbol = (abs_level == 0 ? go_rice_zero : abs_level <= go_rice_zero ? abs_level - 1 : abs_level); uint32_t length; const int threshold = COEF_REMAIN_BIN_REDUCTION; if (symbol < (threshold << abs_go_rice)) { length = symbol >> abs_go_rice; rate += (length + 1 + abs_go_rice) << CTX_FRAC_BITS; } else if(use_limited_prefix_length) { const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange)); uint32_t prefixLength = 0; uint32_t suffix = (symbol >> abs_go_rice) - COEF_REMAIN_BIN_REDUCTION; while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2))) { prefixLength++; } const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (maxLog2TrDynamicRange - abs_go_rice) : (prefixLength + 1/*separator*/); rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + abs_go_rice) << CTX_FRAC_BITS; } else { length = abs_go_rice; symbol = symbol - (threshold << abs_go_rice); while (symbol >= (1 << length)) { symbol -= (1 << (length++)); } rate += (threshold + length + 1 - abs_go_rice + length) << CTX_FRAC_BITS; } return rate; } if ( abs_level >= base_level ) { int32_t symbol = abs_level - base_level; int32_t length; if (symbol < (COEF_REMAIN_BIN_REDUCTION << abs_go_rice)) { length = symbol>>abs_go_rice; rate += (length + 1 + abs_go_rice) << CTX_FRAC_BITS; } else if (use_limited_prefix_length) { const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange)); uint32_t prefixLength = 0; uint32_t suffix = (symbol >> abs_go_rice) - COEF_REMAIN_BIN_REDUCTION; while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2))) { prefixLength++; } const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (maxLog2TrDynamicRange - abs_go_rice) : (prefixLength + 1/*separator*/); rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + abs_go_rice) << CTX_FRAC_BITS; } else { length = abs_go_rice; symbol = symbol - ( COEF_REMAIN_BIN_REDUCTION << abs_go_rice); while (symbol >= (1<cabac; double cur_cost_sig = 0; uint32_t best_abs_level = 0; int32_t abs_level; int32_t min_abs_level; cabac_ctx_t* base_sig_model = type?(cabac->ctx.cu_sig_model_chroma[0]):(cabac->ctx.cu_sig_model_luma[0]); const double lambda = type ? state->c_lambda : state->lambda; if( !last && max_abs_level < 3 ) { *coded_cost_sig = lambda * CTX_ENTROPY_BITS(&base_sig_model[ctx_num_sig], 0); *coded_cost = *coded_cost0 + *coded_cost_sig; if (max_abs_level == 0) return best_abs_level; } else { *coded_cost = MAX_DOUBLE; } if( !last ) { cur_cost_sig = lambda * CTX_ENTROPY_BITS(&base_sig_model[ctx_num_sig], 1); } min_abs_level = ( max_abs_level > 1 ? max_abs_level - 1 : 1 ); for (abs_level = max_abs_level; abs_level >= min_abs_level ; abs_level-- ) { double err = (double)(level_double - ( abs_level * (1 << q_bits) ) ); double cur_cost = err * err * error_scale + lambda * uvg_get_ic_rate( state, abs_level, ctx_num_gt1, ctx_num_gt2, ctx_num_par, abs_go_rice, reg_bins, type, true); cur_cost += cur_cost_sig; if( cur_cost < *coded_cost ) { best_abs_level = abs_level; *coded_cost = cur_cost; *coded_cost_sig = cur_cost_sig; } } return best_abs_level; } /** Calculates the cost of signaling the last significant coefficient in the block * \param pos_x X coordinate of the last significant coefficient * \param pos_y Y coordinate of the last significant coefficient * \returns cost of last significant coefficient * \param uiWidth width of the transform unit (TU) * * From VTM 13.0 */ static double get_rate_last(double lambda, const uint32_t pos_x, const uint32_t pos_y, int32_t* last_x_bits, int32_t* last_y_bits) { uint32_t ctx_x = g_group_idx[pos_x]; uint32_t ctx_y = g_group_idx[pos_y]; double uiCost = last_x_bits[ ctx_x ] + last_y_bits[ ctx_y ]; if( ctx_x > 3 ) { uiCost += CTX_FRAC_ONE_BIT * ((ctx_x - 2) >> 1); } if( ctx_y > 3 ) { uiCost += CTX_FRAC_ONE_BIT * ((ctx_y - 2) >> 1); } return lambda * uiCost; } static void calc_last_bits(encoder_state_t * const state, int32_t width, int32_t height, int8_t type, int32_t* last_x_bits, int32_t* last_y_bits) { cabac_data_t * const cabac = &state->cabac; int32_t bits_x = 0, bits_y = 0; int32_t blk_size_offset_x, blk_size_offset_y, shiftX, shiftY; int32_t ctx; cabac_ctx_t *base_ctx_x = (type ? cabac->ctx.cu_ctx_last_x_chroma : cabac->ctx.cu_ctx_last_x_luma); cabac_ctx_t *base_ctx_y = (type ? cabac->ctx.cu_ctx_last_y_chroma : cabac->ctx.cu_ctx_last_y_luma); static const int prefix_ctx[8] = { 0, 0, 0, 3, 6, 10, 15, 21 }; blk_size_offset_x = type ? 0: prefix_ctx[uvg_math_floor_log2(width)]; blk_size_offset_y = type ? 0: prefix_ctx[uvg_math_floor_log2(height)]; shiftX = type ? CLIP(0, 2, width>>3) :((uvg_math_floor_log2(width) +1)>>2); shiftY = type ? CLIP(0, 2, height>>3) :((uvg_math_floor_log2(height) +1)>>2); for (ctx = 0; ctx < g_group_idx[ width - 1 ]; ctx++) { int32_t ctx_offset = blk_size_offset_x + (ctx >>shiftX); last_x_bits[ ctx ] = bits_x + CTX_ENTROPY_BITS(&base_ctx_x[ ctx_offset ],0); bits_x += CTX_ENTROPY_BITS(&base_ctx_x[ ctx_offset ],1); } last_x_bits[ctx] = bits_x; for (ctx = 0; ctx < g_group_idx[ height - 1 ]; ctx++) { int32_t ctx_offset = blk_size_offset_y + (ctx >>shiftY); last_y_bits[ ctx ] = bits_y + CTX_ENTROPY_BITS(&base_ctx_y[ ctx_offset ],0); bits_y += CTX_ENTROPY_BITS(&base_ctx_y[ ctx_offset ],1); } last_y_bits[ctx] = bits_y; } /** * \brief Select which coefficient to change for sign hiding, and change it. * * When sign hiding is enabled, the last sign bit of the last coefficient is * calculated from the parity of the other coefficients. If the parity is not * correct, one coefficient has to be changed by one. This function uses * tables generated during RDOQ to select the best coefficient to change. */ void uvg_rdoq_sign_hiding( const encoder_state_t *const state, const int32_t qp_scaled, const uint32_t *const scan2raster, const struct sh_rates_t *const sh_rates, const int32_t last_pos, const coeff_t *const coeffs, coeff_t *const quant_coeffs, const int8_t color) { const encoder_control_t * const ctrl = state->encoder_control; const double lambda = color ? state->c_lambda : state->lambda; int inv_quant = uvg_g_inv_quant_scales[qp_scaled % 6]; // This somehow scales quant_delta into fractional bits. Instead of the bits // being multiplied by lambda, the residual is divided by it, or something // like that. const int64_t rd_factor = (inv_quant * inv_quant * (1 << (2 * (qp_scaled / 6))) / lambda / 16 / (1 << (2 * (ctrl->bitdepth - 8))) + 0.5); const int last_cg = (last_pos - 1) >> LOG2_SCAN_SET_SIZE; for (int32_t cg_scan = last_cg; cg_scan >= 0; cg_scan--) { const int32_t cg_coeff_scan = cg_scan << LOG2_SCAN_SET_SIZE; // Find positions of first and last non-zero coefficients in the CG. int32_t last_nz_scan = -1; for (int32_t coeff_i = SCAN_SET_SIZE - 1; coeff_i >= 0; --coeff_i) { if (quant_coeffs[scan2raster[coeff_i + cg_coeff_scan]]) { last_nz_scan = coeff_i; break; } } int32_t first_nz_scan = SCAN_SET_SIZE; for (int32_t coeff_i = 0; coeff_i <= last_nz_scan; coeff_i++) { if (quant_coeffs[scan2raster[coeff_i + cg_coeff_scan]]) { first_nz_scan = coeff_i; break; } } if (last_nz_scan - first_nz_scan < SBH_THRESHOLD) { continue; } const int32_t signbit = quant_coeffs[scan2raster[cg_coeff_scan + first_nz_scan]] <= 0; unsigned abs_coeff_sum = 0; for (int32_t coeff_scan = first_nz_scan; coeff_scan <= last_nz_scan; coeff_scan++) { abs_coeff_sum += quant_coeffs[scan2raster[coeff_scan + cg_coeff_scan]]; } if (signbit == (abs_coeff_sum & 0x1)) { // Sign already matches with the parity, no need to modify coefficients. continue; } // Otherwise, search for the best coeff to change by one and change it. struct { int64_t cost; int pos; int change; } current, best = { MAX_INT64, 0, 0 }; const int last_coeff_scan = (cg_scan == last_cg ? last_nz_scan : SCAN_SET_SIZE - 1); for (int coeff_scan = last_coeff_scan; coeff_scan >= 0; --coeff_scan) { current.pos = scan2raster[coeff_scan + cg_coeff_scan]; // Shift the calculation back into original precision to avoid // changing the bitstream. # define PRECISION_INC (15 - CTX_FRAC_BITS) int64_t quant_cost_in_bits = rd_factor * sh_rates->quant_delta[current.pos]; coeff_t abs_coeff = abs(quant_coeffs[current.pos]); if (abs_coeff != 0) { // Choose between incrementing and decrementing a non-zero coeff. int64_t inc_bits = sh_rates->inc[current.pos]; int64_t dec_bits = sh_rates->dec[current.pos]; if (abs_coeff == 1) { // We save sign bit and sig_coeff goes to zero. dec_bits -= sh_rates->sig_coeff_inc[current.pos]; } if (cg_scan == last_cg && last_nz_scan == coeff_scan && abs_coeff == 1) { // Changing the last non-zero bit in the last cg to zero. // This might save a lot of bits if the next bits are already // zeros, or just a coupple fractional bits if they are not. // TODO: Check if calculating the real savings makes sense. dec_bits -= 4 * CTX_FRAC_ONE_BIT; } inc_bits = -quant_cost_in_bits + inc_bits * (1 << PRECISION_INC); dec_bits = quant_cost_in_bits + dec_bits * (1 << PRECISION_INC); if (inc_bits < dec_bits) { current.change = 1; current.cost = inc_bits; } else { current.change = -1; current.cost = dec_bits; if (coeff_scan == first_nz_scan && abs_coeff == 1) { // Don't turn first non-zero coeff into zero. // Seems kind of arbitrary. It's probably because it could lead to // breaking SBH_THRESHOLD. current.cost = MAX_INT64; } } } else { // Try incrementing a zero coeff. // Add sign bit, other bits and sig_coeff goes to one. int bits = CTX_FRAC_ONE_BIT + sh_rates->inc[current.pos] + sh_rates->sig_coeff_inc[current.pos]; current.cost = -llabs(quant_cost_in_bits) + bits; current.change = 1; if (coeff_scan < first_nz_scan) { if (((coeffs[current.pos] >= 0) ? 0 : 1) != signbit) { current.cost = MAX_INT64; } } } if (current.cost < best.cost) { best = current; } } if (quant_coeffs[best.pos] == 32767 || quant_coeffs[best.pos] == -32768) { best.change = -1; } if (coeffs[best.pos] >= 0) { quant_coeffs[best.pos] += best.change; } else { quant_coeffs[best.pos] -= best.change; } } } static unsigned templateAbsSum(const coeff_t* coeff, int baseLevel, uint32_t posX, uint32_t posY, uint32_t width, uint32_t height) { const coeff_t* pData = coeff + posX + posY * width; coeff_t sum = 0; if (posX < width - 1) { sum += abs(pData[1]); if (posX < width - 2) { sum += abs(pData[2]); } if (posY < height - 1) { sum += abs(pData[width + 1]); } } if (posY < height - 1) { sum += abs(pData[width]); if (posY < height - 2) { sum += abs(pData[width << 1]); } } return MAX(MIN(sum - 5 * baseLevel, 31), 0); } static INLINE int x_get_ic_rate_ts(const uint32_t abs_level, const cabac_ctx_t* frac_bits_par, const cabac_ctx_t* frac_bits_sign, const cabac_ctx_t* frac_bits_gt1, const cabac_ctx_t* frac_bits_gtx_ctx, int* num_ctx_bins, const uint8_t sign, const uint16_t rice_par, const bool use_limited_prefix_length, const int max_log2_tr_dynamic_range, int rem_reg_bins) { if (rem_reg_bins < 4) // Full by-pass coding { int rate = abs_level ? (CTX_FRAC_ONE_BIT) : 0; // 1 bit to signal sign of non-zero uint32_t symbol = abs_level; uint32_t length; const int threshold = COEF_REMAIN_BIN_REDUCTION; if (symbol < (threshold << rice_par)) { length = symbol >> rice_par; rate += (length + 1 + rice_par) << CTX_FRAC_BITS; } else if (use_limited_prefix_length) { const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + max_log2_tr_dynamic_range)); uint32_t prefixLength = 0; uint32_t suffix = (symbol >> rice_par) - COEF_REMAIN_BIN_REDUCTION; while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2))) { prefixLength++; } const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (max_log2_tr_dynamic_range - rice_par) : (prefixLength + 1/*separator*/); rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + rice_par) << CTX_FRAC_BITS; } else { length = rice_par; symbol = symbol - (threshold << rice_par); while (symbol >= (1 << length)) { symbol -= (1 << (length++)); } rate += (threshold + length + 1 - rice_par + length) << CTX_FRAC_BITS; } return rate; } else if (rem_reg_bins >= 4 && rem_reg_bins < 8) // First pass context coding and all by-pass coding ( Sign flag is not counted here) { int rate = CTX_ENTROPY_BITS(frac_bits_sign, sign); // frac_bits_sign.intBits[sign]; // sign bits if (abs_level) (*num_ctx_bins)++; if (abs_level > 1) { rate += CTX_ENTROPY_BITS(frac_bits_gt1, 1); // frac_bits_gt1.intBits[1]; rate += CTX_ENTROPY_BITS(frac_bits_par, (abs_level - 2) & 1); // frac_bits_par.intBits[(abs_level - 2) & 1]; (*num_ctx_bins) += 2; int cutoffVal = 2; if (abs_level >= cutoffVal) { uint32_t symbol = (abs_level - cutoffVal) >> 1; uint32_t length; const int threshold = COEF_REMAIN_BIN_REDUCTION; if (symbol < (threshold << rice_par)) { length = symbol >> rice_par; rate += (length + 1 + rice_par) << CTX_FRAC_BITS; } else if (use_limited_prefix_length) { const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + max_log2_tr_dynamic_range)); uint32_t prefixLength = 0; uint32_t suffix = (symbol >> rice_par) - COEF_REMAIN_BIN_REDUCTION; while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2))) { prefixLength++; } const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (max_log2_tr_dynamic_range - rice_par) : (prefixLength + 1/*separator*/); rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + rice_par) << CTX_FRAC_BITS; } else { length = rice_par; symbol = symbol - (threshold << rice_par); while (symbol >= (1 << length)) { symbol -= (1 << (length++)); } rate += (threshold + length + 1 - rice_par + length) << CTX_FRAC_BITS; } } } else if (abs_level == 1) { rate += CTX_ENTROPY_BITS(frac_bits_gt1, 0); // frac_bits_gt1.intBits[0]; num_ctx_bins++; } else { rate = 0; } return rate; } int rate = CTX_ENTROPY_BITS(frac_bits_sign, sign); if (abs_level) num_ctx_bins++; if (abs_level > 1) { rate += CTX_ENTROPY_BITS(frac_bits_gt1, 1); // frac_bits_gt1.intBits[1]; rate += CTX_ENTROPY_BITS(frac_bits_sign, (abs_level - 2) & 1); // frac_bits_par.intBits[(abs_level - 2) & 1]; num_ctx_bins += 2; int cutoffVal = 2; const int numGtBins = 4; for (int i = 0; i < numGtBins; i++) { if (abs_level >= cutoffVal) { const uint16_t ctxGtX = cutoffVal >> 1; // const BinFracBits* fracBitsGtX = fracBitsAccess.getFracBitsArray(ctxGtX); unsigned gtX = (abs_level >= (cutoffVal + 2)); rate += CTX_ENTROPY_BITS(&frac_bits_gtx_ctx[ctxGtX], gtX);// fracBitsGtX.intBits[gtX]; num_ctx_bins++; } cutoffVal += 2; } if (abs_level >= cutoffVal) { uint32_t symbol = (abs_level - cutoffVal) >> 1; uint32_t length; const int threshold = COEF_REMAIN_BIN_REDUCTION; if (symbol < (threshold << rice_par)) { length = symbol >> rice_par; rate += (length + 1 + rice_par) << CTX_FRAC_BITS; } else if (use_limited_prefix_length) { const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + max_log2_tr_dynamic_range)); uint32_t prefixLength = 0; uint32_t suffix = (symbol >> rice_par) - COEF_REMAIN_BIN_REDUCTION; while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2))) { prefixLength++; } const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (max_log2_tr_dynamic_range - rice_par) : (prefixLength + 1/*separator*/); rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + rice_par) << CTX_FRAC_BITS; } else { length = rice_par; symbol = symbol - (threshold << rice_par); while (symbol >= (1 << length)) { symbol -= (1 << (length++)); } rate += (threshold + length + 1 - rice_par + length) << CTX_FRAC_BITS; } } } else if (abs_level == 1) { rate += CTX_ENTROPY_BITS(frac_bits_gt1, 0); // frac_bits_gt1.intBits[0]; num_ctx_bins++; } else { rate = 0; } return rate; } static inline uint32_t get_coded_level_ts_pred(double* coded_cost, double* coded_cost0, double* coded_cost_sig, int level_double, int q_bits, double error_scale, uint32_t* coeff_levels, double* coeff_level_error, const cabac_ctx_t* frac_bits_sig, const cabac_ctx_t* frac_bits_par, const cabac_ctx_t* frac_bits_sign, const cabac_ctx_t* frac_bits_gt1, const cabac_ctx_t* frac_bits_gtx_ctx, const uint8_t sign, int right_pixel, int below_pixel, uint16_t rice_par, bool is_last, bool use_limited_prefix_length, const int max_log2_tr_dynamic_range, int* num_used_ctx_bins, int rem_reg_bins, int tested_levels, double lambda ) { double curr_cost_sig = 0; uint32_t best_abs_level = 0; *num_used_ctx_bins = 0; int num_best_ctx_bin = 0; int bdpcm = 0; if (!is_last && coeff_levels[0] < 3) { if (rem_reg_bins >= 4) *coded_cost_sig = lambda * CTX_ENTROPY_BITS(frac_bits_sig, 0); else *coded_cost_sig = lambda * (1 << CTX_FRAC_BITS); *coded_cost = *coded_cost0 + *coded_cost_sig; if (rem_reg_bins >= 4) (*num_used_ctx_bins)++; if (coeff_levels[0] == 0) { return best_abs_level; } } else { *coded_cost = MAX_DOUBLE; } if (!is_last) { if (rem_reg_bins >= 4) curr_cost_sig = lambda * CTX_ENTROPY_BITS(frac_bits_sig, 1); else curr_cost_sig = lambda * (1 << CTX_FRAC_BITS); if (coeff_levels[0] >= 3 && rem_reg_bins >= 4) (*num_used_ctx_bins)++; } for (int errorInd = 1; errorInd <= tested_levels; errorInd++) { int absLevel = coeff_levels[errorInd - 1]; double dErr = 0.0; dErr = (double)(level_double - ((absLevel) << q_bits)); coeff_level_error[errorInd] = dErr * dErr * error_scale; int modAbsLevel = absLevel; if (rem_reg_bins >= 4) { modAbsLevel = uvg_derive_mod_coeff(right_pixel, below_pixel, absLevel, bdpcm); } int numCtxBins = 0; double dCurrCost = coeff_level_error[errorInd] + lambda * x_get_ic_rate_ts(modAbsLevel, frac_bits_par, frac_bits_sign, frac_bits_gt1, frac_bits_gtx_ctx, &numCtxBins, sign, rice_par, use_limited_prefix_length, max_log2_tr_dynamic_range, rem_reg_bins); if (rem_reg_bins >= 4) dCurrCost += curr_cost_sig; // if cctx.numCtxBins < 4, xGetICRateTS return rate including sign cost. dont need to add any more if (dCurrCost < *coded_cost) { best_abs_level = absLevel; *coded_cost = dCurrCost; *coded_cost_sig = curr_cost_sig; num_best_ctx_bin = numCtxBins; } } *num_used_ctx_bins += num_best_ctx_bin; return best_abs_level; } int uvg_ts_rdoq(encoder_state_t* const state, coeff_t* src_coeff, coeff_t* dest_coeff, int32_t width, int32_t height, int8_t type, int8_t scan_mode) { const encoder_control_t* const encoder = state->encoder_control; const cabac_data_t* cabac = &state->cabac; const bool extended_precision = false; const int max_log2_tr_dynamic_range = 15; uint32_t log2_tr_width = uvg_math_floor_log2(width); uint32_t log2_tr_height = uvg_math_floor_log2(height); const uint32_t log2_block_size = uvg_g_convert_to_bit[width] + 2; const uint32_t log2_cg_width = g_log2_sbb_size[log2_tr_width][log2_tr_height][0]; const uint32_t log2_cg_height = g_log2_sbb_size[log2_tr_width][log2_tr_height][1]; const uint32_t log2_cg_size = log2_cg_width + log2_cg_height; //TODO: Scaling list double block_uncoded_cost = 0; uint32_t cg_num = width * height >> log2_cg_size; int32_t qp_scaled = uvg_get_scaled_qp(type, state->qp, (encoder->bitdepth - 8) * 6, encoder->qp_map[0]); qp_scaled = MAX(qp_scaled, 4 + 6 * MIN_QP_PRIME_TS); int32_t max_num_coeff = width * height; // TODO: Scaling list double cost_coeff[32 * 32]; double cost_sig[32 * 32]; double cost_coeff0[32 * 32]; double cost_coeffgroup_sig[64]; uint32_t sig_coeffgroup_flag[64]; switch (cg_num) { case 1: FILL_ARRAY(sig_coeffgroup_flag, 0, 1); FILL_ARRAY(cost_coeffgroup_sig, 0, 1); break; case 4: FILL_ARRAY(sig_coeffgroup_flag, 0, 4); FILL_ARRAY(cost_coeffgroup_sig, 0, 4); break; case 16: FILL_ARRAY(sig_coeffgroup_flag, 0, 16); FILL_ARRAY(cost_coeffgroup_sig, 0, 16); break; case 64: FILL_ARRAY(sig_coeffgroup_flag, 0, 64); FILL_ARRAY(cost_coeffgroup_sig, 0, 64); break; default: assert(0 && "There should be 1, 4, 16 or 64 coefficient groups"); } const bool needs_sqrt2_scale = false; // from VTM: should always be false - transform-skipped blocks don't require sqrt(2) compensation. const int q_bits = QUANT_SHIFT + qp_scaled / 6 + (needs_sqrt2_scale ? -1 : 0); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits const int32_t quant_coeff = uvg_g_quant_scales[qp_scaled % 6]; const double error_scale = (double)(1 << CTX_FRAC_BITS) / quant_coeff / quant_coeff; double lambda = type == 0 ? state->lambda : state->c_lambda; const coeff_t entropy_coding_maximum = (1 << max_log2_tr_dynamic_range) - 1; const uint32_t* scan = uvg_g_sig_last_scan[scan_mode][log2_block_size - 1]; const uint32_t* scan_cg = g_sig_last_scan_cg[log2_block_size - 1][scan_mode]; uint32_t coeff_levels[3]; double coeff_level_error[4]; const int sbSizeM1 = (1 << log2_cg_size) - 1; double base_cost = 0; uint32_t go_rice_par = 0; int scan_pos; struct { double coded_level_and_dist; double uncoded_dist; double sig_cost; double sig_cost_0; int32_t nnz_before_pos0; int32_t num_sbb_ctx_bins; } rd_stats; bool any_sig_cg = false; int rem_reg_bins = (width * height * 7) >> 2; for (int sbId = 0; sbId < cg_num; sbId++) { uint32_t cg_blkpos = scan_cg[sbId]; int no_coeff_coded = 0; base_cost = 0.0; FILL(rd_stats, 0); rd_stats.num_sbb_ctx_bins = 0; for (int scan_pos_in_sb = 0; scan_pos_in_sb <= sbSizeM1; scan_pos_in_sb++) { scan_pos = (sbId << log2_cg_size) + scan_pos_in_sb; int last_pos_coded = sbSizeM1; uint32_t blkpos = scan[scan_pos]; uint32_t pos_y = blkpos >> log2_block_size; uint32_t pos_x = blkpos - (pos_y << log2_block_size); //===== quantization ===== // set coeff const int64_t tmp_level = (int64_t)(abs(src_coeff[blkpos])) * quant_coeff; const int level_double = MIN(tmp_level, MAX_INT64 - (1ll << ((long long)q_bits - 1ll))); uint32_t roundAbsLevel = MIN((uint32_t)(entropy_coding_maximum), (uint32_t)((level_double + ((1) << (q_bits - 1))) >> q_bits)); uint32_t min_abs_level = (roundAbsLevel > 1 ? roundAbsLevel - 1 : 1); uint32_t down_abs_level = MIN((uint32_t)(entropy_coding_maximum), (uint32_t)(level_double >> q_bits)); uint32_t up_abs_level = MIN((uint32_t)(entropy_coding_maximum), down_abs_level + 1); int tested_levels = 0; coeff_levels[tested_levels++] = roundAbsLevel; if (min_abs_level != roundAbsLevel) coeff_levels[tested_levels++] = min_abs_level; int right_pixel, below_pixel, pred_pixel; right_pixel = pos_x > 0 ? src_coeff[pos_x + pos_y * width - 1] : 0; below_pixel = pos_y > 0 ? src_coeff[pos_x + (pos_y - 1) * width] : 0; pred_pixel = uvg_derive_mod_coeff(right_pixel, below_pixel, up_abs_level, 0); if (up_abs_level != roundAbsLevel && up_abs_level != min_abs_level && pred_pixel == 1) coeff_levels[tested_levels++] = up_abs_level; double err = (double)(level_double); coeff_level_error[0] = err * err * error_scale; cost_coeff0[scan_pos] = coeff_level_error[0]; block_uncoded_cost += cost_coeff0[scan_pos]; dest_coeff[blkpos] = coeff_levels[0]; //===== coefficient level estimation ===== unsigned ctx_id_sig = uvg_context_get_sig_ctx_idx_abs_ts(dest_coeff, pos_x, pos_y, width); uint32_t c_level; const cabac_ctx_t* frac_bits_par = &cabac->ctx.transform_skip_par; go_rice_par = 1; unsigned ctx_id_sign = uvg_sign_ctx_id_abs_ts(dest_coeff, pos_x, pos_y, width, 0); const cabac_ctx_t* frac_bits_sign = &cabac->ctx.transform_skip_res_sign[ctx_id_sign]; const uint8_t sign = src_coeff[blkpos] < 0 ? 1 : 0; unsigned gt1_ctx_id = uvg_lrg1_ctx_id_abs_ts(dest_coeff, pos_x, pos_y, width, 0); const cabac_ctx_t* frac_bits_gt1 = &cabac->ctx.transform_skip_gt1[gt1_ctx_id]; const cabac_ctx_t* frac_bits_sig = &cabac->ctx.transform_skip_sig[ctx_id_sig]; bool is_last = false; // if (scan_pos_in_sb == last_pos_coded && no_coeff_coded == 0) { is_last = true; } int num_used_ctx_bins = 0; c_level = get_coded_level_ts_pred(&cost_coeff[scan_pos], &cost_coeff0[scan_pos], &cost_sig[scan_pos], level_double, q_bits, error_scale, coeff_levels, coeff_level_error, frac_bits_sig, frac_bits_par, frac_bits_sign, frac_bits_gt1, cabac->ctx.transform_skip_gt2, sign, right_pixel, below_pixel, go_rice_par, is_last, extended_precision, max_log2_tr_dynamic_range, &num_used_ctx_bins, rem_reg_bins, tested_levels, lambda); rem_reg_bins -= num_used_ctx_bins; rd_stats.num_sbb_ctx_bins += num_used_ctx_bins; if (c_level > 0) { no_coeff_coded++; } coeff_t level = c_level; dest_coeff[blkpos] = (level != 0 && src_coeff[blkpos] < 0) ? -level : level; base_cost += cost_coeff[scan_pos]; rd_stats.sig_cost += cost_sig[scan_pos]; if (dest_coeff[blkpos]) { sig_coeffgroup_flag[cg_blkpos] = 1; rd_stats.coded_level_and_dist += cost_coeff[scan_pos] - cost_sig[scan_pos]; rd_stats.uncoded_dist += cost_coeff0[scan_pos]; } } //end for (iScanPosinCG) const cabac_ctx_t* fracBitsSigGroup = &cabac->ctx.sig_coeff_group_model[(type == 0 ? 0 : 1) * 2 + 1]; if (sig_coeffgroup_flag[cg_blkpos]) { base_cost += lambda*CTX_ENTROPY_BITS(fracBitsSigGroup, 0) - rd_stats.sig_cost; cost_coeffgroup_sig[sbId] = lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 0); rem_reg_bins += rd_stats.num_sbb_ctx_bins; // skip sub-block } else if (sbId != cg_num - 1 || any_sig_cg) { // rd-cost if SigCoeffGroupFlag = 0, initialization double cost_zero_sb = base_cost; base_cost += lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 1); cost_zero_sb += lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 0); cost_coeffgroup_sig[sbId] = lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 1); cost_zero_sb += rd_stats.uncoded_dist; // distortion for resetting non-zero levels to zero levels cost_zero_sb -= rd_stats.coded_level_and_dist; // distortion and level cost for keeping all non-zero levels cost_zero_sb -= rd_stats.sig_cost; // sig cost for all coeffs, including zero levels and non-zerl levels if (cost_zero_sb < base_cost) { base_cost = cost_zero_sb; cost_coeffgroup_sig[sbId] = lambda * CTX_ENTROPY_BITS(fracBitsSigGroup, 0); rem_reg_bins += rd_stats.num_sbb_ctx_bins; // skip sub-block for (int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++) { scan_pos = (sbId << log2_cg_size) + scanPosInSB; uint32_t blkPos = scan[scan_pos]; if (dest_coeff[blkPos]) { dest_coeff[blkPos] = 0; cost_coeff[scan_pos] = cost_coeff0[scan_pos]; cost_sig[scan_pos] = 0; } } } else { any_sig_cg = true; } } } int abs_sum = 0; //===== estimate last position ===== for (int scanPos = 0; scanPos < max_num_coeff; scanPos++) { int blkPos = scan[scanPos]; coeff_t level = dest_coeff[blkPos]; abs_sum += abs(level); } return abs_sum; } /** RDOQ with CABAC * \returns void * Rate distortion optimized quantization for entropy * coding engines using probability models like CABAC * From VTM 13.0 */ void uvg_rdoq(encoder_state_t * const state, coeff_t *coef, coeff_t *dest_coeff, int32_t width, int32_t height, int8_t type, int8_t scan_mode, int8_t block_type, int8_t tr_depth, uint16_t cbf) { const encoder_control_t * const encoder = state->encoder_control; cabac_data_t * const cabac = &state->cabac; uint32_t log2_tr_width = uvg_math_floor_log2( height ); uint32_t log2_tr_height = uvg_math_floor_log2( width ); int32_t transform_shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - ((log2_tr_height + log2_tr_width) >> 1); // Represents scaling through forward transform uint16_t go_rice_param = 0; uint32_t reg_bins = (width * height * 28) >> 4; const uint32_t log2_block_size = uvg_g_convert_to_bit[ width ] + 2; int32_t scalinglist_type= (block_type == CU_INTRA ? 0 : 3) + type; int32_t qp_scaled = uvg_get_scaled_qp(type, state->qp, (encoder->bitdepth - 8) * 6, encoder->qp_map[0]); int32_t q_bits = QUANT_SHIFT + qp_scaled/6 + transform_shift; const double lambda = type ? state->c_lambda : state->lambda; const int32_t *quant_coeff = encoder->scaling_list.quant_coeff[log2_tr_width][log2_tr_height][scalinglist_type][qp_scaled%6]; const double *err_scale = encoder->scaling_list.error_scale[log2_tr_width][log2_tr_height][scalinglist_type][qp_scaled%6]; double block_uncoded_cost = 0; double cost_coeff [ 32 * 32 ]; double cost_sig [ 32 * 32 ]; double cost_coeff0[ 32 * 32 ]; struct sh_rates_t sh_rates; FILL(sh_rates, 0); memset(dest_coeff, 0, sizeof(coeff_t) * width * height); const uint32_t log2_cg_size = uvg_g_log2_sbb_size[log2_block_size][log2_block_size][0] + uvg_g_log2_sbb_size[log2_block_size][log2_block_size][1]; const uint32_t cg_width = (MIN((uint8_t)32, width) >> (log2_cg_size / 2)); const uint32_t *scan_cg = g_sig_last_scan_cg[log2_block_size - 1][scan_mode]; const uint32_t cg_size = 16; const int32_t shift = 4 >> 1; const uint32_t num_blk_side = width >> shift; double cost_coeffgroup_sig[ 64 ]; uint32_t sig_coeffgroup_flag[ 64 ]; uint16_t ctx_set = 0; double base_cost = 0; int32_t temp_diag = -1; int32_t temp_sum = -1; const uint32_t *scan = uvg_g_sig_last_scan[ scan_mode ][ log2_block_size - 1 ]; int32_t cg_last_scanpos = -1; int32_t last_scanpos = -1; uint32_t cg_num = width * height >> 4; // Explicitly tell the only possible numbers of elements to be zeroed. // Hope the compiler is able to utilize this information. switch (cg_num) { case 1: FILL_ARRAY(sig_coeffgroup_flag, 0, 1); break; case 4: FILL_ARRAY(sig_coeffgroup_flag, 0, 4); break; case 16: FILL_ARRAY(sig_coeffgroup_flag, 0, 16); break; case 64: FILL_ARRAY(sig_coeffgroup_flag, 0, 64); break; default: assert(0 && "There should be 1, 4, 16 or 64 coefficient groups"); } cabac_ctx_t *base_coeff_group_ctx = &(cabac->ctx.sig_coeff_group_model[type ? 2 : 0]); cabac_ctx_t *baseCtx = (type == 0) ? &(cabac->ctx.cu_sig_model_luma[0][0]) : &(cabac->ctx.cu_sig_model_chroma[0][0]); cabac_ctx_t* base_gt1_ctx = (type == 0) ? &(cabac->ctx.cu_gtx_flag_model_luma[1][0]) : &(cabac->ctx.cu_gtx_flag_model_chroma[1][0]); struct { double coded_level_and_dist; double uncoded_dist; double sig_cost; double sig_cost_0; int32_t nnz_before_pos0; } rd_stats; //Find last cg and last scanpos int32_t cg_scanpos; for (cg_scanpos = (cg_num - 1); cg_scanpos >= 0; cg_scanpos--) { for (int32_t scanpos_in_cg = (cg_size - 1); scanpos_in_cg >= 0; scanpos_in_cg--) { int32_t scanpos = cg_scanpos*cg_size + scanpos_in_cg; uint32_t blkpos = scan[scanpos]; int32_t q = quant_coeff[blkpos]; int32_t level_double = coef[blkpos]; level_double = MIN(abs(level_double) * q, MAX_INT - (1 << (q_bits - 1))); uint32_t max_abs_level = (level_double + (1 << (q_bits - 1))) >> q_bits; double err = (double)level_double; cost_coeff0[scanpos] = err * err * err_scale[blkpos]; dest_coeff[blkpos] = max_abs_level; if (max_abs_level > 0) { last_scanpos = scanpos; cg_last_scanpos = cg_scanpos; sh_rates.sig_coeff_inc[blkpos] = 0; break; } block_uncoded_cost += cost_coeff0[scanpos]; base_cost += cost_coeff0[scanpos]; } if (last_scanpos != -1) break; } if (last_scanpos == -1) { return; } for (; cg_scanpos >= 0; cg_scanpos--) cost_coeffgroup_sig[cg_scanpos] = 0; int32_t last_x_bits[32], last_y_bits[32]; for (int32_t cg_scanpos = cg_last_scanpos; cg_scanpos >= 0; cg_scanpos--) { uint32_t cg_blkpos = scan_cg[cg_scanpos]; uint32_t cg_pos_y = cg_blkpos / num_blk_side; uint32_t cg_pos_x = cg_blkpos - (cg_pos_y * num_blk_side); FILL(rd_stats, 0); for (int32_t scanpos_in_cg = cg_size - 1; scanpos_in_cg >= 0; scanpos_in_cg--) { int32_t scanpos = cg_scanpos*cg_size + scanpos_in_cg; if (scanpos > last_scanpos) { continue; } uint32_t blkpos = scan[scanpos]; int32_t q = quant_coeff[blkpos]; double temp = err_scale[blkpos]; int32_t level_double = coef[blkpos]; level_double = MIN(abs(level_double) * q , MAX_INT - (1 << (q_bits - 1))); uint32_t max_abs_level = (level_double + (1 << (q_bits - 1))) >> q_bits; dest_coeff[blkpos] = max_abs_level; double err = (double)level_double; cost_coeff0[scanpos] = err * err * err_scale[blkpos]; block_uncoded_cost += cost_coeff0[ scanpos ]; if (last_scanpos >= 0) { uint32_t pos_y = blkpos >> log2_block_size; uint32_t pos_x = blkpos - (pos_y << log2_block_size); //===== coefficient level estimation ===== int32_t level; uint16_t ctx_sig = 0; if (scanpos != last_scanpos) { ctx_sig = uvg_context_get_sig_ctx_idx_abs(dest_coeff, pos_x, pos_y, width, height, type, &temp_diag, &temp_sum); } if (temp_diag != -1) { ctx_set = (MIN(temp_sum, 4) + 1) + (!temp_diag ? ((type == 0) ? 15 : 5) : (type == 0) ? temp_diag < 3 ? 10 : (temp_diag < 10 ? 5 : 0) : 0); } else ctx_set = 0; if (reg_bins < 4) { int sumAll = templateAbsSum(dest_coeff, 0, pos_x, pos_y, width, height); go_rice_param = g_auiGoRiceParsCoeff[sumAll]; } uint16_t gt1_ctx = ctx_set; uint16_t gt2_ctx = ctx_set; uint16_t par_ctx = ctx_set; if (scanpos == last_scanpos) { level = uvg_get_coded_level(state, &cost_coeff[scanpos], &cost_coeff0[scanpos], &cost_sig[scanpos], level_double, max_abs_level, 0, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, q_bits, temp, 1, type); } else { level = uvg_get_coded_level(state, &cost_coeff[scanpos], &cost_coeff0[scanpos], &cost_sig[scanpos], level_double, max_abs_level, ctx_sig, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, q_bits, temp, 0, type); if (encoder->cfg.signhide_enable) { int greater_than_zero = CTX_ENTROPY_BITS(&baseCtx[ctx_sig], 1); int zero = CTX_ENTROPY_BITS(&baseCtx[ctx_sig], 0); sh_rates.sig_coeff_inc[blkpos] = (reg_bins < 4 ? 0 : greater_than_zero - zero); } } if (encoder->cfg.signhide_enable) { sh_rates.quant_delta[blkpos] = (level_double - level * (1 << q_bits)) >> (q_bits - 8); if (level > 0) { int32_t rate_now = uvg_get_ic_rate(state, level, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false); sh_rates.inc[blkpos] = uvg_get_ic_rate(state, level + 1, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false) - rate_now; sh_rates.dec[blkpos] = uvg_get_ic_rate(state, level - 1, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false) - rate_now; } else { // level == 0 if (reg_bins < 4) { int32_t rate_now = uvg_get_ic_rate(state, level, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false); sh_rates.inc[blkpos] = uvg_get_ic_rate(state, level + 1, gt1_ctx, gt2_ctx, par_ctx, go_rice_param, reg_bins, type, false) - rate_now; } else { sh_rates.inc[blkpos] = CTX_ENTROPY_BITS(&base_gt1_ctx[gt1_ctx], 0); } } } dest_coeff[blkpos] = (coeff_t)level; base_cost += cost_coeff[scanpos]; //===== context set update ===== if ((scanpos % SCAN_SET_SIZE == 0) && scanpos > 0) { go_rice_param = 0; } else if (reg_bins >= 4) { reg_bins -= (level < 2 ? level : 3) + (scanpos != last_scanpos); int sumAll = templateAbsSum(coef, 4, pos_x, pos_y, width, height); go_rice_param = g_auiGoRiceParsCoeff[sumAll]; } } else { base_cost += cost_coeff0[scanpos]; } rd_stats.sig_cost += cost_sig[scanpos]; if ( scanpos_in_cg == 0 ) { rd_stats.sig_cost_0 = cost_sig[scanpos]; } if ( dest_coeff[blkpos] ) { sig_coeffgroup_flag[cg_blkpos] = 1; rd_stats.coded_level_and_dist += cost_coeff[scanpos] - cost_sig[scanpos]; rd_stats.uncoded_dist += cost_coeff0[scanpos]; if ( scanpos_in_cg != 0 ) { rd_stats.nnz_before_pos0++; } } } //end for (scanpos_in_cg) if( cg_scanpos ) { if (sig_coeffgroup_flag[cg_blkpos] == 0) { uint32_t ctx_sig = uvg_context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, cg_width); cost_coeffgroup_sig[cg_scanpos] = lambda *CTX_ENTROPY_BITS(&base_coeff_group_ctx[ctx_sig],0); base_cost += cost_coeffgroup_sig[cg_scanpos] - rd_stats.sig_cost; } else { if (cg_scanpos < cg_last_scanpos){ double cost_zero_cg; uint32_t ctx_sig; if (rd_stats.nnz_before_pos0 == 0) { base_cost -= rd_stats.sig_cost_0; rd_stats.sig_cost -= rd_stats.sig_cost_0; } // rd-cost if SigCoeffGroupFlag = 0, initialization cost_zero_cg = base_cost; // add SigCoeffGroupFlag cost to total cost ctx_sig = uvg_context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, cg_width); cost_coeffgroup_sig[cg_scanpos] = lambda * CTX_ENTROPY_BITS(&base_coeff_group_ctx[ctx_sig], 1); base_cost += cost_coeffgroup_sig[cg_scanpos]; cost_zero_cg += lambda * CTX_ENTROPY_BITS(&base_coeff_group_ctx[ctx_sig], 0); // try to convert the current coeff group from non-zero to all-zero cost_zero_cg += rd_stats.uncoded_dist; // distortion for resetting non-zero levels to zero levels cost_zero_cg -= rd_stats.coded_level_and_dist; // distortion and level cost for keeping all non-zero levels cost_zero_cg -= rd_stats.sig_cost; // sig cost for all coeffs, including zero levels and non-zerl levels // if we can save cost, change this block to all-zero block if (cost_zero_cg < base_cost) { sig_coeffgroup_flag[cg_blkpos] = 0; base_cost = cost_zero_cg; cost_coeffgroup_sig[cg_scanpos] = lambda * CTX_ENTROPY_BITS(&base_coeff_group_ctx[ctx_sig], 0); // reset coeffs to 0 in this block for (int32_t scanpos_in_cg = cg_size - 1; scanpos_in_cg >= 0; scanpos_in_cg--) { int32_t scanpos = cg_scanpos*cg_size + scanpos_in_cg; uint32_t blkpos = scan[scanpos]; if (dest_coeff[blkpos]){ dest_coeff[blkpos] = 0; cost_coeff[scanpos] = cost_coeff0[scanpos]; cost_sig[scanpos] = 0; } } } // end if ( cost_all_zeros < base_cost ) } } // end if if (sig_coeffgroup_flag[ cg_blkpos ] == 0) } else { sig_coeffgroup_flag[cg_blkpos] = 1; } } //end for (cg_scanpos) //===== estimate last position ===== double best_cost = 0; int32_t ctx_cbf = 0; int8_t found_last = 0; int32_t best_last_idx_p1 = 0; if( block_type != CU_INTRA && !type ) { best_cost = block_uncoded_cost + lambda * CTX_ENTROPY_BITS(&(cabac->ctx.cu_qt_root_cbf_model),0); base_cost += lambda * CTX_ENTROPY_BITS(&(cabac->ctx.cu_qt_root_cbf_model),1); } else { cabac_ctx_t* base_cbf_model = NULL; switch (type) { case COLOR_Y: base_cbf_model = cabac->ctx.qt_cbf_model_luma; break; case COLOR_U: base_cbf_model = cabac->ctx.qt_cbf_model_cb; break; case COLOR_V: base_cbf_model = cabac->ctx.qt_cbf_model_cr; break; default: assert(0); } ctx_cbf = ( type != COLOR_V ? 0 : cbf_is_set(cbf, 5 - uvg_math_floor_log2(width), COLOR_U)); best_cost = block_uncoded_cost + lambda * CTX_ENTROPY_BITS(&base_cbf_model[ctx_cbf],0); base_cost += lambda * CTX_ENTROPY_BITS(&base_cbf_model[ctx_cbf],1); } calc_last_bits(state, width, height, type, last_x_bits, last_y_bits); for ( int32_t cg_scanpos = cg_last_scanpos; cg_scanpos >= 0; cg_scanpos--) { uint32_t cg_blkpos = scan_cg[cg_scanpos]; base_cost -= cost_coeffgroup_sig[cg_scanpos]; if (sig_coeffgroup_flag[ cg_blkpos ]) { for ( int32_t scanpos_in_cg = cg_size - 1; scanpos_in_cg >= 0; scanpos_in_cg--) { int32_t scanpos = cg_scanpos*cg_size + scanpos_in_cg; if (scanpos > last_scanpos) continue; uint32_t blkpos = scan[scanpos]; if( dest_coeff[ blkpos ] ) { uint32_t pos_y = blkpos >> log2_block_size; uint32_t pos_x = blkpos - ( pos_y << log2_block_size ); double cost_last = get_rate_last(lambda, pos_x, pos_y, last_x_bits,last_y_bits ); double totalCost = base_cost + cost_last - cost_sig[ scanpos ]; if( totalCost < best_cost ) { best_last_idx_p1 = scanpos + 1; best_cost = totalCost; } if( dest_coeff[ blkpos ] > 1 ) { found_last = 1; break; } base_cost -= cost_coeff[scanpos]; base_cost += cost_coeff0[scanpos]; } else { base_cost -= cost_sig[scanpos]; } } //end for if (found_last) break; } // end if (sig_coeffgroup_flag[ cg_blkpos ]) } // end for uint32_t abs_sum = 0; for ( int32_t scanpos = 0; scanpos < best_last_idx_p1; scanpos++) { int32_t blkPos = scan[scanpos]; int32_t level = dest_coeff[blkPos]; abs_sum += level; dest_coeff[blkPos] = (coeff_t)(( coef[blkPos] < 0 ) ? -level : level); } //===== clean uncoded coefficients ===== for ( int32_t scanpos = best_last_idx_p1; scanpos <= last_scanpos; scanpos++) { dest_coeff[scan[scanpos]] = 0; } if (encoder->cfg.signhide_enable && abs_sum >= 2) { uvg_rdoq_sign_hiding(state, qp_scaled, scan, &sh_rates, best_last_idx_p1, coef, dest_coeff, type); } } /** * Calculate cost of actual motion vectors using CABAC coding */ double uvg_get_mvd_coding_cost_cabac(const encoder_state_t* state, const cabac_data_t* cabac, const int32_t mvd_hor, const int32_t mvd_ver) { cabac_data_t cabac_copy = *cabac; cabac_copy.only_count = 1; double bits = 0; // It is safe to drop const here because cabac->only_count is set. uvg_encode_mvd((encoder_state_t*) state, &cabac_copy, mvd_hor, mvd_ver, &bits); return bits; } /** MVD cost calculation with CABAC * \returns int * Calculates Motion Vector cost and related costs using CABAC coding */ double uvg_calc_mvd_cost_cabac(const encoder_state_t * state, int x, int y, int mv_shift, mv_t mv_cand[2][2], inter_merge_cand_t merge_cand[MRG_MAX_NUM_CANDS], int16_t num_cand, int32_t ref_idx, double* bitcost) { cabac_data_t state_cabac_copy; cabac_data_t* cabac; uint32_t merge_idx; vector2d_t mvd = { 0, 0 }; int8_t merged = 0; int8_t cur_mv_cand = 0; x *= 1 << mv_shift; y *= 1 << mv_shift; // Check every candidate to find a match for (merge_idx = 0; merge_idx < (uint32_t)num_cand; merge_idx++) { if (merge_cand[merge_idx].dir == 3) continue; if (merge_cand[merge_idx].mv[merge_cand[merge_idx].dir - 1][0] == x && merge_cand[merge_idx].mv[merge_cand[merge_idx].dir - 1][1] == y && state->frame->ref_LX[merge_cand[merge_idx].dir - 1][ merge_cand[merge_idx].ref[merge_cand[merge_idx].dir - 1] ] == ref_idx) { merged = 1; break; } } // Store cabac state and contexts memcpy(&state_cabac_copy, &state->search_cabac, sizeof(cabac_data_t)); // Clear bytes and bits and set mode to "count" state_cabac_copy.only_count = 1; cabac = &state_cabac_copy; double bits = 0; if (!merged) { vector2d_t mvd1 = { x - mv_cand[0][0], y - mv_cand[0][1], }; vector2d_t mvd2 = { x - mv_cand[1][0], y - mv_cand[1][1], }; uvg_change_precision_vector2d(INTERNAL_MV_PREC, 2, &mvd1); uvg_change_precision_vector2d(INTERNAL_MV_PREC, 2, &mvd2); double cand1_cost = uvg_get_mvd_coding_cost_cabac(state, cabac, mvd1.x, mvd1.y); double cand2_cost = uvg_get_mvd_coding_cost_cabac(state, cabac, mvd2.x, mvd2.y); // Select candidate 1 if it has lower cost if (cand2_cost < cand1_cost) { cur_mv_cand = 1; mvd = mvd2; } else { mvd = mvd1; } } cabac->cur_ctx = &(cabac->ctx.cu_merge_flag_ext_model); CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_merge_flag_ext_model), merged, bits, "MergeFlag"); num_cand = state->encoder_control->cfg.max_merge; if (merged) { if (num_cand > 1) { int32_t ui; for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != merge_idx); if (ui == 0) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_merge_idx_ext_model), symbol, bits, "MergeIndex"); } else { CABAC_BIN_EP(cabac, symbol, "MergeIndex"); bits += 1; } if (symbol == 0) break; } } } else { uint32_t ref_list_idx; uint32_t j; int ref_list[2] = { 0, 0 }; for (j = 0; j < state->frame->ref->used_size; j++) { if (state->frame->ref->pocs[j] < state->frame->poc) { ref_list[0]++; } else { ref_list[1]++; } } //ToDo: bidir mv support for (ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) { if (/*cur_cu->inter.mv_dir*/ 1 & (1 << ref_list_idx)) { if (ref_list[ref_list_idx] > 1) { // parseRefFrmIdx int32_t ref_frame = ref_idx; CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_ref_pic_model[0]), (ref_frame != 0), bits, "ref_idx_lX"); if (ref_frame > 0) { int32_t i; int32_t ref_num = ref_list[ref_list_idx] - 2; ref_frame--; for (i = 0; i < ref_num; ++i) { const uint32_t symbol = (i == ref_frame) ? 0 : 1; if (i == 0) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_ref_pic_model[1]), symbol, bits, "ref_idx_lX"); } else { CABAC_BIN_EP(cabac, symbol, "ref_idx_lX"); bits += 1; } if (symbol == 0) break; } } } // ToDo: Bidir vector support if (!(state->frame->ref_list == REF_PIC_LIST_1 && /*cur_cu->inter.mv_dir == 3*/ 0)) { // It is safe to drop const here because cabac->only_count is set. uvg_encode_mvd((encoder_state_t*) state, cabac, mvd.x, mvd.y, &bits); } // Signal which candidate MV to use cabac->cur_ctx = &(cabac->ctx.mvp_idx_model); CABAC_BIN(cabac, cur_mv_cand, "mvp_flag"); } } } *bitcost = bits; // Store bitcost before restoring cabac return *bitcost * state->lambda_sqrt; } void uvg_close_rdcost_outfiles(void) { int i; for (i = 0; i < RD_SAMPLING_MAX_LAST_QP; i++) { FILE *curr = fastrd_learning_outfile[i]; pthread_mutex_t *curr_mtx = outfile_mutex + i; if (curr != NULL) { fclose(curr); } if (curr_mtx != NULL) { pthread_mutex_destroy(curr_mtx); } } }