/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "transform.h" #include "image.h" #include "kvazaar.h" #include "rdo.h" #include "strategies/strategies-dct.h" #include "strategies/strategies-quant.h" #include "tables.h" ////////////////////////////////////////////////////////////////////////// // INITIALIZATIONS // const uint8_t kvz_g_chroma_scale[58]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16, 17,18,19,20,21,22,23,24,25,26,27,28,29,29,30,31,32, 33,33,34,34,35,35,36,36,37,37,38,39,40,41,42,43,44, 45,46,47,48,49,50,51 }; ////////////////////////////////////////////////////////////////////////// // FUNCTIONS // /** * \brief Bypass transform and quantization. * * Copies the reference pixels directly to reconstruction and the residual * directly to coefficients. Used when cu_transquant_bypass_flag is set. * Parameters pred_in and rec_out may be aliased. * * \param width Transform width. * \param in_stride Stride for ref_in and pred_in * \param out_stride Stride for rec_out and coeff_out. * \param ref_in Reference pixels. * \param pred_in Predicted pixels. * \param rec_out Returns the reconstructed pixels. * \param coeff_out Returns the coefficients used for reconstruction of rec_out. * * \returns Whether coeff_out contains any non-zero coefficients. */ static bool bypass_transquant(const int width, const int in_stride, const int out_stride, const kvz_pixel *const ref_in, const kvz_pixel *const pred_in, kvz_pixel *rec_out, coeff_t *coeff_out) { bool nonzero_coeffs = false; for (int y = 0; y < width; ++y) { for (int x = 0; x < width; ++x) { int32_t in_idx = x + y * in_stride; int32_t out_idx = x + y * out_stride; // The residual must be computed before writing to rec_out because // pred_in and rec_out may point to the same array. coeff_t coeff = (coeff_t)(ref_in[in_idx] - pred_in[in_idx]); coeff_out[out_idx] = coeff; rec_out[out_idx] = ref_in[in_idx]; nonzero_coeffs |= (coeff != 0); } } return nonzero_coeffs; } /** * \brief Get scaled QP used in quantization * */ int32_t kvz_get_scaled_qp(int8_t type, int8_t qp, int8_t qp_offset) { int32_t qp_scaled = 0; if(type == 0) { qp_scaled = qp + qp_offset; } else { qp_scaled = CLIP(-qp_offset, 57, qp); if(qp_scaled < 0) { qp_scaled = qp_scaled + qp_offset; } else { qp_scaled = kvz_g_chroma_scale[qp_scaled] + qp_offset; } } return qp_scaled; } /** * \brief NxN inverse transform (2D) * \param coeff input data (transform coefficients) * \param block output data (residual) * \param block_size input data (width of transform) */ void kvz_transformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size) { uint32_t log2_tr_size = kvz_g_convert_to_bit[block_size] + 2; int32_t shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; int32_t j,k; for (j = 0; j < block_size; j++) { for(k = 0; k < block_size; k ++) { coeff[j * block_size + k] = block[j * block_size + k] << shift; } } } /** * \brief inverse transform skip * \param coeff input data (transform coefficients) * \param block output data (residual) * \param block_size width of transform */ void kvz_itransformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size) { uint32_t log2_tr_size = kvz_g_convert_to_bit[block_size] + 2; int32_t shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; int32_t j,k; int32_t offset; offset = (1 << (shift -1)); // For rounding for ( j = 0; j < block_size; j++ ) { for(k = 0; k < block_size; k ++) { block[j * block_size + k] = (coeff[j * block_size + k] + offset) >> shift; } } } /** * \brief forward transform (2D) * \param block input residual * \param coeff transform coefficients * \param block_size width of transform */ void kvz_transform2d(const encoder_control_t * const encoder, int16_t *block, int16_t *coeff, int8_t block_size, int32_t mode) { dct_func *dct_func = kvz_get_dct_func(block_size, mode); dct_func(encoder->bitdepth, block, coeff); } void kvz_itransform2d(const encoder_control_t * const encoder, int16_t *block, int16_t *coeff, int8_t block_size, int32_t mode) { dct_func *idct_func = kvz_get_idct_func(block_size, mode); idct_func(encoder->bitdepth, coeff, block); } /** * \brief Like kvz_quantize_residual except that this uses trskip if that is better. * * Using this function saves one step of quantization and inverse quantization * compared to doing the decision separately from the actual operation. * * \param width Transform width. * \param color Color. * \param scan_order Coefficient scan order. * \param trskip_out Whether transform skip is used. * \param stride Stride for ref_in, pred_in rec_out and coeff_out. * \param ref_in Reference pixels. * \param pred_in Predicted pixels. * \param rec_out Reconstructed pixels. * \param coeff_out Coefficients used for reconstruction of rec_out. * * \returns Whether coeff_out contains any non-zero coefficients. */ int kvz_quantize_residual_trskip( encoder_state_t *const state, const cu_info_t *const cur_cu, const int width, const color_t color, const coeff_scan_order_t scan_order, int8_t *trskip_out, const int in_stride, const int out_stride, const kvz_pixel *const ref_in, const kvz_pixel *const pred_in, kvz_pixel *rec_out, coeff_t *coeff_out) { struct { kvz_pixel rec[4*4]; coeff_t coeff[4*4]; uint32_t cost; int has_coeffs; } skip, noskip, *best; const int bit_cost = (int)(state->global->cur_lambda_cost+0.5); noskip.has_coeffs = kvz_quantize_residual( state, cur_cu, width, color, scan_order, 0, in_stride, 4, ref_in, pred_in, noskip.rec, noskip.coeff); noskip.cost = kvz_pixels_calc_ssd(ref_in, noskip.rec, in_stride, 4, 4); noskip.cost += kvz_get_coeff_cost(state, noskip.coeff, 4, 0, scan_order) * bit_cost; skip.has_coeffs = kvz_quantize_residual( state, cur_cu, width, color, scan_order, 1, in_stride, 4, ref_in, pred_in, skip.rec, skip.coeff); skip.cost = kvz_pixels_calc_ssd(ref_in, skip.rec, in_stride, 4, 4); skip.cost += kvz_get_coeff_cost(state, skip.coeff, 4, 0, scan_order) * bit_cost; if (noskip.cost <= skip.cost) { *trskip_out = 0; best = &noskip; } else { *trskip_out = 1; best = &skip; } if (best->has_coeffs || rec_out != pred_in) { // If there is no residual and reconstruction is already in rec_out, // we can skip this. kvz_pixels_blit(best->rec, rec_out, width, width, 4, out_stride); } kvz_coefficients_blit(best->coeff, coeff_out, width, width, 4, out_stride); return best->has_coeffs; } /** * This function calculates the residual coefficients for a region of the LCU * (defined by x, y and depth) and updates the reconstruction with the * kvantized residual. * * It handles recursion for transform split, but that is currently only work * for 64x64 inter to 32x32 transform blocks. * * Inputs are: * - lcu->rec pixels after prediction for the area * - lcu->ref reference pixels for the area * - lcu->cu for the area * * Outputs are: * - lcu->rec reconstruction after quantized residual * - lcu->coeff quantized coefficients for the area * - lcu->cbf coded block flags for the area * - lcu->cu.intra[].tr_skip for the area */ void kvz_quantize_lcu_luma_residual(encoder_state_t * const state, int32_t x, int32_t y, const uint8_t depth, cu_info_t *cur_pu, lcu_t* lcu) { // we have 64>>depth transform size const vector2d_t lcu_px = { SUB_SCU(x), SUB_SCU(y) }; if (cur_pu == NULL) { cur_pu = LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y); } const int8_t width = LCU_WIDTH>>depth; // Tell clang-analyzer what is up. For some reason it can't figure out from // asserting just depth. assert(width == 4 || width == 8 || width == 16 || width == 32 || width == 64); // Split transform and increase depth if (depth == 0 || cur_pu->tr_depth > depth) { int offset = width / 2; kvz_quantize_lcu_luma_residual(state, x, y, depth+1, NULL, lcu); kvz_quantize_lcu_luma_residual(state, x + offset, y, depth+1, NULL, lcu); kvz_quantize_lcu_luma_residual(state, x, y + offset, depth+1, NULL, lcu); kvz_quantize_lcu_luma_residual(state, x + offset, y + offset, depth+1, NULL, lcu); // Propagate coded block flags from child CUs to parent CU. if (depth <= MAX_DEPTH) { uint16_t child_cbfs[3] = { LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y )->cbf, LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y + offset)->cbf, LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y + offset)->cbf, }; cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_Y); } return; } { const int luma_offset = lcu_px.x + lcu_px.y * LCU_WIDTH; // Pointers to current location in arrays with prediction. kvz_pixel *recbase_y = &lcu->rec.y[luma_offset]; // Pointers to current location in arrays with reference. const kvz_pixel *base_y = &lcu->ref.y[luma_offset]; // Pointers to current location in arrays with kvantized coefficients. coeff_t *orig_coeff_y = &lcu->coeff.y[luma_offset]; coeff_scan_order_t scan_idx_luma = kvz_get_scan_order(cur_pu->type, cur_pu->intra.mode, depth); #if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD uint32_t residual_sum = 0; #endif // Clear coded block flag structures for depths lower than current depth. // This should ensure that the CBF data doesn't get corrupted if this function // is called more than once. cbf_clear(&cur_pu->cbf, depth, COLOR_Y); if (state->encoder_control->cfg->lossless) { if (bypass_transquant(width, LCU_WIDTH, LCU_WIDTH, base_y, recbase_y, recbase_y, orig_coeff_y)) { cbf_set(&cur_pu->cbf, depth, COLOR_Y); } } else if (width == 4 && state->encoder_control->trskip_enable) { // Try quantization with trskip and use it if it's better. int has_coeffs = kvz_quantize_residual_trskip( state, cur_pu, width, COLOR_Y, scan_idx_luma, &cur_pu->intra.tr_skip, LCU_WIDTH, LCU_WIDTH, base_y, recbase_y, recbase_y, orig_coeff_y ); if (has_coeffs) { cbf_set(&cur_pu->cbf, depth, COLOR_Y); } } else { int has_coeffs = kvz_quantize_residual( state, cur_pu, width, COLOR_Y, scan_idx_luma, 0, LCU_WIDTH, LCU_WIDTH, base_y, recbase_y, recbase_y, orig_coeff_y ); if (has_coeffs) { cbf_set(&cur_pu->cbf, depth, COLOR_Y); } } } } void kvz_quantize_lcu_chroma_residual(encoder_state_t * const state, int32_t x, int32_t y, const uint8_t depth, cu_info_t *cur_cu, lcu_t* lcu) { // we have 64>>depth transform size const vector2d_t lcu_px = { SUB_SCU(x), SUB_SCU(y) }; const int8_t width = LCU_WIDTH>>depth; if (cur_cu == NULL) { cur_cu = LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y); } // Tell clang-analyzer what is up. For some reason it can't figure out from // asserting just depth. assert(width == 4 || width == 8 || width == 16 || width == 32 || width == 64); // Split transform and increase depth if (depth == 0 || cur_cu->tr_depth > depth) { int offset = width / 2; kvz_quantize_lcu_chroma_residual(state, x, y, depth+1, NULL, lcu); kvz_quantize_lcu_chroma_residual(state, x + offset, y, depth+1, NULL, lcu); kvz_quantize_lcu_chroma_residual(state, x, y + offset, depth+1, NULL, lcu); kvz_quantize_lcu_chroma_residual(state, x + offset, y + offset, depth+1, NULL, lcu); // Propagate coded block flags from child CUs to parent CU. if (depth < MAX_DEPTH) { uint16_t child_cbfs[3] = { LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y )->cbf, LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y + offset)->cbf, LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y + offset)->cbf, }; cbf_set_conditionally(&cur_cu->cbf, child_cbfs, depth, COLOR_U); cbf_set_conditionally(&cur_cu->cbf, child_cbfs, depth, COLOR_V); } return; } // If luma is 4x4, do chroma for the 8x8 luma area when handling the top // left PU because the coordinates are correct. if (depth <= MAX_DEPTH || (lcu_px.x % 8 == 0 && lcu_px.y % 8 == 0)) { cbf_clear(&cur_cu->cbf, depth, COLOR_U); cbf_clear(&cur_cu->cbf, depth, COLOR_V); const int chroma_offset = lcu_px.x / 2 + lcu_px.y / 2 * LCU_WIDTH_C; kvz_pixel *recbase_u = &lcu->rec.u[chroma_offset]; kvz_pixel *recbase_v = &lcu->rec.v[chroma_offset]; const kvz_pixel *base_u = &lcu->ref.u[chroma_offset]; const kvz_pixel *base_v = &lcu->ref.v[chroma_offset]; coeff_t *orig_coeff_u = &lcu->coeff.u[chroma_offset]; coeff_t *orig_coeff_v = &lcu->coeff.v[chroma_offset]; coeff_scan_order_t scan_idx_chroma; int tr_skip = 0; int chroma_depth = (depth == MAX_PU_DEPTH ? depth - 1 : depth); int chroma_width = LCU_WIDTH_C >> chroma_depth; scan_idx_chroma = kvz_get_scan_order(cur_cu->type, cur_cu->intra.mode_chroma, depth); if (state->encoder_control->cfg->lossless) { if (bypass_transquant(chroma_width, LCU_WIDTH_C, LCU_WIDTH_C, base_u, recbase_u, recbase_u, orig_coeff_u)) { cbf_set(&cur_cu->cbf, depth, COLOR_U); } if (bypass_transquant(chroma_width, LCU_WIDTH_C, LCU_WIDTH_C, base_v, recbase_v, recbase_v, orig_coeff_v)) { cbf_set(&cur_cu->cbf, depth, COLOR_V); } } else { if (kvz_quantize_residual(state, cur_cu, chroma_width, COLOR_U, scan_idx_chroma, tr_skip, LCU_WIDTH_C, LCU_WIDTH_C, base_u, recbase_u, recbase_u, orig_coeff_u)) { cbf_set(&cur_cu->cbf, depth, COLOR_U); } if (kvz_quantize_residual(state, cur_cu, chroma_width, COLOR_V, scan_idx_chroma, tr_skip, LCU_WIDTH_C, LCU_WIDTH_C, base_v, recbase_v, recbase_v, orig_coeff_v)) { cbf_set(&cur_cu->cbf, depth, COLOR_V); } } } }