/** * \file * * \author Marko Viitanen ( fador@iki.fi ), * Tampere University of Technology, * Department of Pervasive Computing. * \author Ari Koivula ( ari@koivu.la ), * Tampere University of Technology, * Department of Pervasive Computing. */ #include "bitstream.h" #include #include #include #include #include //for hton #ifdef _WIN32 #include #else #include #endif //#define VERBOSE #ifdef VERBOSE void printf_bitstream(char *msg, ...) { va_list fmtargs; char buffer[1024]; va_start(fmtargs,msg); vsnprintf(buffer,sizeof(buffer)-1,msg,fmtargs); va_end(fmtargs); printf("%s",buffer); } #endif bit_table *g_exp_table; //From wikipedia //http://en.wikipedia.org/wiki/Binary_logarithm#Algorithm int floor_log2(unsigned int n) { int pos = 0; if (n >= 1<<16) { n >>= 16; pos += 16; } if (n >= 1<< 8) { n >>= 8; pos += 8; } if (n >= 1<< 4) { n >>= 4; pos += 4; } if (n >= 1<< 2) { n >>= 2; pos += 2; } if (n >= 1<< 1) { pos += 1; } return ((n == 0) ? (-1) : pos); } /** * \brief Initialize the Exp Golomb code table with desired number of values * \param len table length to init * * Allocates g_exp_table with len*sizeof(bit_table) and fills it with exponential golomb codes */ void init_exp_golomb(uint32_t len) { uint32_t code_num; uint32_t M; uint32_t info; g_exp_table = (bit_table*)malloc(len*sizeof(bit_table)); for (code_num = 0; code_num < len; code_num++) { M = (uint32_t)floor_log2(code_num + 1); info = code_num + 1 - (uint32_t)pow(2, M); g_exp_table[code_num].len = M * 2 + 1; g_exp_table[code_num].value = (1<cur_byte = 0; stream->cur_bit = 0; memset(stream->data, 0, sizeof(uint32_t)*32); } /** * \brief Allocate buffer * \param stream pointer bitstream to put the data * \param alloc size to allocate */ void bitstream_alloc(bitstream *stream, uint32_t alloc) { stream->buffer = (uint8_t*)malloc(alloc); stream->bufferlen = alloc; //Clear just to be sure bitstream_clear_buffer(stream); } /** * \brief clear output buffer */ void bitstream_clear_buffer(bitstream *stream) { memset(stream->buffer, 0, stream->bufferlen); stream->buffer_pos = 0; } /** * \brief Put bits to bitstream * \param stream pointer bitstream to put the data * \param data input data * \param bits number of bits to write from data to stream */ void bitstream_put(bitstream *stream, uint32_t data, uint8_t bits) { uint32_t bitsleft = 32 - stream->cur_bit; #ifdef VERBOSE uint8_t i=0; printf_bitstream("put: "); for (i = 0; i < bits; i++) { printf("%i",(data&(1<<(bits-i-1)))?1:0); } printf_bitstream("\n"); //printf_bitstream(" count: %i\n",bits); #endif //There's space for all the bits if (bits <= bitsleft) { stream->data[stream->cur_byte] |= (data<<((bitsleft-bits))); stream->cur_bit += bits; bits = 0; } else { //No space for everything, store the bits we can and continue later stream->data[stream->cur_byte] |= (data>>(bits-bitsleft)); stream->cur_bit = 32; bits -= bitsleft; } //Check if the buffer is full, and flush to output if it is if (stream->cur_bit == 32) { bitsleft = 32; stream->cur_byte++; stream->cur_bit = 0; if (stream->cur_byte == 32) { //Flush data out bitstream_flush(stream); } } //Write the last of the bits (if buffer was full and flushed before) if (bits != 0) { stream->data[stream->cur_byte] |= (data<<(bitsleft-bits)); stream->cur_bit += bits; } } /** * \brief Align the bitstream with one-bit padding */ void bitstream_align(bitstream *stream) { bitstream_put(stream, 1, 1); if ((stream->cur_bit & 7) != 0) { bitstream_put(stream, 0, 8 - (stream->cur_bit & 7)); } } /** * \brief Align the bitstream with zero */ void bitstream_align_zero(bitstream *stream) { if ((stream->cur_bit & 7) != 0) { bitstream_put(stream, 0, 8 - (stream->cur_bit & 7)); } } /** * \brief Flush bitstream to output */ void bitstream_flush(bitstream *stream) { int i; uint32_t correct_endian; //If output open, write to output if (stream->output) { if (stream->cur_byte) fwrite(&stream->data[0], stream->cur_byte * 4, 1, stream->output); if (stream->cur_bit>>3) fwrite(&stream->data[stream->cur_byte], stream->cur_bit>>3, 1, stream->output); } else { //No file open, write to buffer if (stream->cur_byte) { //Handle endianness issue for (i = 0; i < stream->cur_byte; i++) { //"network" is big-endian correct_endian = htonl(stream->data[i]); memcpy((uint8_t*)&stream->buffer[stream->buffer_pos], &correct_endian, 4); stream->buffer_pos += 4; } } if (stream->cur_bit>>3) { correct_endian = htonl(stream->data[stream->cur_byte]); memcpy((uint8_t*)&stream->buffer[stream->buffer_pos], &correct_endian, stream->cur_bit>>3); stream->buffer_pos += stream->cur_bit>>3; } } //Stream flushed, zero out the values bitstream_init(stream); }