/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "encode_coding_tree.h" #include "cabac.h" #include "context.h" #include "cu.h" #include "encoder.h" #include "extras/crypto.h" #include "imagelist.h" #include "inter.h" #include "intra.h" #include "kvazaar.h" #include "kvz_math.h" #include "tables.h" #include "videoframe.h" /** * \brief Encode (X,Y) position of the last significant coefficient * * \param lastpos_x X component of last coefficient * \param lastpos_y Y component of last coefficient * \param width Block width * \param height Block height * \param type plane type / luminance or chrominance * \param scan scan type (diag, hor, ver) * * This method encodes the X and Y component within a block of the last * significant coefficient. */ static void encode_last_significant_xy(encoder_state_t * const state, uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan) { cabac_data_t * const cabac = &state->cabac; const int index = kvz_math_floor_log2(width) - 2; uint8_t ctx_offset = type ? 0 : (index * 3 + (index + 1) / 4); uint8_t shift = type ? index : (index + 3) / 4; cabac_ctx_t *base_ctx_x = (type ? cabac->ctx.cu_ctx_last_x_chroma : cabac->ctx.cu_ctx_last_x_luma); cabac_ctx_t *base_ctx_y = (type ? cabac->ctx.cu_ctx_last_y_chroma : cabac->ctx.cu_ctx_last_y_luma); if (scan == SCAN_VER) { SWAP(lastpos_x, lastpos_y, uint8_t); } const int group_idx_x = g_group_idx[lastpos_x]; const int group_idx_y = g_group_idx[lastpos_y]; // x prefix for (int last_x = 0; last_x < group_idx_x; last_x++) { cabac->cur_ctx = &base_ctx_x[ctx_offset + (last_x >> shift)]; CABAC_BIN(cabac, 1, "last_sig_coeff_x_prefix"); } if (group_idx_x < g_group_idx[width - 1]) { cabac->cur_ctx = &base_ctx_x[ctx_offset + (group_idx_x >> shift)]; CABAC_BIN(cabac, 0, "last_sig_coeff_x_prefix"); } // y prefix for (int last_y = 0; last_y < group_idx_y; last_y++) { cabac->cur_ctx = &base_ctx_y[ctx_offset + (last_y >> shift)]; CABAC_BIN(cabac, 1, "last_sig_coeff_y_prefix"); } if (group_idx_y < g_group_idx[height - 1]) { cabac->cur_ctx = &base_ctx_y[ctx_offset + (group_idx_y >> shift)]; CABAC_BIN(cabac, 0, "last_sig_coeff_y_prefix"); } // last_sig_coeff_x_suffix if (group_idx_x > 3) { const int suffix = lastpos_x - g_min_in_group[group_idx_x]; const int bits = (group_idx_x - 2) / 2; CABAC_BINS_EP(cabac, suffix, bits, "last_sig_coeff_x_suffix"); } // last_sig_coeff_y_suffix if (group_idx_y > 3) { const int suffix = lastpos_y - g_min_in_group[group_idx_y]; const int bits = (group_idx_y - 2) / 2; CABAC_BINS_EP(cabac, suffix, bits, "last_sig_coeff_y_suffix"); } } void kvz_encode_coeff_nxn(encoder_state_t * const state, const coeff_t *coeff, uint8_t width, uint8_t type, int8_t scan_mode, int8_t tr_skip) { const encoder_control_t * const encoder = state->encoder_control; cabac_data_t * const cabac = &state->cabac; int c1 = 1; uint8_t last_coeff_x = 0; uint8_t last_coeff_y = 0; int32_t i; uint32_t sig_coeffgroup_flag[8 * 8] = { 0 }; int8_t be_valid = encoder->cfg.signhide_enable; int32_t scan_pos_sig; uint32_t go_rice_param = 0; uint32_t blk_pos, pos_y, pos_x, sig, ctx_sig; // CONSTANTS const uint32_t num_blk_side = width >> TR_MIN_LOG2_SIZE; const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2; const uint32_t *scan = kvz_g_sig_last_scan[scan_mode][log2_block_size - 1]; const uint32_t *scan_cg = g_sig_last_scan_cg[log2_block_size - 2][scan_mode]; // Init base contexts according to block type cabac_ctx_t *base_coeff_group_ctx = &(cabac->ctx.cu_sig_coeff_group_model[type]); cabac_ctx_t *baseCtx = (type == 0) ? &(cabac->ctx.cu_sig_model_luma[0]) : &(cabac->ctx.cu_sig_model_chroma[0]); // Scan all coeff groups to find out which of them have coeffs. // Populate sig_coeffgroup_flag with that info. unsigned sig_cg_cnt = 0; for (int cg_y = 0; cg_y < width / 4; ++cg_y) { for (int cg_x = 0; cg_x < width / 4; ++cg_x) { unsigned cg_pos = cg_y * width * 4 + cg_x * 4; for (int coeff_row = 0; coeff_row < 4; ++coeff_row) { // Load four 16-bit coeffs and see if any of them are non-zero. unsigned coeff_pos = cg_pos + coeff_row * width; uint64_t four_coeffs = *(uint64_t*)(&coeff[coeff_pos]); if (four_coeffs) { ++sig_cg_cnt; unsigned cg_pos_y = (cg_pos >> log2_block_size) >> TR_MIN_LOG2_SIZE; unsigned cg_pos_x = (cg_pos & (width - 1)) >> TR_MIN_LOG2_SIZE; sig_coeffgroup_flag[cg_pos_x + cg_pos_y * num_blk_side] = 1; break; } } } } // Rest of the code assumes at least one non-zero coeff. assert(sig_cg_cnt > 0); // Find the last coeff group by going backwards in scan order. unsigned scan_cg_last = num_blk_side * num_blk_side - 1; while (!sig_coeffgroup_flag[scan_cg[scan_cg_last]]) { --scan_cg_last; } // Find the last coeff by going backwards in scan order. unsigned scan_pos_last = scan_cg_last * 16 + 15; while (!coeff[scan[scan_pos_last]]) { --scan_pos_last; } int pos_last = scan[scan_pos_last]; // transform skip flag if(width == 4 && encoder->cfg.trskip_enable) { cabac->cur_ctx = (type == 0) ? &(cabac->ctx.transform_skip_model_luma) : &(cabac->ctx.transform_skip_model_chroma); CABAC_BIN(cabac, tr_skip, "transform_skip_flag"); } last_coeff_x = pos_last & (width - 1); last_coeff_y = (uint8_t)(pos_last >> log2_block_size); // Code last_coeff_x and last_coeff_y encode_last_significant_xy(state, last_coeff_x, last_coeff_y, width, width, type, scan_mode); scan_pos_sig = scan_pos_last; // significant_coeff_flag for (i = scan_cg_last; i >= 0; i--) { int32_t sub_pos = i << 4; // LOG2_SCAN_SET_SIZE; int32_t abs_coeff[16]; int32_t cg_blk_pos = scan_cg[i]; int32_t cg_pos_y = cg_blk_pos / num_blk_side; int32_t cg_pos_x = cg_blk_pos - (cg_pos_y * num_blk_side); uint32_t coeff_signs = 0; int32_t last_nz_pos_in_cg = -1; int32_t first_nz_pos_in_cg = 16; int32_t num_non_zero = 0; go_rice_param = 0; if (scan_pos_sig == scan_pos_last) { abs_coeff[0] = abs(coeff[pos_last]); coeff_signs = (coeff[pos_last] < 0); num_non_zero = 1; last_nz_pos_in_cg = scan_pos_sig; first_nz_pos_in_cg = scan_pos_sig; scan_pos_sig--; } if (i == scan_cg_last || i == 0) { sig_coeffgroup_flag[cg_blk_pos] = 1; } else { uint32_t sig_coeff_group = (sig_coeffgroup_flag[cg_blk_pos] != 0); uint32_t ctx_sig = kvz_context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); cabac->cur_ctx = &base_coeff_group_ctx[ctx_sig]; CABAC_BIN(cabac, sig_coeff_group, "coded_sub_block_flag"); } if (sig_coeffgroup_flag[cg_blk_pos]) { int32_t pattern_sig_ctx = kvz_context_calc_pattern_sig_ctx(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); for (; scan_pos_sig >= sub_pos; scan_pos_sig--) { blk_pos = scan[scan_pos_sig]; pos_y = blk_pos >> log2_block_size; pos_x = blk_pos - (pos_y << log2_block_size); sig = (coeff[blk_pos] != 0) ? 1 : 0; if (scan_pos_sig > sub_pos || i == 0 || num_non_zero) { ctx_sig = kvz_context_get_sig_ctx_inc(pattern_sig_ctx, scan_mode, pos_x, pos_y, log2_block_size, type); cabac->cur_ctx = &baseCtx[ctx_sig]; CABAC_BIN(cabac, sig, "sig_coeff_flag"); } if (sig) { abs_coeff[num_non_zero] = abs(coeff[blk_pos]); coeff_signs = 2 * coeff_signs + (coeff[blk_pos] < 0); num_non_zero++; if (last_nz_pos_in_cg == -1) { last_nz_pos_in_cg = scan_pos_sig; } first_nz_pos_in_cg = scan_pos_sig; } } } else { scan_pos_sig = sub_pos - 1; } if (num_non_zero > 0) { bool sign_hidden = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 /* SBH_THRESHOLD */ && !encoder->cfg.lossless; uint32_t ctx_set = (i > 0 && type == 0) ? 2 : 0; cabac_ctx_t *base_ctx_mod; int32_t num_c1_flag, first_c2_flag_idx, idx, first_coeff2; if (c1 == 0) { ctx_set++; } c1 = 1; base_ctx_mod = (type == 0) ? &(cabac->ctx.cu_one_model_luma[4 * ctx_set]) : &(cabac->ctx.cu_one_model_chroma[4 * ctx_set]); num_c1_flag = MIN(num_non_zero, C1FLAG_NUMBER); first_c2_flag_idx = -1; for (idx = 0; idx < num_c1_flag; idx++) { uint32_t symbol = (abs_coeff[idx] > 1) ? 1 : 0; cabac->cur_ctx = &base_ctx_mod[c1]; CABAC_BIN(cabac, symbol, "coeff_abs_level_greater1_flag"); if (symbol) { c1 = 0; if (first_c2_flag_idx == -1) { first_c2_flag_idx = idx; } } else if ((c1 < 3) && (c1 > 0)) { c1++; } } if (c1 == 0) { base_ctx_mod = (type == 0) ? &(cabac->ctx.cu_abs_model_luma[ctx_set]) : &(cabac->ctx.cu_abs_model_chroma[ctx_set]); if (first_c2_flag_idx != -1) { uint8_t symbol = (abs_coeff[first_c2_flag_idx] > 2) ? 1 : 0; cabac->cur_ctx = &base_ctx_mod[0]; CABAC_BIN(cabac, symbol, "coeff_abs_level_greater2_flag"); } } if (be_valid && sign_hidden) { coeff_signs = coeff_signs >> 1; if(!state->cabac.only_count) if (state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_TRANSF_COEFF_SIGNS) { coeff_signs = coeff_signs ^ ff_get_key(&state->tile->dbs_g, num_non_zero-1); } CABAC_BINS_EP(cabac, coeff_signs , (num_non_zero - 1), "coeff_sign_flag"); } else { if(!state->cabac.only_count) if (state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_TRANSF_COEFF_SIGNS) coeff_signs = coeff_signs ^ ff_get_key(&state->tile->dbs_g, num_non_zero); CABAC_BINS_EP(cabac, coeff_signs, num_non_zero, "coeff_sign_flag"); } if (c1 == 0 || num_non_zero > C1FLAG_NUMBER) { first_coeff2 = 1; for (idx = 0; idx < num_non_zero; idx++) { int32_t base_level = (idx < C1FLAG_NUMBER) ? (2 + first_coeff2) : 1; if (abs_coeff[idx] >= base_level) { if(!state->cabac.only_count) { if (state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_TRANSF_COEFFS) kvz_cabac_write_coeff_remain_encry(state, cabac, abs_coeff[idx] - base_level, go_rice_param, base_level); else kvz_cabac_write_coeff_remain(cabac, abs_coeff[idx] - base_level, go_rice_param); } else kvz_cabac_write_coeff_remain(cabac, abs_coeff[idx] - base_level, go_rice_param); if (abs_coeff[idx] > 3 * (1 << go_rice_param)) { go_rice_param = MIN(go_rice_param + 1, 4); } } if (abs_coeff[idx] >= 2) { first_coeff2 = 0; } } } } } } static void encode_transform_unit(encoder_state_t * const state, int x_pu, int y_pu, int depth) { assert(depth >= 1 && depth <= MAX_PU_DEPTH); const videoframe_t * const frame = state->tile->frame; const uint8_t width = LCU_WIDTH >> depth; const uint8_t width_c = (depth == MAX_PU_DEPTH ? width : width / 2); const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, x_pu << 2, y_pu << 2); const int x_cu = x_pu / 2; const int y_cu = y_pu / 2; const cu_info_t *cur_cu = kvz_videoframe_get_cu_const(frame, x_cu, y_cu); int8_t scan_idx = kvz_get_scan_order(cur_pu->type, cur_pu->intra.mode, depth); int cbf_y = cbf_is_set(cur_pu->cbf, depth, COLOR_Y); if (cbf_y) { int x_local = x_pu * (LCU_WIDTH >> MAX_PU_DEPTH) % LCU_WIDTH; int y_local = y_pu * (LCU_WIDTH >> MAX_PU_DEPTH) % LCU_WIDTH; const coeff_t *coeff_y = &state->coeff->y[xy_to_zorder(LCU_WIDTH, x_local, y_local)]; // CoeffNxN // Residual Coding kvz_encode_coeff_nxn(state, coeff_y, width, 0, scan_idx, cur_pu->intra.tr_skip); } if (depth == MAX_DEPTH + 1 && !(x_pu % 2 && y_pu % 2)) { // For size 4x4 luma transform the corresponding chroma transforms are // also of size 4x4 covering 8x8 luma pixels. The residual is coded // in the last transform unit so for the other ones, don't do anything. return; } bool chroma_cbf_set = cbf_is_set(cur_cu->cbf, depth, COLOR_U) || cbf_is_set(cur_cu->cbf, depth, COLOR_V); if (chroma_cbf_set) { int x_local, y_local; if (depth <= MAX_DEPTH) { x_local = x_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1)) % LCU_WIDTH_C; y_local = y_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1)) % LCU_WIDTH_C; } else { // for 4x4 select top left pixel of the CU. x_local = x_cu * (LCU_WIDTH >> (MAX_DEPTH + 1)) % LCU_WIDTH_C; y_local = y_cu * (LCU_WIDTH >> (MAX_DEPTH + 1)) % LCU_WIDTH_C; } const coeff_t *coeff_u = &state->coeff->u[xy_to_zorder(LCU_WIDTH_C, x_local, y_local)]; const coeff_t *coeff_v = &state->coeff->v[xy_to_zorder(LCU_WIDTH_C, x_local, y_local)]; scan_idx = kvz_get_scan_order(cur_cu->type, cur_cu->intra.mode_chroma, depth); if (cbf_is_set(cur_cu->cbf, depth, COLOR_U)) { kvz_encode_coeff_nxn(state, coeff_u, width_c, 2, scan_idx, 0); } if (cbf_is_set(cur_cu->cbf, depth, COLOR_V)) { kvz_encode_coeff_nxn(state, coeff_v, width_c, 2, scan_idx, 0); } } } /** * \param encoder * \param x_pu Prediction units' x coordinate. * \param y_pu Prediction units' y coordinate. * \param depth Depth from LCU. * \param tr_depth Depth from last CU. * \param parent_coeff_u What was signaled at previous level for cbf_cb. * \param parent_coeff_v What was signlaed at previous level for cbf_cr. */ static void encode_transform_coeff(encoder_state_t * const state, int32_t x_pu, int32_t y_pu, int8_t depth, int8_t tr_depth, uint8_t parent_coeff_u, uint8_t parent_coeff_v) { cabac_data_t * const cabac = &state->cabac; const videoframe_t * const frame = state->tile->frame; const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, x_pu << 2, y_pu << 2); const int32_t x_cu = x_pu / 2; const int32_t y_cu = y_pu / 2; const cu_info_t *cur_cu = kvz_videoframe_get_cu_const(frame, x_cu, y_cu); // NxN signifies implicit transform split at the first transform level. // There is a similar implicit split for inter, but it is only used when // transform hierarchy is not in use. int intra_split_flag = (cur_cu->type == CU_INTRA && cur_cu->part_size == SIZE_NxN); // The implicit split by intra NxN is not counted towards max_tr_depth. int tr_depth_intra = state->encoder_control->cfg.tr_depth_intra; int max_tr_depth = (cur_cu->type == CU_INTRA ? tr_depth_intra + intra_split_flag : TR_DEPTH_INTER); int8_t split = (cur_cu->tr_depth > depth); const int cb_flag_y = cbf_is_set(cur_pu->cbf, depth, COLOR_Y); const int cb_flag_u = cbf_is_set(cur_cu->cbf, depth, COLOR_U); const int cb_flag_v = cbf_is_set(cur_cu->cbf, depth, COLOR_V); // The split_transform_flag is not signaled when: // - transform size is greater than 32 (depth == 0) // - transform size is 4 (depth == MAX_PU_DEPTH) // - transform depth is max // - cu is intra NxN and it's the first split if (depth > 0 && depth < MAX_PU_DEPTH && tr_depth < max_tr_depth && !(intra_split_flag && tr_depth == 0)) { cabac->cur_ctx = &(cabac->ctx.trans_subdiv_model[5 - ((kvz_g_convert_to_bit[LCU_WIDTH] + 2) - depth)]); CABAC_BIN(cabac, split, "split_transform_flag"); } // Chroma cb flags are not signaled when one of the following: // - transform size is 4 (2x2 chroma transform doesn't exist) // - they have already been signaled to 0 previously // When they are not present they are inferred to be 0, except for size 4 // when the flags from previous level are used. if (depth < MAX_PU_DEPTH && state->encoder_control->chroma_format != KVZ_CSP_400) { cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_chroma[tr_depth]); if (tr_depth == 0 || parent_coeff_u) { CABAC_BIN(cabac, cb_flag_u, "cbf_cb"); } if (tr_depth == 0 || parent_coeff_v) { CABAC_BIN(cabac, cb_flag_v, "cbf_cr"); } } if (split) { uint8_t pu_offset = 1 << (MAX_PU_DEPTH - (depth + 1)); encode_transform_coeff(state, x_pu, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(state, x_pu + pu_offset, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(state, x_pu, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(state, x_pu + pu_offset, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); return; } // Luma coded block flag is signaled when one of the following: // - prediction mode is intra // - transform depth > 0 // - we have chroma coefficients at this level // When it is not present, it is inferred to be 1. if(cur_cu->type == CU_INTRA || tr_depth > 0 || cb_flag_u || cb_flag_v) { cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_luma[!tr_depth]); CABAC_BIN(cabac, cb_flag_y, "cbf_luma"); } if (cb_flag_y | cb_flag_u | cb_flag_v) { if (state->must_code_qp_delta) { const int qp_delta = state->qp - state->ref_qp; const int qp_delta_abs = ABS(qp_delta); cabac_data_t* cabac = &state->cabac; // cu_qp_delta_abs prefix cabac->cur_ctx = &cabac->ctx.cu_qp_delta_abs[0]; kvz_cabac_write_unary_max_symbol(cabac, cabac->ctx.cu_qp_delta_abs, MIN(qp_delta_abs, 5), 1, 5); if (qp_delta_abs >= 5) { // cu_qp_delta_abs suffix kvz_cabac_write_ep_ex_golomb(state, cabac, qp_delta_abs - 5, 0); } if (qp_delta != 0) { CABAC_BIN_EP(cabac, (qp_delta >= 0 ? 0 : 1), "qp_delta_sign_flag"); } state->must_code_qp_delta = false; state->ref_qp = state->qp; } encode_transform_unit(state, x_pu, y_pu, depth); } } static void encode_inter_prediction_unit(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int x, int y, int width, int height, int depth) { // Mergeflag int16_t num_cand = 0; cabac->cur_ctx = &(cabac->ctx.cu_merge_flag_ext_model); CABAC_BIN(cabac, cur_cu->merged, "MergeFlag"); num_cand = MRG_MAX_NUM_CANDS; if (cur_cu->merged) { //merge if (num_cand > 1) { int32_t ui; for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model); CABAC_BIN(cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(cabac,symbol,"MergeIndex"); } if (symbol == 0) break; } } } else { uint32_t ref_list_idx; uint32_t j; int ref_list[2] = { 0, 0 }; for (j = 0; j < state->frame->ref->used_size; j++) { if (state->frame->ref->pocs[j] < state->frame->poc) { ref_list[0]++; } else { ref_list[1]++; } } // Void TEncSbac::codeInterDir( TComDataCU* pcCU, UInt uiAbsPartIdx ) if (state->frame->slicetype == KVZ_SLICE_B) { // Code Inter Dir uint8_t inter_dir = cur_cu->inter.mv_dir-1; uint8_t ctx = depth; if (cur_cu->part_size == SIZE_2Nx2N || (LCU_WIDTH >> depth) != 8) { cabac->cur_ctx = &(cabac->ctx.inter_dir[ctx]); CABAC_BIN(cabac, (inter_dir == 2), "inter_pred_idc"); } if (inter_dir < 2) { cabac->cur_ctx = &(cabac->ctx.inter_dir[4]); CABAC_BIN(cabac, inter_dir, "inter_pred_idc"); } } for (ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) { if (cur_cu->inter.mv_dir & (1 << ref_list_idx)) { if (ref_list[ref_list_idx] > 1) { // parseRefFrmIdx int32_t ref_frame = state->frame->refmap[cur_cu->inter.mv_ref[ref_list_idx]].idx; cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[0]); CABAC_BIN(cabac, (ref_frame != 0), "ref_idx_lX"); if (ref_frame > 0) { int32_t i; int32_t ref_num = ref_list[ref_list_idx] - 2; cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[1]); ref_frame--; for (i = 0; i < ref_num; ++i) { const uint32_t symbol = (i == ref_frame) ? 0 : 1; if (i == 0) { CABAC_BIN(cabac, symbol, "ref_idx_lX"); } else { CABAC_BIN_EP(cabac, symbol, "ref_idx_lX"); } if (symbol == 0) break; } } } if (!(/*pcCU->getSlice()->getMvdL1ZeroFlag() &&*/ state->frame->ref_list == REF_PIC_LIST_1 && cur_cu->inter.mv_dir == 3)) { int16_t mv_cand[2][2]; kvz_inter_get_mv_cand_cua( state, x, y, width, height, mv_cand, cur_cu, ref_list_idx); uint8_t cu_mv_cand = CU_GET_MV_CAND(cur_cu, ref_list_idx); const int32_t mvd_hor = cur_cu->inter.mv[ref_list_idx][0] - mv_cand[cu_mv_cand][0]; const int32_t mvd_ver = cur_cu->inter.mv[ref_list_idx][1] - mv_cand[cu_mv_cand][1]; const int8_t hor_abs_gr0 = mvd_hor != 0; const int8_t ver_abs_gr0 = mvd_ver != 0; const uint32_t mvd_hor_abs = abs(mvd_hor); const uint32_t mvd_ver_abs = abs(mvd_ver); cabac->cur_ctx = &(cabac->ctx.cu_mvd_model[0]); CABAC_BIN(cabac, (mvd_hor != 0), "abs_mvd_greater0_flag_hor"); CABAC_BIN(cabac, (mvd_ver != 0), "abs_mvd_greater0_flag_ver"); cabac->cur_ctx = &(cabac->ctx.cu_mvd_model[1]); if (hor_abs_gr0) { CABAC_BIN(cabac, (mvd_hor_abs>1), "abs_mvd_greater1_flag_hor"); } if (ver_abs_gr0) { CABAC_BIN(cabac, (mvd_ver_abs>1), "abs_mvd_greater1_flag_ver"); } if (hor_abs_gr0) { if (mvd_hor_abs > 1) { kvz_cabac_write_ep_ex_golomb(state, cabac, mvd_hor_abs-2, 1); } uint32_t mvd_hor_sign = (mvd_hor>0)?0:1; if(!state->cabac.only_count) if (state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_MV_SIGNS) mvd_hor_sign = mvd_hor_sign^ff_get_key(&state->tile->dbs_g, 1); CABAC_BIN_EP(cabac, mvd_hor_sign, "mvd_sign_flag_hor"); } if (ver_abs_gr0) { if (mvd_ver_abs > 1) { kvz_cabac_write_ep_ex_golomb(state, cabac, mvd_ver_abs-2, 1); } uint32_t mvd_ver_sign = (mvd_ver>0)?0:1; if(!state->cabac.only_count) if (state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_MV_SIGNS) mvd_ver_sign = mvd_ver_sign^ff_get_key(&state->tile->dbs_g, 1); CABAC_BIN_EP(cabac, mvd_ver_sign, "mvd_sign_flag_ver"); } } // Signal which candidate MV to use kvz_cabac_write_unary_max_symbol(cabac, cabac->ctx.mvp_idx_model, CU_GET_MV_CAND(cur_cu, ref_list_idx), 1, AMVP_MAX_NUM_CANDS - 1); } } // for ref_list } // if !merge } #if KVZ_SEL_ENCRYPTION static INLINE uint8_t intra_mode_encryption(encoder_state_t * const state, uint8_t intra_pred_mode) { const uint8_t sets[3][17] = { { 0, 1, 2, 3, 4, 5, 15, 16, 17, 18, 19, 20, 21, 31, 32, 33, 34}, /* 17 */ { 22, 23, 24, 25, 27, 28, 29, 30, -1, -1, -1, -1, -1, -1, -1, -1, -1}, /* 9 */ { 6, 7, 8, 9, 11, 12, 13, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1} /* 9 */ }; const uint8_t nb_elems[3] = {17, 8, 8}; if (intra_pred_mode == 26 || intra_pred_mode == 10) { // correct chroma intra prediction mode return intra_pred_mode; } else { uint8_t keybits, scan_dir, elem_idx=0; keybits = ff_get_key(&state->tile->dbs_g, 5); scan_dir = SCAN_DIAG; if (intra_pred_mode > 5 && intra_pred_mode < 15) { scan_dir = SCAN_VER; } if (intra_pred_mode > 21 && intra_pred_mode < 31) { scan_dir = SCAN_HOR; } for (int i = 0; i < nb_elems[scan_dir]; i++) { if (intra_pred_mode == sets[scan_dir][i]) { elem_idx = i; break; } } keybits = keybits % nb_elems[scan_dir]; keybits = (elem_idx + keybits) % nb_elems[scan_dir]; return sets[scan_dir][keybits]; } } static void encode_intra_coding_unit_encry(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int x_ctb, int y_ctb, int depth) { const videoframe_t * const frame = state->tile->frame; uint8_t intra_pred_mode[4]; uint8_t intra_pred_mode_encry[4] = {-1, -1, -1, -1}; uint8_t intra_pred_mode_chroma = cur_cu->intra.mode_chroma; int8_t intra_preds[4][3] = {{-1, -1, -1},{-1, -1, -1},{-1, -1, -1},{-1, -1, -1}}; int8_t mpm_preds[4] = {-1, -1, -1, -1}; uint32_t flag[4]; #if ENABLE_PCM == 1 // Code must start after variable initialization kvz_cabac_encode_bin_trm(cabac, 0); // IPCMFlag == 0 #endif // PREDINFO CODING // If intra prediction mode is found from the predictors, // it can be signaled with two EP's. Otherwise we can send // 5 EP bins with the full predmode const int num_pred_units = kvz_part_mode_num_parts[cur_cu->part_size]; const int cu_width = LCU_WIDTH >> depth; for (int j = 0; j < num_pred_units; ++j) { const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x_ctb << 3, j); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y_ctb << 3, j); cu_info_t *cur_pu = kvz_cu_array_at(frame->cu_array, pu_x, pu_y); const cu_info_t *left_pu = NULL; const cu_info_t *above_pu = NULL; if (pu_x > 0) { assert(pu_x >> 2 > 0); left_pu = kvz_cu_array_at_const(frame->cu_array, pu_x - 1, pu_y); } // Don't take the above PU across the LCU boundary. if (pu_y % LCU_WIDTH > 0 && pu_y > 0) { assert(pu_y >> 2 > 0); above_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y - 1); } kvz_intra_get_dir_luma_predictor_encry(pu_x, pu_y, intra_preds[j], (const cu_info_t *)cur_pu, left_pu, above_pu); intra_pred_mode[j] = cur_pu->intra.mode; intra_pred_mode_encry[j] = intra_mode_encryption(state, intra_pred_mode[j]); for (int i = 0; i < 3; i++) { if (intra_preds[j][i] == intra_pred_mode_encry[j]) { mpm_preds[j] = (int8_t)i; break; } } flag[j] = (mpm_preds[j] == -1) ? 0 : 1; //Set the modified intra_pred_mode of the current pu here to make it available // from its neighbours for mpm decision cur_pu->intra.mode_encry=intra_pred_mode_encry[j]; if (cur_pu->part_size!=SIZE_NxN){ cu_info_t *cu = cur_pu; //FIXME: there might be a more efficient way to propagate mode_encry for //future use from left and above PUs for (int y = pu_y; y < pu_y + cu_width; y += 4 ) { for (int x = pu_x; x < pu_x + cu_width; x += 4) { cu = (cu_info_t *)kvz_cu_array_at(frame->cu_array, x, y); cu->intra.mode_encry = intra_pred_mode_encry[j]; } } } } cabac->cur_ctx = &(cabac->ctx.intra_mode_model); for (int j = 0; j < num_pred_units; ++j) { CABAC_BIN(cabac, flag[j], "prev_intra_luma_pred_flag"); } for (int j = 0; j < num_pred_units; ++j) { // Signal index of the prediction mode in the prediction list. if (flag[j]) { CABAC_BIN_EP(cabac, (mpm_preds[j] == 0 ? 0 : 1), "mpm_idx"); if (mpm_preds[j] != 0) { CABAC_BIN_EP(cabac, (mpm_preds[j] == 1 ? 0 : 1), "mpm_idx"); } } else { // Signal the modified prediction mode. int32_t tmp_pred = intra_pred_mode_encry[j]; // Sort prediction list from lowest to highest. if (intra_preds[j][0] > intra_preds[j][1]) SWAP(intra_preds[j][0], intra_preds[j][1], int8_t); if (intra_preds[j][0] > intra_preds[j][2]) SWAP(intra_preds[j][0], intra_preds[j][2], int8_t); if (intra_preds[j][1] > intra_preds[j][2]) SWAP(intra_preds[j][1], intra_preds[j][2], int8_t); // Reduce the index of the signaled prediction mode according to the // prediction list, as it has been already signaled that it's not one // of the prediction modes. for (int i = 2; i >= 0; i--) { tmp_pred = (tmp_pred > intra_preds[j][i] ? tmp_pred - 1 : tmp_pred); } CABAC_BINS_EP(cabac, tmp_pred, 5, "rem_intra_luma_pred_mode"); } } // Code chroma prediction mode. if (state->encoder_control->chroma_format != KVZ_CSP_400) { unsigned pred_mode = 5; unsigned chroma_pred_modes[4] = {0, 26, 10, 1}; if (intra_pred_mode_chroma == intra_pred_mode[0]) { pred_mode = 4; } else if (intra_pred_mode_chroma == 34) { // Angular 34 mode is possible only if intra pred mode is one of the // possible chroma pred modes, in which case it is signaled with that // duplicate mode. for (int i = 0; i < 4; ++i) { if (intra_pred_mode[0] == chroma_pred_modes[i]) pred_mode = i; } } else { for (int i = 0; i < 4; ++i) { if (intra_pred_mode_chroma == chroma_pred_modes[i]) pred_mode = i; } } // pred_mode == 5 mean intra_pred_mode_chroma is something that can't // be coded. assert(pred_mode != 5); /** * Table 9-35 - Binarization for intra_chroma_pred_mode * intra_chroma_pred_mode bin_string * 4 0 * 0 100 * 1 101 * 2 110 * 3 111 * Table 9-37 - Assignment of ctxInc to syntax elements with context coded bins * intra_chroma_pred_mode[][] = 0, bypass, bypass */ cabac->cur_ctx = &(cabac->ctx.chroma_pred_model[0]); if (pred_mode == 4) { CABAC_BIN(cabac, 0, "intra_chroma_pred_mode"); } else { CABAC_BIN(cabac, 1, "intra_chroma_pred_mode"); CABAC_BINS_EP(cabac, pred_mode, 2, "intra_chroma_pred_mode"); } } encode_transform_coeff(state, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0); } #endif static void encode_intra_coding_unit(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int x_ctb, int y_ctb, int depth) { const videoframe_t * const frame = state->tile->frame; uint8_t intra_pred_mode[4]; uint8_t intra_pred_mode_chroma = cur_cu->intra.mode_chroma; int8_t intra_preds[4][3] = {{-1, -1, -1},{-1, -1, -1},{-1, -1, -1},{-1, -1, -1}}; int8_t mpm_preds[4] = {-1, -1, -1, -1}; uint32_t flag[4]; #if KVZ_SEL_ENCRYPTION if(!state->cabac.only_count) if (state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_INTRA_MODE) { encode_intra_coding_unit_encry(state, cabac, (cu_info_t *)cur_cu, x_ctb, y_ctb, depth); return; } #endif #if ENABLE_PCM == 1 // Code must start after variable initialization kvz_cabac_encode_bin_trm(cabac, 0); // IPCMFlag == 0 #endif // PREDINFO CODING // If intra prediction mode is found from the predictors, // it can be signaled with two EP's. Otherwise we can send // 5 EP bins with the full predmode const int num_pred_units = kvz_part_mode_num_parts[cur_cu->part_size]; const int cu_width = LCU_WIDTH >> depth; for (int j = 0; j < num_pred_units; ++j) { const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x_ctb << 3, j); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y_ctb << 3, j); const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y); const cu_info_t *left_pu = NULL; const cu_info_t *above_pu = NULL; if (pu_x > 0) { assert(pu_x >> 2 > 0); left_pu = kvz_cu_array_at_const(frame->cu_array, pu_x - 1, pu_y); } // Don't take the above PU across the LCU boundary. if (pu_y % LCU_WIDTH > 0 && pu_y > 0) { assert(pu_y >> 2 > 0); above_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y - 1); } kvz_intra_get_dir_luma_predictor(pu_x, pu_y, intra_preds[j], cur_pu, left_pu, above_pu); intra_pred_mode[j] = cur_pu->intra.mode; for (int i = 0; i < 3; i++) { if (intra_preds[j][i] == intra_pred_mode[j]) { mpm_preds[j] = (int8_t)i; break; } } flag[j] = (mpm_preds[j] == -1) ? 0 : 1; } cabac->cur_ctx = &(cabac->ctx.intra_mode_model); for (int j = 0; j < num_pred_units; ++j) { CABAC_BIN(cabac, flag[j], "prev_intra_luma_pred_flag"); } for (int j = 0; j < num_pred_units; ++j) { // Signal index of the prediction mode in the prediction list. if (flag[j]) { CABAC_BIN_EP(cabac, (mpm_preds[j] == 0 ? 0 : 1), "mpm_idx"); if (mpm_preds[j] != 0) { CABAC_BIN_EP(cabac, (mpm_preds[j] == 1 ? 0 : 1), "mpm_idx"); } } else { // Signal the actual prediction mode. int32_t tmp_pred = intra_pred_mode[j]; // Sort prediction list from lowest to highest. if (intra_preds[j][0] > intra_preds[j][1]) SWAP(intra_preds[j][0], intra_preds[j][1], int8_t); if (intra_preds[j][0] > intra_preds[j][2]) SWAP(intra_preds[j][0], intra_preds[j][2], int8_t); if (intra_preds[j][1] > intra_preds[j][2]) SWAP(intra_preds[j][1], intra_preds[j][2], int8_t); // Reduce the index of the signaled prediction mode according to the // prediction list, as it has been already signaled that it's not one // of the prediction modes. for (int i = 2; i >= 0; i--) { tmp_pred = (tmp_pred > intra_preds[j][i] ? tmp_pred - 1 : tmp_pred); } CABAC_BINS_EP(cabac, tmp_pred, 5, "rem_intra_luma_pred_mode"); } } // Code chroma prediction mode. if (state->encoder_control->chroma_format != KVZ_CSP_400) { unsigned pred_mode = 5; unsigned chroma_pred_modes[4] = {0, 26, 10, 1}; if (intra_pred_mode_chroma == intra_pred_mode[0]) { pred_mode = 4; } else if (intra_pred_mode_chroma == 34) { // Angular 34 mode is possible only if intra pred mode is one of the // possible chroma pred modes, in which case it is signaled with that // duplicate mode. for (int i = 0; i < 4; ++i) { if (intra_pred_mode[0] == chroma_pred_modes[i]) pred_mode = i; } } else { for (int i = 0; i < 4; ++i) { if (intra_pred_mode_chroma == chroma_pred_modes[i]) pred_mode = i; } } // pred_mode == 5 mean intra_pred_mode_chroma is something that can't // be coded. assert(pred_mode != 5); /** * Table 9-35 - Binarization for intra_chroma_pred_mode * intra_chroma_pred_mode bin_string * 4 0 * 0 100 * 1 101 * 2 110 * 3 111 * Table 9-37 - Assignment of ctxInc to syntax elements with context coded bins * intra_chroma_pred_mode[][] = 0, bypass, bypass */ cabac->cur_ctx = &(cabac->ctx.chroma_pred_model[0]); if (pred_mode == 4) { CABAC_BIN(cabac, 0, "intra_chroma_pred_mode"); } else { CABAC_BIN(cabac, 1, "intra_chroma_pred_mode"); CABAC_BINS_EP(cabac, pred_mode, 2, "intra_chroma_pred_mode"); } } encode_transform_coeff(state, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0); } static void encode_part_mode(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int depth) { // Binarization from Table 9-34 of the HEVC spec: // // | log2CbSize > | log2CbSize == // | MinCbLog2SizeY | MinCbLog2SizeY // -------+-------+----------+---------+-----------+---------- // pred | part | AMP | AMP | | // mode | mode | disabled | enabled | size == 8 | size > 8 // -------+-------+----------+---------+-----------+---------- // intra | 2Nx2N | - - | 1 1 // | NxN | - - | 0 0 // -------+-------+--------------------+---------------------- // inter | 2Nx2N | 1 1 | 1 1 // | 2NxN | 01 011 | 01 01 // | Nx2N | 00 001 | 00 001 // | NxN | - - | - 000 // | 2NxnU | - 0100 | - - // | 2NxnD | - 0101 | - - // | nLx2N | - 0000 | - - // | nRx2N | - 0001 | - - // -------+-------+--------------------+---------------------- // // // Context indices from Table 9-37 of the HEVC spec: // // binIdx // | 0 1 2 3 // ------------------------------+------------------ // log2CbSize == MinCbLog2SizeY | 0 1 2 bypass // log2CbSize > MinCbLog2SizeY | 0 1 3 bypass // ------------------------------+------------------ if (cur_cu->type == CU_INTRA) { if (depth == MAX_DEPTH) { cabac->cur_ctx = &(cabac->ctx.part_size_model[0]); if (cur_cu->part_size == SIZE_2Nx2N) { CABAC_BIN(cabac, 1, "part_mode 2Nx2N"); } else { CABAC_BIN(cabac, 0, "part_mode NxN"); } } } else { cabac->cur_ctx = &(cabac->ctx.part_size_model[0]); if (cur_cu->part_size == SIZE_2Nx2N) { CABAC_BIN(cabac, 1, "part_mode 2Nx2N"); return; } CABAC_BIN(cabac, 0, "part_mode split"); cabac->cur_ctx = &(cabac->ctx.part_size_model[1]); if (cur_cu->part_size == SIZE_2NxN || cur_cu->part_size == SIZE_2NxnU || cur_cu->part_size == SIZE_2NxnD) { CABAC_BIN(cabac, 1, "part_mode vertical"); } else { CABAC_BIN(cabac, 0, "part_mode horizontal"); } if (state->encoder_control->cfg.amp_enable && depth < MAX_DEPTH) { cabac->cur_ctx = &(cabac->ctx.part_size_model[3]); if (cur_cu->part_size == SIZE_2NxN || cur_cu->part_size == SIZE_Nx2N) { CABAC_BIN(cabac, 1, "part_mode SMP"); return; } CABAC_BIN(cabac, 0, "part_mode AMP"); if (cur_cu->part_size == SIZE_2NxnU || cur_cu->part_size == SIZE_nLx2N) { CABAC_BINS_EP(cabac, 0, 1, "part_mode AMP"); } else { CABAC_BINS_EP(cabac, 1, 1, "part_mode AMP"); } } } } void kvz_encode_coding_tree(encoder_state_t * const state, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { cabac_data_t * const cabac = &state->cabac; const videoframe_t * const frame = state->tile->frame; const cu_info_t *cur_cu = kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb); uint8_t split_flag = GET_SPLITDATA(cur_cu, depth); uint8_t split_model = 0; //Absolute ctb uint16_t abs_x_ctb = x_ctb + (state->tile->lcu_offset_x * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH); uint16_t abs_y_ctb = y_ctb + (state->tile->lcu_offset_y * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH); // Check for slice border FIXME uint8_t border_x = ((state->encoder_control->in.width) < (abs_x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_y = ((state->encoder_control->in.height) < (abs_y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_split_x = ((state->encoder_control->in.width) < ((abs_x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border_split_y = ((state->encoder_control->in.height) < ((abs_y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border = border_x | border_y; /*!< are we in any border CU */ // When not in MAX_DEPTH, insert split flag and split the blocks if needed if (depth != MAX_DEPTH) { // Implisit split flag when on border if (!border) { // Get left and top block split_flags and if they are present and true, increase model number if (x_ctb > 0 && GET_SPLITDATA(kvz_videoframe_get_cu_const(frame, x_ctb - 1, y_ctb), depth) == 1) { split_model++; } if (y_ctb > 0 && GET_SPLITDATA(kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb - 1), depth) == 1) { split_model++; } cabac->cur_ctx = &(cabac->ctx.split_flag_model[split_model]); CABAC_BIN(cabac, split_flag, "SplitFlag"); } if (split_flag || border) { // Split blocks and remember to change x and y block positions uint8_t change = 1<<(MAX_DEPTH-1-depth); kvz_encode_coding_tree(state, x_ctb, y_ctb, depth + 1); // x,y // TODO: fix when other half of the block would not be completely over the border if (!border_x || border_split_x) { kvz_encode_coding_tree(state, x_ctb + change, y_ctb, depth + 1); } if (!border_y || border_split_y) { kvz_encode_coding_tree(state, x_ctb, y_ctb + change, depth + 1); } if (!border || (border_split_x && border_split_y)) { kvz_encode_coding_tree(state, x_ctb + change, y_ctb + change, depth + 1); } return; } } if (state->encoder_control->cfg.lossless) { cabac->cur_ctx = &cabac->ctx.cu_transquant_bypass; CABAC_BIN(cabac, 1, "cu_transquant_bypass_flag"); } // Encode skip flag if (state->frame->slicetype != KVZ_SLICE_I) { int8_t ctx_skip = 0; // uiCtxSkip = aboveskipped + leftskipped; int ui; int16_t num_cand = MRG_MAX_NUM_CANDS; // Get left and top skipped flags and if they are present and true, increase context number if (x_ctb > 0 && (kvz_videoframe_get_cu_const(frame, x_ctb - 1, y_ctb))->skipped) { ctx_skip++; } if (y_ctb > 0 && (kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb - 1))->skipped) { ctx_skip++; } cabac->cur_ctx = &(cabac->ctx.cu_skip_flag_model[ctx_skip]); CABAC_BIN(cabac, cur_cu->skipped, "SkipFlag"); // IF SKIP if (cur_cu->skipped) { if (num_cand > 1) { for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model); CABAC_BIN(cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(cabac,symbol,"MergeIndex"); } if (symbol == 0) { break; } } } return; } } // ENDIF SKIP // Prediction mode if (state->frame->slicetype != KVZ_SLICE_I) { cabac->cur_ctx = &(cabac->ctx.cu_pred_mode_model); CABAC_BIN(cabac, (cur_cu->type == CU_INTRA), "PredMode"); } // part_mode encode_part_mode(state, cabac, cur_cu, depth); if (cur_cu->type == CU_INTER) { const int num_pu = kvz_part_mode_num_parts[cur_cu->part_size]; const int cu_width = LCU_WIDTH >> depth; for (int i = 0; i < num_pu; ++i) { const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x_ctb << 3, i); const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y_ctb << 3, i); const int pu_w = PU_GET_W(cur_cu->part_size, cu_width, i); const int pu_h = PU_GET_H(cur_cu->part_size, cu_width, i); const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y); encode_inter_prediction_unit(state, cabac, cur_pu, pu_x, pu_y, pu_w, pu_h, depth); } { int cbf = cbf_is_set_any(cur_cu->cbf, depth); // Only need to signal coded block flag if not skipped or merged // skip = no coded residual, merge = coded residual if (cur_cu->part_size != SIZE_2Nx2N || !cur_cu->merged) { cabac->cur_ctx = &(cabac->ctx.cu_qt_root_cbf_model); CABAC_BIN(cabac, cbf, "rqt_root_cbf"); } // Code (possible) coeffs to bitstream if (cbf) { encode_transform_coeff(state, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0); } } } else if (cur_cu->type == CU_INTRA) { encode_intra_coding_unit(state, cabac, cur_cu, x_ctb, y_ctb, depth); } #if ENABLE_PCM == 1 // Code IPCM block if (cur_cu->type == CU_PCM) { kvz_cabac_encode_bin_trm(cabac, 1); // IPCMFlag == 1 kvz_cabac_finish(cabac); kvz_bitstream_add_rbsp_trailing_bits(cabac.stream); // PCM sample { unsigned y, x; pixel *base_y = &cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width]; pixel *base_u = &cur_pic->u_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)]; pixel *base_v = &cur_pic->v_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)]; // Luma for (y = 0; y < LCU_WIDTH >> depth; y++) { for (x = 0; x < LCU_WIDTH >> depth; x++) { kvz_bitstream_put(cabac.stream, base_y[x + y * encoder->in.width], 8); } } // Chroma if (encoder->in.video_format != FORMAT_400) { for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { kvz_bitstream_put(cabac.stream, base_u[x + y * (encoder->in.width >> 1)], 8); } } for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { kvz_bitstream_put(cabac.stream, base_v[x + y * (encoder->in.width >> 1)], 8); } } } } // end PCM sample kvz_cabac_start(cabac); } // end Code IPCM block #endif /* END ENABLE_PCM */ else { /* Should not happend */ assert(0); exit(1); } /* end prediction unit */ /* end coding_unit */ }