/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
#include "encoder_state-bitstream.h"
#include
#include
#include
#include "bitstream.h"
#include "cabac.h"
#include "checkpoint.h"
#include "cu.h"
#include "encoder.h"
#include "encoder_state-geometry.h"
#include "encoderstate.h"
#include "imagelist.h"
#include "kvazaar.h"
#include "kvz_math.h"
#include "nal.h"
#include "scalinglist.h"
#include "tables.h"
#include "threadqueue.h"
#include "videoframe.h"
static void encoder_state_write_bitstream_aud(encoder_state_t * const state)
{
bitstream_t * const stream = &state->stream;
kvz_nal_write(stream, KVZ_NAL_AUD_NUT, 0, 1);
uint8_t pic_type = state->frame->slicetype == KVZ_SLICE_I ? 0
: state->frame->slicetype == KVZ_SLICE_P ? 1
: 2;
WRITE_U(stream, pic_type, 3, "pic_type");
kvz_bitstream_add_rbsp_trailing_bits(stream);
}
static void encoder_state_write_bitstream_PTL(bitstream_t *stream,
encoder_state_t * const state)
{
// PTL
// Profile Tier
WRITE_U(stream, 0, 2, "general_profile_space");
WRITE_U(stream, state->encoder_control->cfg.high_tier, 1, "general_tier_flag");
// Main Profile == 1, Main 10 profile == 2
WRITE_U(stream, 6, 5, "general_profile_idc");
/* Compatibility flags should be set at general_profile_idc
* (so with general_profile_idc = 1, compatibility_flag[1] should be 1)
* According to specification, when compatibility_flag[1] is set,
* compatibility_flag[2] should be set too.
*/
WRITE_U(stream, 3<<29, 32, "general_profile_compatibility_flag[]");
WRITE_U(stream, 1, 1, "general_progressive_source_flag");
WRITE_U(stream, state->encoder_control->in.source_scan_type!= 0, 1, "general_interlaced_source_flag");
WRITE_U(stream, 0, 1, "general_non_packed_constraint_flag");
WRITE_U(stream, 0, 1, "general_frame_only_constraint_flag");
WRITE_U(stream, 0, 32, "XXX_reserved_zero_44bits[0..31]");
WRITE_U(stream, 0, 12, "XXX_reserved_zero_44bits[32..43]");
// end Profile Tier
uint8_t level = state->encoder_control->cfg.level;
WRITE_U(stream, level * 3, 8, "general_level_idc");
WRITE_U(stream, 0, 1, "sub_layer_profile_present_flag");
WRITE_U(stream, 0, 1, "sub_layer_level_present_flag");
for (int i = 1; i < 8; i++) {
WRITE_U(stream, 0, 2, "reserved_zero_2bits");
}
// end PTL
}
/*
static void encoder_state_write_bitstream_vid_parameter_set(bitstream_t* stream,
encoder_state_t * const state)
{
#ifdef KVZ_DEBUG
printf("=========== Video Parameter Set ID: 0 ===========\n");
#endif
WRITE_U(stream, 0, 4, "vps_video_parameter_set_id");
WRITE_U(stream, 3, 2, "vps_reserved_three_2bits" );
WRITE_U(stream, 0, 6, "vps_reserved_zero_6bits" );
WRITE_U(stream, 1, 3, "vps_max_sub_layers_minus1");
WRITE_U(stream, 0, 1, "vps_temporal_id_nesting_flag");
WRITE_U(stream, 0xffff, 16, "vps_reserved_ffff_16bits");
encoder_state_write_bitstream_PTL(stream, state);
WRITE_U(stream, 0, 1, "vps_sub_layer_ordering_info_present_flag");
//for each layer
for (int i = 0; i < 1; i++) {
WRITE_UE(stream, 1, "vps_max_dec_pic_buffering");
WRITE_UE(stream, 0, "vps_num_reorder_pics");
WRITE_UE(stream, 0, "vps_max_latency_increase");
}
WRITE_U(stream, 0, 6, "vps_max_nuh_reserved_zero_layer_id");
WRITE_UE(stream, 0, "vps_max_op_sets_minus1");
WRITE_U(stream, 0, 1, "vps_timing_info_present_flag");
//IF timing info
//END IF
WRITE_U(stream, 0, 1, "vps_extension_flag");
kvz_bitstream_add_rbsp_trailing_bits(stream);
}
static void encoder_state_write_bitstream_scaling_list(bitstream_t *stream,
encoder_state_t * const state)
{
const encoder_control_t * const encoder = state->encoder_control;
uint32_t size_id;
for (size_id = 0; size_id < SCALING_LIST_SIZE_NUM; size_id++) {
int32_t list_id;
for (list_id = 0; list_id < kvz_g_scaling_list_num[size_id]; list_id++) {
uint8_t scaling_list_pred_mode_flag = 1;
int32_t pred_list_idx;
int32_t i;
uint32_t ref_matrix_id = UINT32_MAX;
for (pred_list_idx = list_id; pred_list_idx >= 0; pred_list_idx--) {
const int32_t * const pred_list = (list_id == pred_list_idx) ?
kvz_scalinglist_get_default(size_id, pred_list_idx) :
encoder->scaling_list.scaling_list_coeff[size_id][pred_list_idx];
if (!memcmp(encoder->scaling_list.scaling_list_coeff[size_id][list_id], pred_list, sizeof(int32_t) * MIN(8, kvz_g_scaling_list_size[size_id])) &&
((size_id < SCALING_LIST_16x16) ||
(encoder->scaling_list.scaling_list_dc[size_id][list_id] == encoder->scaling_list.scaling_list_dc[size_id][pred_list_idx]))) {
ref_matrix_id = pred_list_idx;
scaling_list_pred_mode_flag = 0;
break;
}
}
WRITE_U(stream, scaling_list_pred_mode_flag, 1, "scaling_list_pred_mode_flag" );
if (!scaling_list_pred_mode_flag) {
WRITE_UE(stream, list_id - ref_matrix_id, "scaling_list_pred_matrix_id_delta");
} else {
int32_t delta;
const int32_t coef_num = MIN(MAX_MATRIX_COEF_NUM, kvz_g_scaling_list_size[size_id]);
const uint32_t * const scan_cg = (size_id == 0) ? g_sig_last_scan_16x16 : g_sig_last_scan_32x32;
int32_t next_coef = 8;
const int32_t * const coef_list = encoder->scaling_list.scaling_list_coeff[size_id][list_id];
if (size_id >= SCALING_LIST_16x16) {
WRITE_SE(stream, encoder->scaling_list.scaling_list_dc[size_id][list_id] - 8, "scaling_list_dc_coef_minus8");
next_coef = encoder->scaling_list.scaling_list_dc[size_id][list_id];
}
for (i = 0; i < coef_num; i++) {
delta = coef_list[scan_cg[i]] - next_coef;
next_coef = coef_list[scan_cg[i]];
if (delta > 127)
delta -= 256;
if (delta < -128)
delta += 256;
WRITE_SE(stream, delta, "scaling_list_delta_coef");
}
}
}
}
}
*/
static void encoder_state_write_bitstream_VUI(bitstream_t *stream,
encoder_state_t * const state)
{
const encoder_control_t * const encoder = state->encoder_control;
#ifdef KVZ_DEBUG
printf("=========== VUI Set ID: 0 ===========\n");
#endif
if (encoder->cfg.vui.sar_width > 0 && encoder->cfg.vui.sar_height > 0) {
int i;
static const struct
{
uint8_t width;
uint8_t height;
uint8_t idc;
} sar[] = {
// aspect_ratio_idc = 0 -> unspecified
{ 1, 1, 1 }, { 12, 11, 2 }, { 10, 11, 3 }, { 16, 11, 4 },
{ 40, 33, 5 }, { 24, 11, 6 }, { 20, 11, 7 }, { 32, 11, 8 },
{ 80, 33, 9 }, { 18, 11, 10}, { 15, 11, 11}, { 64, 33, 12},
{160, 99, 13}, { 4, 3, 14}, { 3, 2, 15}, { 2, 1, 16},
// aspect_ratio_idc = [17..254] -> reserved
{ 0, 0, 255 }
};
for (i = 0; sar[i].idc != 255; i++)
if (sar[i].width == encoder->cfg.vui.sar_width &&
sar[i].height == encoder->cfg.vui.sar_height)
break;
WRITE_U(stream, 1, 1, "aspect_ratio_info_present_flag");
WRITE_U(stream, sar[i].idc, 8, "aspect_ratio_idc");
if (sar[i].idc == 255) {
// EXTENDED_SAR
WRITE_U(stream, encoder->cfg.vui.sar_width, 16, "sar_width");
WRITE_U(stream, encoder->cfg.vui.sar_height, 16, "sar_height");
}
} else
WRITE_U(stream, 0, 1, "aspect_ratio_info_present_flag");
//IF aspect ratio info
//ENDIF
if (encoder->cfg.vui.overscan > 0) {
WRITE_U(stream, 1, 1, "overscan_info_present_flag");
WRITE_U(stream, encoder->cfg.vui.overscan - 1, 1, "overscan_appropriate_flag");
} else
WRITE_U(stream, 0, 1, "overscan_info_present_flag");
//IF overscan info
//ENDIF
if (encoder->cfg.vui.videoformat != 5 ||
encoder->cfg.vui.fullrange != 0 ||
encoder->cfg.vui.colorprim != 2 ||
encoder->cfg.vui.transfer != 2 ||
encoder->cfg.vui.colormatrix != 2) {
WRITE_U(stream, 1, 1, "video_signal_type_present_flag");
WRITE_U(stream, encoder->cfg.vui.videoformat, 3, "chroma_format");
WRITE_U(stream, encoder->cfg.vui.fullrange, 1, "video_full_range_flag");
if (encoder->cfg.vui.colorprim != 2 ||
encoder->cfg.vui.transfer != 2 ||
encoder->cfg.vui.colormatrix != 2) {
WRITE_U(stream, 1, 1, "colour_description_present_flag");
WRITE_U(stream, encoder->cfg.vui.colorprim, 8, "colour_primaries");
WRITE_U(stream, encoder->cfg.vui.transfer, 8, "transfer_characteristics");
WRITE_U(stream, encoder->cfg.vui.colormatrix, 8, "matrix_coeffs");
} else
WRITE_U(stream, 0, 1, "colour_description_present_flag");
} else
WRITE_U(stream, 0, 1, "video_signal_type_present_flag");
//IF video type
//ENDIF
if (encoder->cfg.vui.chroma_loc > 0) {
WRITE_U(stream, 1, 1, "chroma_loc_info_present_flag");
WRITE_UE(stream, encoder->cfg.vui.chroma_loc, "chroma_sample_loc_type_top_field");
WRITE_UE(stream, encoder->cfg.vui.chroma_loc, "chroma_sample_loc_type_bottom_field");
} else
WRITE_U(stream, 0, 1, "chroma_loc_info_present_flag");
//IF chroma loc info
//ENDIF
WRITE_U(stream, 0, 1, "neutral_chroma_indication_flag");
WRITE_U(stream, encoder->vui.field_seq_flag, 1, "field_seq_flag"); // 0: frames, 1: fields
WRITE_U(stream, encoder->vui.frame_field_info_present_flag, 1, "frame_field_info_present_flag");
WRITE_U(stream, 0, 1, "default_display_window_flag");
//IF default display window
//ENDIF
WRITE_U(stream, encoder->vui.timing_info_present_flag, 1, "vui_timing_info_present_flag");
if (encoder->vui.timing_info_present_flag) {
WRITE_U(stream, encoder->vui.num_units_in_tick, 32, "vui_num_units_in_tick");
WRITE_U(stream, encoder->vui.time_scale, 32, "vui_time_scale");
WRITE_U(stream, 0, 1, "vui_poc_proportional_to_timing_flag");
WRITE_U(stream, 0, 1, "vui_hrd_parameters_present_flag");
}
WRITE_U(stream, 0, 1, "bitstream_restriction_flag");
//IF bitstream restriction
//ENDIF
}
static void encoder_state_write_bitstream_SPS_extension(bitstream_t *stream,
encoder_state_t * const state)
{
const kvz_config *cfg = &state->encoder_control->cfg;
//if (cfg->implicit_rdpcm && cfg->lossless) {
WRITE_U(stream, 1, 1, "sps_extension_present_flag");
WRITE_U(stream, 1, 1, "sps_range_extension_flag");
WRITE_U(stream, 0, 1, "sps_multilayer_extension_flag");
WRITE_U(stream, 0, 1, "sps_3d_extension_flag");
WRITE_U(stream, 1, 1, "sps_next_extension_flag");
WRITE_U(stream, 0, 4, "sps_extension_4bits");
// Range Extension
WRITE_U(stream, 0, 1, "transform_skip_rotation_enabled_flag");
WRITE_U(stream, 0, 1, "transform_skip_context_enabled_flag");
WRITE_U(stream, 1, 1, "implicit_rdpcm_enabled_flag");
WRITE_U(stream, 0, 1, "explicit_rdpcm_enabled_flag");
WRITE_U(stream, 0, 1, "extended_precision_processing_flag");
WRITE_U(stream, 0, 1, "intra_smoothing_disabled_flag");
WRITE_U(stream, 0, 1, "high_precision_offsets_enabled_flag");
WRITE_U(stream, 0, 1, "persistent_rice_adaptation_enabled_flag");
WRITE_U(stream, 0, 1, "cabac_bypass_alignment_enabled_flag");
// Next extension
WRITE_U(stream, 1, 1, "qtbt_flag");
WRITE_U(stream, 0, 1, "large_ctu_flag");
WRITE_U(stream, 0, 1, "disable_motion_compression_flag");
WRITE_U(stream, 0, 5, "reserved_flag_5bits");
WRITE_U(stream, 0, 1, "mtt_enabled_flag");
WRITE_U(stream, 0, 1, "next_dqp_enabled_flag");
// QTBT
WRITE_U(stream, 0, 1, "qtbt_dual_intra_tree");
WRITE_UE(stream, 5, "log2_CTU_size_minus2");
WRITE_UE(stream, 0, "log2_minQT_ISlice_minus2");
WRITE_UE(stream, 0, "log2_minQT_PBSlice_minus2");
WRITE_UE(stream, 0, "max_bt_depth");
WRITE_UE(stream, 0, "max_bt_depth_i_slice");
//} else {
// WRITE_U(stream, 0, 1, "sps_extension_present_flag");
// }
}
static void encoder_state_write_bitstream_seq_parameter_set(bitstream_t* stream,
encoder_state_t * const state)
{
const encoder_control_t * encoder = state->encoder_control;
#ifdef KVZ_DEBUG
printf("=========== Sequence Parameter Set ID: 0 ===========\n");
#endif
// TODO: profile IDC and level IDC should be defined later on
//WRITE_U(stream, 0, 4, "sps_video_parameter_set_id");
WRITE_U(stream, 1, 3, "sps_max_sub_layers_minus1");
WRITE_U(stream, 0, 1, "sps_temporal_id_nesting_flag");
encoder_state_write_bitstream_PTL(stream, state);
WRITE_UE(stream, 0, "sps_seq_parameter_set_id");
WRITE_UE(stream, encoder->chroma_format, "chroma_format_idc");
if (encoder->chroma_format == KVZ_CSP_444) {
WRITE_U(stream, 0, 1, "separate_colour_plane_flag");
}
WRITE_UE(stream, encoder->in.width, "pic_width_in_luma_samples");
WRITE_UE(stream, encoder->in.height, "pic_height_in_luma_samples");
if (encoder->in.width != encoder->in.real_width || encoder->in.height != encoder->in.real_height) {
// The standard does not seem to allow setting conf_win values such that
// the number of luma samples is not a multiple of 2. Options are to either
// hide one line or show an extra line of non-video. Neither seems like a
// very good option, so let's not even try.
assert(!(encoder->in.width % 2));
WRITE_U(stream, 1, 1, "conformance_window_flag");
WRITE_UE(stream, 0, "conf_win_left_offset");
WRITE_UE(stream, (encoder->in.width - encoder->in.real_width) >> 1,
"conf_win_right_offset");
WRITE_UE(stream, 0, "conf_win_top_offset");
WRITE_UE(stream, (encoder->in.height - encoder->in.real_height) >> 1,
"conf_win_bottom_offset");
} else {
WRITE_U(stream, 0, 1, "conformance_window_flag");
}
//IF window flag
//END IF
WRITE_UE(stream, encoder->bitdepth-8, "bit_depth_luma_minus8");
WRITE_UE(stream, encoder->bitdepth-8, "bit_depth_chroma_minus8");
WRITE_UE(stream, 1, "log2_max_pic_order_cnt_lsb_minus4");
WRITE_U(stream, 0, 1, "sps_sub_layer_ordering_info_present_flag");
//for each layer
if (encoder->cfg.gop_lowdelay) {
WRITE_UE(stream, encoder->cfg.ref_frames, "sps_max_dec_pic_buffering_minus1");
WRITE_UE(stream, 0, "sps_max_num_reorder_pics");
} else {
WRITE_UE(stream, encoder->cfg.ref_frames + encoder->cfg.gop_len, "sps_max_dec_pic_buffering_minus1");
WRITE_UE(stream, encoder->cfg.gop_len, "sps_max_num_reorder_pics");
}
WRITE_UE(stream, 0, "sps_max_latency_increase_plus1");
//end for
WRITE_UE(stream, MIN_SIZE-3, "log2_min_luma_coding_block_size_minus3");
WRITE_UE(stream, MAX_DEPTH, "log2_diff_max_min_luma_coding_block_size");
// ToDo: redefine for VVC
WRITE_UE(stream, 0, "log2_min_luma_transform_block_size_minus2"); // 4x4
WRITE_UE(stream, 3, "log2_diff_max_min_luma_transform_block_size"); // 4x4...32x32
WRITE_UE(stream, 0/*encoder->tr_depth_inter*/, "max_transform_hierarchy_depth_inter");
WRITE_UE(stream, 0/*encoder->cfg.tr_depth_intra*/, "max_transform_hierarchy_depth_intra");
/*
// scaling list
WRITE_U(stream, encoder->scaling_list.enable, 1, "scaling_list_enable_flag");
if (encoder->scaling_list.enable) {
WRITE_U(stream, 1, 1, "sps_scaling_list_data_present_flag");
encoder_state_write_bitstream_scaling_list(stream, state);
}
*/
WRITE_U(stream, (encoder->cfg.amp_enable ? 1 : 0), 1, "amp_enabled_flag");
WRITE_U(stream, encoder->cfg.sao_type ? 1 : 0, 1,
"sample_adaptive_offset_enabled_flag");
WRITE_U(stream, ENABLE_PCM, 1, "pcm_enabled_flag");
#if ENABLE_PCM == 1
WRITE_U(stream, 7, 4, "pcm_sample_bit_depth_luma_minus1");
WRITE_U(stream, 7, 4, "pcm_sample_bit_depth_chroma_minus1");
WRITE_UE(stream, 0, "log2_min_pcm_coding_block_size_minus3");
WRITE_UE(stream, 2, "log2_diff_max_min_pcm_coding_block_size");
WRITE_U(stream, 1, 1, "pcm_loop_filter_disable_flag");
#endif
WRITE_UE(stream, 0, "num_short_term_ref_pic_sets");
//IF num short term ref pic sets
//ENDIF
WRITE_U(stream, 0, 1, "long_term_ref_pics_present_flag");
//IF long_term_ref_pics_present
//ENDIF
WRITE_U(stream, state->encoder_control->cfg.tmvp_enable, 1,
"sps_temporal_mvp_enable_flag");
//WRITE_U(stream, 0, 1, "sps_strong_intra_smoothing_enable_flag");
WRITE_U(stream, 1, 1, "vui_parameters_present_flag");
encoder_state_write_bitstream_VUI(stream, state);
encoder_state_write_bitstream_SPS_extension(stream, state);
kvz_bitstream_add_rbsp_trailing_bits(stream);
}
static void encoder_state_write_bitstream_pic_parameter_set(bitstream_t* stream,
encoder_state_t * const state)
{
const encoder_control_t * const encoder = state->encoder_control;
#ifdef KVZ_DEBUG
printf("=========== Picture Parameter Set ID: 0 ===========\n");
#endif
WRITE_UE(stream, 0, "pic_parameter_set_id");
WRITE_UE(stream, 0, "seq_parameter_set_id");
//WRITE_U(stream, encoder->pps.dependent_slice_segments_enabled_flag, 1, "dependent_slice_segments_enabled_flag");
WRITE_U(stream, 0, 1, "output_flag_present_flag");
WRITE_U(stream, 0, 3, "num_extra_slice_header_bits");
//WRITE_U(stream, encoder->cfg.signhide_enable, 1, "sign_data_hiding_flag");
WRITE_U(stream, 0, 1, "cabac_init_present_flag");
WRITE_UE(stream, 0, "num_ref_idx_l0_default_active_minus1");
WRITE_UE(stream, 0, "num_ref_idx_l1_default_active_minus1");
WRITE_SE(stream, ((int8_t)encoder->cfg.qp) - 26, "pic_init_qp_minus26");
WRITE_U(stream, 0, 1, "constrained_intra_pred_flag");
WRITE_U(stream, encoder->cfg.trskip_enable, 1, "transform_skip_enabled_flag");
if (encoder->max_qp_delta_depth >= 0) {
// Use separate QP for each LCU when rate control is enabled.
WRITE_U(stream, 1, 1, "cu_qp_delta_enabled_flag");
WRITE_UE(stream, encoder->max_qp_delta_depth, "diff_cu_qp_delta_depth");
} else {
WRITE_U(stream, 0, 1, "cu_qp_delta_enabled_flag");
}
//TODO: add QP offsets
WRITE_SE(stream, 0, "pps_cb_qp_offset");
WRITE_SE(stream, 0, "pps_cr_qp_offset");
WRITE_U(stream, 0, 1, "pps_slice_chroma_qp_offsets_present_flag");
WRITE_U(stream, 0, 1, "weighted_pred_flag");
WRITE_U(stream, 0, 1, "weighted_bipred_idc");
//WRITE_U(stream, 0, 1, "dependent_slices_enabled_flag");
WRITE_U(stream, encoder->cfg.lossless, 1, "transquant_bypass_enable_flag");
/*
WRITE_U(stream, encoder->tiles_enable, 1, "tiles_enabled_flag");
//wavefronts
WRITE_U(stream, encoder->cfg.wpp, 1, "entropy_coding_sync_enabled_flag");
if (encoder->tiles_enable) {
WRITE_UE(stream, encoder->cfg.tiles_width_count - 1, "num_tile_columns_minus1");
WRITE_UE(stream, encoder->cfg.tiles_height_count - 1, "num_tile_rows_minus1");
WRITE_U(stream, encoder->tiles_uniform_spacing_flag, 1, "uniform_spacing_flag");
if (!encoder->tiles_uniform_spacing_flag) {
int i;
for (i = 0; i < encoder->cfg.tiles_width_count - 1; ++i) {
WRITE_UE(stream, encoder->tiles_col_width[i] - 1, "column_width_minus1[...]");
}
for (i = 0; i < encoder->cfg.tiles_height_count - 1; ++i) {
WRITE_UE(stream, encoder->tiles_row_height[i] - 1, "row_height_minus1[...]");
}
}
WRITE_U(stream, 0, 1, "loop_filter_across_tiles_enabled_flag");
}
*/
WRITE_U(stream, 0, 1, "loop_filter_across_slice_flag");
WRITE_U(stream, 1, 1, "deblocking_filter_control_present_flag");
//IF deblocking_filter
WRITE_U(stream, 0, 1, "deblocking_filter_override_enabled_flag");
WRITE_U(stream, encoder->cfg.deblock_enable ? 0 : 1, 1,
"pps_disable_deblocking_filter_flag");
//IF !disabled
if (encoder->cfg.deblock_enable) {
WRITE_SE(stream, encoder->cfg.deblock_beta, "beta_offset_div2");
WRITE_SE(stream, encoder->cfg.deblock_tc, "tc_offset_div2");
}
//ENDIF
//ENDIF
//WRITE_U(stream, 0, 1, "pps_scaling_list_data_present_flag");
//IF scaling_list
//ENDIF
WRITE_U(stream, 0, 1, "lists_modification_present_flag");
WRITE_UE(stream, 0, "log2_parallel_merge_level_minus2");
WRITE_U(stream, 0, 1, "slice_segment_header_extension_present_flag");
WRITE_U(stream, 0, 1, "pps_extension_flag");
kvz_bitstream_add_rbsp_trailing_bits(stream);
}
static void encoder_state_write_bitstream_prefix_sei_version(encoder_state_t * const state)
{
#define STR_BUF_LEN 1000
bitstream_t * const stream = &state->stream;
int i, length;
char buf[STR_BUF_LEN] = { 0 };
char *s = buf + 16;
const kvz_config * const cfg = &state->encoder_control->cfg;
// random uuid_iso_iec_11578 generated with www.famkruithof.net/uuid/uuidgen
static const uint8_t uuid[16] = {
0x32, 0xfe, 0x46, 0x6c, 0x98, 0x41, 0x42, 0x69,
0xae, 0x35, 0x6a, 0x91, 0x54, 0x9e, 0xf3, 0xf1
};
memcpy(buf, uuid, 16);
// user_data_payload_byte
s += sprintf(s, "Kvazaar VVC Encoder v. " VERSION_STRING " - "
"Copyleft 2018- - http://ultravideo.cs.tut.fi/ - options:");
s += sprintf(s, " %dx%d", cfg->width, cfg->height);
s += sprintf(s, " deblock=%d:%d:%d", cfg->deblock_enable,
cfg->deblock_beta, cfg->deblock_tc);
s += sprintf(s, " sao=%d", cfg->sao_type);
s += sprintf(s, " intra_period=%d", cfg->intra_period);
s += sprintf(s, " qp=%d", cfg->qp);
s += sprintf(s, " ref=%d", cfg->ref_frames);
length = (int)(s - buf + 1); // length, +1 for \0
// Assert this so that in the future if the message gets longer, we remember
// to increase the buf len. Divide by 2 for margin.
assert(length < STR_BUF_LEN / 2);
// payloadType = 5 -> user_data_unregistered
WRITE_U(stream, 5, 8, "last_payload_type_byte");
// payloadSize
for (i = 0; i <= length - 255; i += 255)
WRITE_U(stream, 255, 8, "ff_byte");
WRITE_U(stream, length - i, 8, "last_payload_size_byte");
for (i = 0; i < length; i++)
WRITE_U(stream, ((uint8_t *)buf)[i], 8, "sei_payload");
// The bitstream is already aligned, but align it anyway.
kvz_bitstream_align(stream);
#undef STR_BUF_LEN
}
/*
static void encoder_state_write_active_parameter_sets_sei_message(encoder_state_t * const state) {
const encoder_control_t * const encoder = state->encoder_control;
bitstream_t * const stream = &state->stream;
int i = 0;
int active_vps_id = 0;
int self_contained_cvs_flag = 0;
int no_parameter_set_update_flag = 0;
int num_sps_ids_minus1 = 0;
int layer_sps_idx = 0;
int active_seq_parameter_set_id = 0;
int vps_base_layer_internal_flag = 0;
int max_layers_minus1 = 0;
WRITE_U(stream, 129, 8, "last_payload_type_byte"); //active_parameter_sets
WRITE_U(stream, 2, 8, "last_payload_size_byte");
WRITE_U(stream, active_vps_id, 4, "active_video_parameter_set_id");
WRITE_U(stream, self_contained_cvs_flag, 1, "self_contained_cvs_flag");
WRITE_U(stream, no_parameter_set_update_flag, 1, "no_parameter_set_update_flag");
WRITE_UE(stream, num_sps_ids_minus1, "num_sps_ids_minus1");
//for (i = 0; i <= num_sps_ids_minus1; ++i) {
WRITE_UE(stream, active_seq_parameter_set_id, "active_seq_parameter_set_id");
//}
// for (i = vps_base_layer_internal_flag; i <= max_layers_minus1; ++i){
WRITE_UE(stream, layer_sps_idx, "layer_sps_idx");
//}
kvz_bitstream_rbsp_trailing_bits(stream); //rbsp_trailing_bits
}
*/
static void encoder_state_write_picture_timing_sei_message(encoder_state_t * const state) {
bitstream_t * const stream = &state->stream;
if (state->encoder_control->vui.frame_field_info_present_flag){
int8_t odd_picture = state->frame->num % 2;
int8_t pic_struct = 0; //0: progressive picture, 1: top field, 2: bottom field, 3...
int8_t source_scan_type = 1; //0: interlaced, 1: progressive
switch (state->tile->frame->source->interlacing){
case 0: //Progressive frame
pic_struct = 0;
source_scan_type = 1;
break;
case 1: //Top field first
pic_struct = odd_picture ? 2 : 1;
source_scan_type = 0;
break;
case 2: //Bottom field first
pic_struct = odd_picture ? 1 : 2;
source_scan_type = 0;
break;
default:
assert(0); //Should never execute
break;
}
WRITE_U(stream, 1, 8, "last_payload_type_byte"); //pic_timing
WRITE_U(stream, 1, 8, "last_payload_size_byte");
WRITE_U(stream, pic_struct, 4, "pic_struct");
WRITE_U(stream, source_scan_type, 2, "source_scan_type");
WRITE_U(stream, 0, 1, "duplicate_flag");
kvz_bitstream_align(stream);
}
}
static void encoder_state_entry_points_explore(const encoder_state_t * const state, int * const r_count, int * const r_max_length) {
int i;
for (i = 0; state->children[i].encoder_control; ++i) {
if (state->children[i].is_leaf) {
const int my_length = kvz_bitstream_tell(&state->children[i].stream)/8;
++(*r_count);
if (my_length > *r_max_length) {
*r_max_length = my_length;
}
} else {
encoder_state_entry_points_explore(&state->children[i], r_count, r_max_length);
}
}
}
static void encoder_state_write_bitstream_entry_points_write(bitstream_t * const stream, const encoder_state_t * const state, const int num_entry_points, const int write_length, int * const r_count) {
int i;
for (i = 0; state->children[i].encoder_control; ++i) {
if (state->children[i].is_leaf) {
const int my_length = kvz_bitstream_tell(&state->children[i].stream)/8;
++(*r_count);
//Don't write the last one
if (*r_count < num_entry_points) {
WRITE_U(stream, my_length - 1, write_length, "entry_point_offset-minus1")
}
} else {
encoder_state_write_bitstream_entry_points_write(stream, &state->children[i], num_entry_points, write_length, r_count);
}
}
}
static void kvz_encoder_state_write_bitstream_slice_header_independent(
struct bitstream_t * const stream,
struct encoder_state_t * const state)
{
const encoder_control_t * const encoder = state->encoder_control;
int j;
int ref_negative = 0;
int ref_positive = 0;
if (encoder->cfg.gop_len) {
for (j = 0; j < state->frame->ref->used_size; j++) {
if (state->frame->ref->pocs[j] < state->frame->poc) {
ref_negative++;
} else {
ref_positive++;
}
}
} else ref_negative = state->frame->ref->used_size;
WRITE_UE(stream, state->frame->slicetype, "slice_type");
if (state->frame->pictype != KVZ_NAL_IDR_W_RADL
&& state->frame->pictype != KVZ_NAL_IDR_N_LP)
{
int last_poc = 0;
int poc_shift = 0;
WRITE_U(stream, state->frame->poc&0x1f, 5, "pic_order_cnt_lsb");
WRITE_U(stream, 0, 1, "short_term_ref_pic_set_sps_flag");
WRITE_UE(stream, ref_negative, "num_negative_pics");
WRITE_UE(stream, ref_positive, "num_positive_pics");
for (j = 0; j < ref_negative; j++) {
int8_t delta_poc = 0;
if (encoder->cfg.gop_len) {
int8_t found = 0;
do {
delta_poc = encoder->cfg.gop[state->frame->gop_offset].ref_neg[j + poc_shift];
for (int i = 0; i < state->frame->ref->used_size; i++) {
if (state->frame->ref->pocs[i] == state->frame->poc - delta_poc) {
found = 1;
break;
}
}
if (!found) poc_shift++;
if (j + poc_shift == ref_negative) {
fprintf(stderr, "Failure, reference not found!");
exit(EXIT_FAILURE);
}
} while (!found);
}
WRITE_UE(stream, encoder->cfg.gop_len?delta_poc - last_poc - 1:0, "delta_poc_s0_minus1");
last_poc = delta_poc;
WRITE_U(stream, !state->frame->is_irap, 1, "used_by_curr_pic_s0_flag");
}
last_poc = 0;
poc_shift = 0;
for (j = 0; j < ref_positive; j++) {
int8_t delta_poc = 0;
if (encoder->cfg.gop_len) {
int8_t found = 0;
do {
delta_poc = encoder->cfg.gop[state->frame->gop_offset].ref_pos[j + poc_shift];
for (int i = 0; i < state->frame->ref->used_size; i++) {
if (state->frame->ref->pocs[i] == state->frame->poc + delta_poc) {
found = 1;
break;
}
}
if (!found) poc_shift++;
if (j + poc_shift == ref_positive) {
fprintf(stderr, "Failure, reference not found!");
exit(EXIT_FAILURE);
}
} while (!found);
}
WRITE_UE(stream, encoder->cfg.gop_len ? delta_poc - last_poc - 1 : 0, "delta_poc_s1_minus1");
last_poc = delta_poc;
WRITE_U(stream, !state->frame->is_irap, 1, "used_by_curr_pic_s1_flag");
}
//WRITE_UE(stream, 0, "short_term_ref_pic_set_idx");
if (state->encoder_control->cfg.tmvp_enable) {
WRITE_U(stream, ref_negative ? 1 : 0, 1, "slice_temporal_mvp_enabled_flag");
}
}
//end if
//end if
if (encoder->cfg.sao_type) {
WRITE_U(stream, 1, 1, "slice_sao_luma_flag");
if (encoder->chroma_format != KVZ_CSP_400) {
WRITE_U(stream, 1, 1, "slice_sao_chroma_flag");
}
}
if (state->frame->slicetype != KVZ_SLICE_I) {
WRITE_U(stream, 1, 1, "num_ref_idx_active_override_flag");
WRITE_UE(stream, MAX(0, ((int)state->frame->ref_LX_size[0]) - 1), "num_ref_idx_l0_active_minus1");
if (state->frame->slicetype == KVZ_SLICE_B) {
WRITE_UE(stream, MAX(0, ((int)state->frame->ref_LX_size[1]) - 1), "num_ref_idx_l1_active_minus1");
WRITE_U(stream, 0, 1, "mvd_l1_zero_flag");
}
// Temporal Motion Vector Prediction flags
if (state->encoder_control->cfg.tmvp_enable && ref_negative > 0) {
if (state->frame->slicetype == KVZ_SLICE_B) {
// Always use L0 for prediction
WRITE_U(stream, 1, 1, "collocated_from_l0_flag");
}
if (ref_negative > 1) {
// Use first reference from L0
// ToDo: use better reference
WRITE_UE(stream, 0, "collocated_ref_idx");
}
}
// ToDo: VVC check num of merge cands, might be 7
WRITE_UE(stream, 5-MRG_MAX_NUM_CANDS, "five_minus_max_num_merge_cand");
}
{
int slice_qp_delta = state->frame->QP - encoder->cfg.qp;
WRITE_SE(stream, slice_qp_delta, "slice_qp_delta");
}
}
void kvz_encoder_state_write_bitstream_slice_header(
struct bitstream_t * const stream,
struct encoder_state_t * const state,
bool independent)
{
const encoder_control_t * const encoder = state->encoder_control;
#ifdef KVZ_DEBUG
printf("=========== Slice ===========\n");
#endif
bool first_slice_segment_in_pic = (state->slice->start_in_rs == 0);
if ((state->encoder_control->cfg.slices & KVZ_SLICES_WPP)
&& state->wfrow->lcu_offset_y > 0)
{
first_slice_segment_in_pic = false;
}
WRITE_U(stream, first_slice_segment_in_pic, 1, "first_slice_segment_in_pic_flag");
if (state->frame->pictype >= KVZ_NAL_BLA_W_LP
&& state->frame->pictype <= KVZ_NAL_RSV_IRAP_VCL23) {
WRITE_U(stream, 0, 1, "no_output_of_prior_pics_flag");
}
WRITE_UE(stream, 0, "slice_pic_parameter_set_id");
if (!first_slice_segment_in_pic) {
/*
if (encoder->pps.dependent_slice_segments_enabled_flag) {
WRITE_U(stream, !independent, 1, "dependent_slice_segment_flag");
}
*/
int lcu_cnt = encoder->in.width_in_lcu * encoder->in.height_in_lcu;
int num_bits = kvz_math_ceil_log2(lcu_cnt);
int slice_start_rs = state->slice->start_in_rs;
if (state->encoder_control->cfg.slices & KVZ_SLICES_WPP) {
slice_start_rs += state->wfrow->lcu_offset_y * state->tile->frame->width_in_lcu;
}
WRITE_U(stream, slice_start_rs, num_bits, "slice_segment_address");
}
//if (independent) {
kvz_encoder_state_write_bitstream_slice_header_independent(stream, state);
//}
/*
if (encoder->tiles_enable || encoder->cfg.wpp) {
int num_entry_points = 0;
int max_length_seen = 0;
if (state->is_leaf) {
num_entry_points = 1;
} else {
encoder_state_entry_points_explore(state, &num_entry_points, &max_length_seen);
}
int num_offsets = num_entry_points - 1;
WRITE_UE(stream, num_offsets, "num_entry_point_offsets");
if (num_offsets > 0) {
int entry_points_written = 0;
int offset_len = kvz_math_floor_log2(max_length_seen) + 1;
WRITE_UE(stream, offset_len - 1, "offset_len_minus1");
encoder_state_write_bitstream_entry_points_write(stream, state, num_entry_points, offset_len, &entry_points_written);
}
}
*/
}
/**
* \brief Add a checksum SEI message to the bitstream.
* \param encoder The encoder.
* \returns Void
*/
static void add_checksum(encoder_state_t * const state)
{
bitstream_t * const stream = &state->stream;
const videoframe_t * const frame = state->tile->frame;
unsigned char checksum[3][SEI_HASH_MAX_LENGTH];
kvz_nal_write(stream, KVZ_NAL_SUFFIX_SEI_NUT, 0, 0);
WRITE_U(stream, 132, 8, "sei_type");
int num_colors = (state->encoder_control->chroma_format == KVZ_CSP_400 ? 1 : 3);
switch (state->encoder_control->cfg.hash)
{
case KVZ_HASH_CHECKSUM:
kvz_image_checksum(frame->rec, checksum, state->encoder_control->bitdepth);
WRITE_U(stream, 1 + num_colors * 4, 8, "size");
WRITE_U(stream, 2, 8, "hash_type"); // 2 = checksum
for (int i = 0; i < num_colors; ++i) {
uint32_t checksum_val = (
(checksum[i][0] << 24) + (checksum[i][1] << 16) +
(checksum[i][2] << 8) + (checksum[i][3]));
WRITE_U(stream, checksum_val, 32, "picture_checksum");
CHECKPOINT("checksum[%d] = %u", i, checksum_val);
}
break;
case KVZ_HASH_MD5:
kvz_image_md5(frame->rec, checksum, state->encoder_control->bitdepth);
WRITE_U(stream, 1 + num_colors * 16, 8, "size");
WRITE_U(stream, 0, 8, "hash_type"); // 0 = md5
for (int i = 0; i < num_colors; ++i) {
for (int b = 0; b < 16; ++b) {
WRITE_U(stream, checksum[i][b], 8, "picture_md5");
}
}
break;
case KVZ_HASH_NONE:
// Means we shouldn't be writing this SEI.
assert(0);
}
kvz_bitstream_align(stream);
// spec:sei_rbsp() rbsp_trailing_bits
kvz_bitstream_add_rbsp_trailing_bits(stream);
}
static void encoder_state_write_slice_header(
bitstream_t * stream,
encoder_state_t * state,
bool independent)
{
kvz_nal_write(stream, state->frame->pictype, 0, state->frame->first_nal);
state->frame->first_nal = false;
kvz_encoder_state_write_bitstream_slice_header(stream, state, independent);
kvz_bitstream_add_rbsp_trailing_bits(stream);
}
/**
* \brief Move child state bitstreams to the parent stream.
*/
static void encoder_state_write_bitstream_children(encoder_state_t * const state)
{
// Write Slice headers to the parent stream instead of the child stream
// in case the child stream is a leaf with something in it already.
for (int i = 0; state->children[i].encoder_control; ++i) {
if (state->children[i].type == ENCODER_STATE_TYPE_SLICE) {
encoder_state_write_slice_header(&state->stream, &state->children[i], true);
} else if (state->children[i].type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
if ((state->encoder_control->cfg.slices & KVZ_SLICES_WPP) && i != 0) {
// Add header for dependent WPP row slice.
encoder_state_write_slice_header(&state->stream, &state->children[i], false);
}
}
kvz_encoder_state_write_bitstream(&state->children[i]);
kvz_bitstream_move(&state->stream, &state->children[i].stream);
}
}
static void encoder_state_write_bitstream_main(encoder_state_t * const state)
{
const encoder_control_t * const encoder = state->encoder_control;
bitstream_t * const stream = &state->stream;
uint64_t curpos = kvz_bitstream_tell(stream);
// The first NAL unit of the access unit must use a long start code.
state->frame->first_nal = true;
// Access Unit Delimiter (AUD)
if (encoder->cfg.aud_enable) {
state->frame->first_nal = false;
encoder_state_write_bitstream_aud(state);
}
if (encoder_state_must_write_vps(state)) {
state->frame->first_nal = false;
kvz_encoder_state_write_parameter_sets(&state->stream, state);
}
// Send Kvazaar version information only in the first frame.
if (state->frame->num == 0 && encoder->cfg.add_encoder_info) {
kvz_nal_write(stream, KVZ_NAL_PREFIX_SEI_NUT, 0, state->frame->first_nal);
state->frame->first_nal = false;
encoder_state_write_bitstream_prefix_sei_version(state);
// spec:sei_rbsp() rbsp_trailing_bits
kvz_bitstream_add_rbsp_trailing_bits(stream);
}
//SEI messages for interlacing
if (encoder->vui.frame_field_info_present_flag) {
// These should be optional, needed for earlier versions
// of HM decoder to accept bitstream
//kvz_nal_write(stream, KVZ_NAL_PREFIX_SEI_NUT, 0, 0);
//encoder_state_write_active_parameter_sets_sei_message(state);
//kvz_bitstream_rbsp_trailing_bits(stream);
kvz_nal_write(stream, KVZ_NAL_PREFIX_SEI_NUT, 0, state->frame->first_nal);
state->frame->first_nal = false;
encoder_state_write_picture_timing_sei_message(state);
// spec:sei_rbsp() rbsp_trailing_bits
kvz_bitstream_add_rbsp_trailing_bits(stream);
}
encoder_state_write_bitstream_children(state);
if (state->encoder_control->cfg.hash != KVZ_HASH_NONE) {
// Calculate checksum
add_checksum(state);
}
//Get bitstream length for stats
uint64_t newpos = kvz_bitstream_tell(stream);
state->stats_bitstream_length = (newpos >> 3) - (curpos >> 3);
if (state->frame->num > 0) {
state->frame->total_bits_coded = state->previous_encoder_state->frame->total_bits_coded;
}
state->frame->total_bits_coded += newpos - curpos;
state->frame->cur_gop_bits_coded = state->previous_encoder_state->frame->cur_gop_bits_coded;
state->frame->cur_gop_bits_coded += newpos - curpos;
}
void kvz_encoder_state_write_bitstream(encoder_state_t * const state)
{
if (!state->is_leaf) {
switch (state->type) {
case ENCODER_STATE_TYPE_MAIN:
encoder_state_write_bitstream_main(state);
break;
case ENCODER_STATE_TYPE_TILE:
case ENCODER_STATE_TYPE_SLICE:
encoder_state_write_bitstream_children(state);
break;
default:
fprintf(stderr, "Unsupported node type %c!\n", state->type);
assert(0);
}
}
}
void kvz_encoder_state_worker_write_bitstream(void * opaque)
{
kvz_encoder_state_write_bitstream((encoder_state_t *) opaque);
}
void kvz_encoder_state_write_parameter_sets(bitstream_t *stream,
encoder_state_t * const state)
{
// Video Parameter Set (VPS)
/*
kvz_nal_write(stream, KVZ_NAL_VPS_NUT, 0, 1);
encoder_state_write_bitstream_vid_parameter_set(stream, state);
*/
// Sequence Parameter Set (SPS)
kvz_nal_write(stream, KVZ_NAL_SPS_NUT, 0, 1);
encoder_state_write_bitstream_seq_parameter_set(stream, state);
// Picture Parameter Set (PPS)
kvz_nal_write(stream, KVZ_NAL_PPS_NUT, 0, 1);
encoder_state_write_bitstream_pic_parameter_set(stream, state);
}