/** * HEVC Encoder * - Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Pervasive Computing. */ /*! \file inter.c \brief Inter functions \author Marko Viitanen \date 2013-04 Inter functions */ #include #include #include #include "global.h" #include "config.h" #include "encoder.h" #include "picture.h" #include "inter.h" /*! \brief Set block mode (and init typedata) \param pic picture to use \param xCtb x CU position (smallest CU) \param yCtb y CU position (smallest CU) \param depth current CU depth \param mode mode to set \returns Void */ void inter_setBlockMode(picture* pic,uint32_t xCtb, uint32_t yCtb, uint8_t depth, CU_info* cur_cu) { uint32_t x,y,d; /* Width in smallest CU */ int width_in_SCU = pic->width_in_LCU<>depth)/(LCU_WIDTH>>MAX_DEPTH); for(y = yCtb; y < yCtb+block_SCU_width; y++) { int CUpos = y*width_in_SCU; for(x = xCtb; x < xCtb+block_SCU_width; x++) { for(d = 0; d < MAX_DEPTH+1; d++) { pic->CU[d][CUpos+x].depth = depth; pic->CU[d][CUpos+x].type = CU_INTER; pic->CU[d][CUpos+x].inter.mode = cur_cu->inter.mode; pic->CU[d][CUpos+x].inter.mv[0] = cur_cu->inter.mv[0]; pic->CU[d][CUpos+x].inter.mv[1] = cur_cu->inter.mv[1]; pic->CU[d][CUpos+x].inter.mv_dir = cur_cu->inter.mv_dir; } } } } /*! \brief Reconstruct inter block \param ref picture to copy the data from \param xpos block x position \param ypos block y position \param width block width \param mv[2] motion vector \param dst destination picture \returns Void */ void inter_recon(picture* ref,int32_t xpos, int32_t ypos,int32_t width, int16_t mv[2], picture* dst) { int x,y,coord_x,coord_y; /* negative overflow present */ int8_t overflow_neg_x = (xpos+mv[0] < 0)?1:0; int8_t overflow_neg_y = (ypos+mv[1] < 0)?1:0; /* positive overflow present */ int8_t overflow_pos_x = (xpos+mv[0]+width > ref->width )?1:0; int8_t overflow_pos_y = (ypos+mv[1]+width > ref->height)?1:0; /* TODO: Fractional pixel support */ mv[0] = mv[0]>>2; mv[1] = mv[1]>>2; /* With overflow present, more checking */ if(overflow_neg_x || overflow_neg_y || overflow_pos_x || overflow_pos_y) { /* Copy Luma with boundary checking */ for(y = ypos; y < ypos+width; y++) { for(x = xpos; x < xpos+width; x++) { coord_x = x; coord_y = y; overflow_neg_x = (x < 0)?1:0; overflow_neg_y = (y < 0)?1:0; overflow_pos_x = (x >= ref->width )?1:0; overflow_pos_y = (y >= ref->height)?1:0; if(overflow_neg_x) { coord_x = 0; } else if(overflow_pos_x) { coord_x = ref->width-1; } if(overflow_neg_y) { coord_y = 0; } else if(overflow_pos_y) { coord_y = ref->height-1; } dst->yRecData[y*dst->width+x] = ref->yRecData[(coord_y+mv[1])*ref->width+(coord_x+mv[0])]; } } /* Copy Chroma with boundary checking */ for(y = ypos>>1; y < (ypos+width)>>1; y++) { for(x = xpos>>1; x < (xpos+width)>>1; x++) { coord_x = x; coord_y = y; overflow_neg_x = (x < 0)?1:0; overflow_neg_y = (y < 0)?1:0; overflow_pos_x = (x >= ref->width>>1 )?1:0; overflow_pos_y = (y >= ref->height>>1)?1:0; if(overflow_neg_x) { coord_x = 0; } else if(overflow_pos_x) { coord_x = (ref->width>>1)-1; } if(overflow_neg_y) { coord_y = 0; } else if(overflow_pos_y) { coord_y = (ref->height>>1)-1; } dst->uRecData[y*(dst->width>>1)+x] = ref->uRecData[(coord_y+(mv[1]>>1))*ref->width+(coord_x+(mv[0]>>1))]; dst->vRecData[y*(dst->width>>1)+x] = ref->vRecData[(coord_y+(mv[1]>>1))*ref->width+(coord_x+(mv[0]>>1))]; } } } else { /* Copy Luma */ for(y = ypos; y < ypos+width; y++) { for(x = xpos; x < xpos+width; x++) { dst->yRecData[y*dst->width+x] = ref->yRecData[(y+mv[1])*ref->width+x+mv[0]]; } } /* Copy Chroma */ for(y = ypos>>1; y < (ypos+width)>>1; y++) { for(x = xpos>>1; x < (xpos+width)>>1; x++) { dst->uRecData[y*(dst->width>>1)+x] = ref->uRecData[(y+(mv[1]>>1))*(ref->width>>1)+x+(mv[0]>>1)]; dst->vRecData[y*(dst->width>>1)+x] = ref->vRecData[(y+(mv[1]>>1))*(ref->width>>1)+x+(mv[0]>>1)]; } } } } /*! \brief Get MV prediction for current block \param encoder encoder control struct to use \param xCtb block x position in SCU \param yCtb block y position in SCU \param depth current block depth \param mv_pred[2][2] 2x motion vector prediction \returns Void */ void inter_get_mv_cand(encoder_control *encoder,int32_t xCtb, int32_t yCtb,int8_t depth, int16_t mv_cand[2][2]) { uint8_t cur_block_in_scu = (LCU_WIDTH>>depth) / CU_MIN_SIZE_PIXELS; CU_info *cur_cu = &encoder->in.cur_pic->CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<in.cur_pic->CU[depth][xCtb-1+(yCtb+cur_block_in_scu-1)*(encoder->in.width_in_LCU<coded) a1 = NULL; if (yCtb+cur_block_in_scu < encoder->in.height_in_LCU<in.cur_pic->CU[depth][xCtb-1+(yCtb+cur_block_in_scu)*(encoder->in.width_in_LCU<coded) a0 = NULL; } } if (yCtb != 0) { b0 = &encoder->in.cur_pic->CU[depth][xCtb+cur_block_in_scu+(yCtb-1)*(encoder->in.width_in_LCU<coded) b0 = NULL; b1 = &encoder->in.cur_pic->CU[depth][xCtb+cur_block_in_scu-1+(yCtb-1)*(encoder->in.width_in_LCU<coded) b1 = NULL; if (xCtb != 0) { b2 = &encoder->in.cur_pic->CU[depth][xCtb-1+(yCtb-1)*(encoder->in.width_in_LCU<coded) b2 = NULL; } } /* Left predictors */ if (a0 && a0->type == CU_INTER) { mv_cand[candidates][0] = a0->inter.mv[0]; mv_cand[candidates][1] = a0->inter.mv[1]; candidates++; } else if (a1 && a1->type == CU_INTER) { mv_cand[candidates][0] = a1->inter.mv[0]; mv_cand[candidates][1] = a1->inter.mv[1]; candidates++; } /* Top predictors */ if (b0 && b0->type == CU_INTER) { mv_cand[candidates][0] = b0->inter.mv[0]; mv_cand[candidates][1] = b0->inter.mv[1]; candidates++; } else if (b1 && b1->type == CU_INTER) { mv_cand[candidates][0] = b1->inter.mv[0]; mv_cand[candidates][1] = b1->inter.mv[1]; candidates++; } else if(b2 && b2->type == CU_INTER) { mv_cand[candidates][0] = b2->inter.mv[0]; mv_cand[candidates][1] = b2->inter.mv[1]; candidates++; } if(candidates < 2) { //TODO: add temporal mv predictor } for (;candidates < 2; candidates++) { mv_cand[candidates][0] = 0; mv_cand[candidates][1] = 0; candidates++; } }