/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
#include "sao.h"
#include
#include
#include
#include "cabac.h"
#include "image.h"
#include "rdo.h"
#include "strategies/strategies-sao.h"
static void init_sao_info(sao_info_t *sao) {
sao->type = SAO_TYPE_NONE;
sao->merge_left_flag = 0;
sao->merge_up_flag = 0;
}
static float sao_mode_bits_none(const encoder_state_t * const state, sao_info_t *sao_top, sao_info_t *sao_left)
{
float mode_bits = 0.0;
const cabac_data_t * const cabac = &state->cabac;
const cabac_ctx_t *ctx = NULL;
// FL coded merges.
if (sao_left != NULL) {
ctx = &(cabac->ctx.sao_merge_flag_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, 0);
}
if (sao_top != NULL) {
ctx = &(cabac->ctx.sao_merge_flag_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, 0);
}
// TR coded type_idx_, none = 0
ctx = &(cabac->ctx.sao_type_idx_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, 0);
return mode_bits;
}
static float sao_mode_bits_merge(const encoder_state_t * const state,
int8_t merge_cand) {
float mode_bits = 0.0;
const cabac_data_t * const cabac = &state->cabac;
const cabac_ctx_t *ctx = NULL;
// FL coded merges.
ctx = &(cabac->ctx.sao_merge_flag_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, merge_cand == 1);
if (merge_cand == 1) return mode_bits;
mode_bits += CTX_ENTROPY_FBITS(ctx, merge_cand == 2);
return mode_bits;
}
static float sao_mode_bits_edge(const encoder_state_t * const state,
int edge_class, int offsets[NUM_SAO_EDGE_CATEGORIES],
sao_info_t *sao_top, sao_info_t *sao_left, unsigned buf_cnt)
{
float mode_bits = 0.0;
const cabac_data_t * const cabac = &state->cabac;
const cabac_ctx_t *ctx = NULL;
// FL coded merges.
if (sao_left != NULL) {
ctx = &(cabac->ctx.sao_merge_flag_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, 0);
}
if (sao_top != NULL) {
ctx = &(cabac->ctx.sao_merge_flag_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, 0);
}
// TR coded type_idx_, edge = 2 = cMax
ctx = &(cabac->ctx.sao_type_idx_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, 1) + 1.0;
// TR coded offsets.
for (unsigned buf_index = 0; buf_index < buf_cnt; buf_index++) {
sao_eo_cat edge_cat;
for (edge_cat = SAO_EO_CAT1; edge_cat <= SAO_EO_CAT4; ++edge_cat) {
int abs_offset = abs(offsets[edge_cat+5*buf_index]);
if (abs_offset == 0 || abs_offset == SAO_ABS_OFFSET_MAX) {
mode_bits += abs_offset + 1;
} else {
mode_bits += abs_offset + 2;
}
}
}
mode_bits += 2.0;
return mode_bits;
}
static float sao_mode_bits_band(const encoder_state_t * const state,
int band_position[2], int offsets[10],
sao_info_t *sao_top, sao_info_t *sao_left, unsigned buf_cnt)
{
float mode_bits = 0.0;
const cabac_data_t * const cabac = &state->cabac;
const cabac_ctx_t *ctx = NULL;
// FL coded merges.
if (sao_left != NULL) {
ctx = &(cabac->ctx.sao_merge_flag_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, 0);
}
if (sao_top != NULL) {
ctx = &(cabac->ctx.sao_merge_flag_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, 0);
}
// TR coded sao_type_idx_, band = 1
ctx = &(cabac->ctx.sao_type_idx_model);
mode_bits += CTX_ENTROPY_FBITS(ctx, 1) + 1.0;
// TR coded offsets and possible FL coded offset signs.
for (unsigned buf_index = 0; buf_index < buf_cnt; buf_index++)
{
int i;
for (i = 0; i < 4; ++i) {
int abs_offset = abs(offsets[i + 1 + buf_index*5]);
if (abs_offset == 0) {
mode_bits += abs_offset + 1;
} else if(abs_offset == SAO_ABS_OFFSET_MAX) {
mode_bits += abs_offset + 1 + 1;
} else {
mode_bits += abs_offset + 2 + 1;
}
}
}
// FL coded band position.
mode_bits += 5.0 * buf_cnt;
return mode_bits;
}
/**
* \brief calculate an array of intensity correlations for each intensity value
*/
void kvz_calc_sao_offset_array(const encoder_control_t * const encoder, const sao_info_t *sao, int *offset, color_t color_i)
{
int val;
int values = (1<bitdepth);
int shift = encoder->bitdepth-5;
int band_pos = (color_i == COLOR_V) ? 1 : 0;
// Loop through all intensity values and construct an offset array
for (val = 0; val < values; val++) {
int cur_band = val>>shift;
if (cur_band >= sao->band_position[band_pos] && cur_band < sao->band_position[band_pos] + 4) {
offset[val] = CLIP(0, values - 1, val + sao->offsets[cur_band - sao->band_position[band_pos] + 1 + 5 * band_pos]);
} else {
offset[val] = val;
}
}
}
/**
* \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma.
* \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma.
* \param sao_bands an array of bands for original and reconstructed block
*/
static int calc_sao_band_offsets(int sao_bands[2][32], int offsets[4],
int *band_position)
{
int band;
int offset;
int best_dist;
int temp_dist;
int dist[32];
int temp_offsets[32];
int temp_rate[32];
int best_dist_pos = 0;
FILL(dist, 0);
FILL(temp_rate, 0);
// Calculate distortion for each band using N*h^2 - 2*h*E
for (band = 0; band < 32; band++) {
best_dist = INT_MAX;
offset = 0;
if (sao_bands[1][band] != 0) {
offset = (sao_bands[0][band] + (sao_bands[1][band] >> 1)) / sao_bands[1][band];
offset = CLIP(-SAO_ABS_OFFSET_MAX, SAO_ABS_OFFSET_MAX, offset);
}
dist[band] = offset==0?0:INT_MAX;
temp_offsets[band] = 0;
while(offset != 0) {
temp_dist = sao_bands[1][band]*offset*offset - 2*offset*sao_bands[0][band];
// Store best distortion and offset
if(temp_dist < best_dist) {
dist[band] = temp_dist;
temp_offsets[band] = offset;
}
offset += (offset > 0) ? -1:1;
}
}
best_dist = INT_MAX;
//Find starting pos for best 4 band distortions
for (band = 0; band < 28; band++) {
temp_dist = dist[band] + dist[band+1] + dist[band+2] + dist[band+3];
if(temp_dist < best_dist) {
best_dist = temp_dist;
best_dist_pos = band;
}
}
// Copy best offsets to output
memcpy(offsets, &temp_offsets[best_dist_pos], 4*sizeof(int));
*band_position = best_dist_pos;
return best_dist;
}
/**
* \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma.
* \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma.
* \param sao_bands an array of bands for original and reconstructed block
*/
static void calc_sao_bands(const encoder_state_t * const state, const kvz_pixel *orig_data, const kvz_pixel *rec_data,
int block_width, int block_height,
int sao_bands[2][32])
{
int y, x;
int shift = state->encoder_control->bitdepth-5;
//Loop pixels and take top 5 bits to classify different bands
for (y = 0; y < block_height; ++y) {
for (x = 0; x < block_width; ++x) {
sao_bands[0][rec_data[y * block_width + x]>>shift] += orig_data[y * block_width + x] - rec_data[y * block_width + x];
sao_bands[1][rec_data[y * block_width + x]>>shift]++;
}
}
}
/**
* \brief Reconstruct SAO.
*
* \param encoder encoder state
* \param buffer Buffer containing the deblocked input pixels. The
* area to filter starts at index 0.
* \param stride stride of buffer
* \param frame_x x-coordinate of the top-left corner in pixels
* \param frame_y y-coordinate of the top-left corner in pixels
* \param width width of the area to filter
* \param height height of the area to filter
* \param sao SAO information
* \param color color plane index
*/
void kvz_sao_reconstruct(const encoder_state_t *state,
const kvz_pixel *buffer,
int stride,
int frame_x,
int frame_y,
int width,
int height,
const sao_info_t *sao,
color_t color)
{
const encoder_control_t *const ctrl = state->encoder_control;
videoframe_t *const frame = state->tile->frame;
const int shift = color == COLOR_Y ? 0 : 1;
const int frame_width = frame->width >> shift;
const int frame_height = frame->height >> shift;
const int frame_stride = frame->rec->stride >> shift;
kvz_pixel *output = &frame->rec->data[color][frame_x + frame_y * frame_stride];
if (sao->type == SAO_TYPE_EDGE) {
const vector2d_t *offset = g_sao_edge_offsets[sao->eo_class];
if (frame_x + width + offset[0].x > frame_width ||
frame_x + width + offset[1].x > frame_width)
{
// Nothing to do for the rightmost column.
width -= 1;
}
if (frame_x + offset[0].x < 0 || frame_x + offset[1].x < 0) {
// Nothing to do for the leftmost column.
buffer += 1;
output += 1;
width -= 1;
}
if (frame_y + height + offset[0].y > frame_height ||
frame_y + height + offset[1].y > frame_height)
{
// Nothing to do for the bottommost row.
height -= 1;
}
if (frame_y + offset[0].y < 0 || frame_y + offset[1].y < 0) {
// Nothing to do for the topmost row.
buffer += stride;
output += frame_stride;
height -= 1;
}
}
if (sao->type != SAO_TYPE_NONE) {
kvz_sao_reconstruct_color(ctrl,
buffer,
output,
sao,
stride,
frame_stride,
width,
height,
color);
}
}
static void sao_search_edge_sao(const encoder_state_t * const state,
const kvz_pixel * data[], const kvz_pixel * recdata[],
int block_width, int block_height,
unsigned buf_cnt,
sao_info_t *sao_out, sao_info_t *sao_top,
sao_info_t *sao_left)
{
sao_eo_class edge_class;
// This array is used to calculate the mean offset used to minimize distortion.
int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES];
unsigned i = 0;
sao_out->type = SAO_TYPE_EDGE;
sao_out->ddistortion = INT_MAX;
for (edge_class = SAO_EO0; edge_class <= SAO_EO3; ++edge_class) {
int edge_offset[NUM_SAO_EDGE_CATEGORIES*2];
int sum_ddistortion = 0;
sao_eo_cat edge_cat;
// Call calc_sao_edge_dir once for luma and twice for chroma.
for (i = 0; i < buf_cnt; ++i) {
FILL(cat_sum_cnt, 0);
kvz_calc_sao_edge_dir(data[i], recdata[i], edge_class,
block_width, block_height, cat_sum_cnt);
for (edge_cat = SAO_EO_CAT1; edge_cat <= SAO_EO_CAT4; ++edge_cat) {
int cat_sum = cat_sum_cnt[0][edge_cat];
int cat_cnt = cat_sum_cnt[1][edge_cat];
// The optimum offset can be calculated by getting the minima of the
// fast ddistortion estimation formula. The minima is the mean error
// and we round that to the nearest integer.
int offset = 0;
if (cat_cnt != 0) {
offset = (cat_sum + (cat_cnt >> 1)) / cat_cnt;
offset = CLIP(-SAO_ABS_OFFSET_MAX, SAO_ABS_OFFSET_MAX, offset);
}
// Sharpening edge offsets can't be encoded, so set them to 0 here.
if (edge_cat >= SAO_EO_CAT1 && edge_cat <= SAO_EO_CAT2 && offset < 0) {
offset = 0;
}
if (edge_cat >= SAO_EO_CAT3 && edge_cat <= SAO_EO_CAT4 && offset > 0) {
offset = 0;
}
edge_offset[edge_cat+5*i] = offset;
// The ddistortion is amount by which the SSE of data changes. It should
// be negative for all categories, if offset was chosen correctly.
// ddistortion = N * h^2 - 2 * h * E, where N is the number of samples
// and E is the sum of errors.
// It basically says that all pixels that are not improved by offset
// increase increase SSE by h^2 and all pixels that are improved by
// offset decrease SSE by h*E.
sum_ddistortion += cat_cnt * offset * offset - 2 * offset * cat_sum;
}
}
{
float mode_bits = sao_mode_bits_edge(state, edge_class, edge_offset, sao_top, sao_left, buf_cnt);
sum_ddistortion += (int)((double)mode_bits*state->lambda +0.5);
}
// SAO is not applied for category 0.
edge_offset[SAO_EO_CAT0] = 0;
edge_offset[SAO_EO_CAT0 + 5] = 0;
// Choose the offset class that offers the least error after offset.
if (sum_ddistortion < sao_out->ddistortion) {
sao_out->eo_class = edge_class;
sao_out->ddistortion = sum_ddistortion;
memcpy(sao_out->offsets, edge_offset, sizeof(int) * NUM_SAO_EDGE_CATEGORIES * 2);
}
}
}
static void sao_search_band_sao(const encoder_state_t * const state, const kvz_pixel * data[], const kvz_pixel * recdata[],
int block_width, int block_height,
unsigned buf_cnt,
sao_info_t *sao_out, sao_info_t *sao_top,
sao_info_t *sao_left)
{
unsigned i;
sao_out->type = SAO_TYPE_BAND;
sao_out->ddistortion = MAX_INT;
// Band offset
{
int sao_bands[2][32];
int temp_offsets[10];
int ddistortion = 0;
float temp_rate = 0.0;
for (i = 0; i < buf_cnt; ++i) {
FILL(sao_bands, 0);
calc_sao_bands(state, data[i], recdata[i],block_width,
block_height,sao_bands);
ddistortion += calc_sao_band_offsets(sao_bands, &temp_offsets[1+5*i], &sao_out->band_position[i]);
}
temp_rate = sao_mode_bits_band(state, sao_out->band_position, temp_offsets, sao_top, sao_left, buf_cnt);
ddistortion += (int)((double)temp_rate*state->lambda + 0.5);
// Select band sao over edge sao when distortion is lower
if (ddistortion < sao_out->ddistortion) {
sao_out->type = SAO_TYPE_BAND;
sao_out->ddistortion = ddistortion;
memcpy(&sao_out->offsets[0], &temp_offsets[0], sizeof(int) * buf_cnt * 5);
}
}
}
/**
* \param data Array of pointers to reference pixels.
* \param recdata Array of pointers to reconstructed pixels.
* \param block_width Width of the area to be examined.
* \param block_height Height of the area to be examined.
* \param buf_cnt Number of pointers data and recdata have.
* \param sao_out Output parameter for the best sao parameters.
*/
static void sao_search_best_mode(const encoder_state_t * const state, const kvz_pixel * data[], const kvz_pixel * recdata[],
int block_width, int block_height,
unsigned buf_cnt,
sao_info_t *sao_out, sao_info_t *sao_top,
sao_info_t *sao_left, int32_t merge_cost[3])
{
sao_info_t edge_sao;
sao_info_t band_sao;
init_sao_info(&edge_sao);
init_sao_info(&band_sao);
//Avoid "random" uninitialized value
edge_sao.band_position[0] = edge_sao.band_position[1] = 0;
edge_sao.eo_class = SAO_EO0;
band_sao.offsets[0] = 0;
band_sao.offsets[5] = 0;
band_sao.eo_class = SAO_EO0;
if (state->encoder_control->cfg.sao_type & 1){
sao_search_edge_sao(state, data, recdata, block_width, block_height, buf_cnt, &edge_sao, sao_top, sao_left);
float mode_bits = sao_mode_bits_edge(state, edge_sao.eo_class, edge_sao.offsets, sao_top, sao_left, buf_cnt);
int ddistortion = (int)(mode_bits * state->lambda + 0.5);
unsigned buf_i;
for (buf_i = 0; buf_i < buf_cnt; ++buf_i) {
ddistortion += kvz_sao_edge_ddistortion(data[buf_i], recdata[buf_i],
block_width, block_height,
edge_sao.eo_class, &edge_sao.offsets[5 * buf_i]);
}
edge_sao.ddistortion = ddistortion;
}
else{
edge_sao.ddistortion = INT_MAX;
}
if (state->encoder_control->cfg.sao_type & 2){
sao_search_band_sao(state, data, recdata, block_width, block_height, buf_cnt, &band_sao, sao_top, sao_left);
float mode_bits = sao_mode_bits_band(state, band_sao.band_position, band_sao.offsets, sao_top, sao_left, buf_cnt);
int ddistortion = (int)(mode_bits * state->lambda + 0.5);
unsigned buf_i;
for (buf_i = 0; buf_i < buf_cnt; ++buf_i) {
ddistortion += kvz_sao_band_ddistortion(state, data[buf_i], recdata[buf_i],
block_width, block_height,
band_sao.band_position[buf_i], &band_sao.offsets[1 + 5 * buf_i]);
}
band_sao.ddistortion = ddistortion;
}
else{
band_sao.ddistortion = INT_MAX;
}
if (edge_sao.ddistortion <= band_sao.ddistortion) {
*sao_out = edge_sao;
merge_cost[0] = edge_sao.ddistortion;
} else {
*sao_out = band_sao;
merge_cost[0] = band_sao.ddistortion;
}
// Choose between SAO and doing nothing, taking into account the
// rate-distortion cost of coding do nothing.
{
int cost_of_nothing = (int)(sao_mode_bits_none(state, sao_top, sao_left) * state->lambda + 0.5);
if (sao_out->ddistortion >= cost_of_nothing) {
sao_out->type = SAO_TYPE_NONE;
merge_cost[0] = cost_of_nothing;
}
}
// Calculate merge costs
if (sao_top || sao_left) {
sao_info_t* merge_sao[2] = { sao_left, sao_top};
int i;
for (i = 0; i < 2; i++) {
sao_info_t* merge_cand = merge_sao[i];
if (merge_cand) {
unsigned buf_i;
float mode_bits = sao_mode_bits_merge(state, i + 1);
int ddistortion = (int)(mode_bits * state->lambda + 0.5);
switch (merge_cand->type) {
case SAO_TYPE_EDGE:
for (buf_i = 0; buf_i < buf_cnt; ++buf_i) {
ddistortion += kvz_sao_edge_ddistortion(data[buf_i], recdata[buf_i],
block_width, block_height,
merge_cand->eo_class, &merge_cand->offsets[5 * buf_i]);
}
merge_cost[i + 1] = ddistortion;
break;
case SAO_TYPE_BAND:
for (buf_i = 0; buf_i < buf_cnt; ++buf_i) {
ddistortion += kvz_sao_band_ddistortion(state, data[buf_i], recdata[buf_i],
block_width, block_height,
merge_cand->band_position[buf_i], &merge_cand->offsets[1 + 5 * buf_i]);
}
merge_cost[i + 1] = ddistortion;
break;
case SAO_TYPE_NONE:
merge_cost[i + 1] = ddistortion;
break;
}
}
}
}
return;
}
static void sao_search_chroma(const encoder_state_t * const state, const videoframe_t *frame, unsigned x_ctb, unsigned y_ctb, sao_info_t *sao, sao_info_t *sao_top, sao_info_t *sao_left, int32_t merge_cost[3])
{
int block_width = (LCU_WIDTH / 2);
int block_height = (LCU_WIDTH / 2);
const kvz_pixel *orig_list[2];
const kvz_pixel *rec_list[2];
kvz_pixel orig[2][LCU_CHROMA_SIZE];
kvz_pixel rec[2][LCU_CHROMA_SIZE];
color_t color_i;
// Check for right and bottom boundaries.
if (x_ctb * (LCU_WIDTH / 2) + (LCU_WIDTH / 2) >= (unsigned)frame->width / 2) {
block_width = (frame->width - x_ctb * LCU_WIDTH) / 2;
}
if (y_ctb * (LCU_WIDTH / 2) + (LCU_WIDTH / 2) >= (unsigned)frame->height / 2) {
block_height = (frame->height - y_ctb * LCU_WIDTH) / 2;
}
sao->type = SAO_TYPE_EDGE;
// Copy data to temporary buffers and init orig and rec lists to point to those buffers.
for (color_i = COLOR_U; color_i <= COLOR_V; ++color_i) {
kvz_pixel *data = &frame->source->data[color_i][CU_TO_PIXEL(x_ctb, y_ctb, 1, frame->source->stride / 2)];
kvz_pixel *recdata = &frame->rec->data[color_i][CU_TO_PIXEL(x_ctb, y_ctb, 1, frame->rec->stride / 2)];
kvz_pixels_blit(data, orig[color_i - 1], block_width, block_height,
frame->source->stride / 2, block_width);
kvz_pixels_blit(recdata, rec[color_i - 1], block_width, block_height,
frame->rec->stride / 2, block_width);
orig_list[color_i - 1] = &orig[color_i - 1][0];
rec_list[color_i - 1] = &rec[color_i - 1][0];
}
// Calculate
sao_search_best_mode(state, orig_list, rec_list, block_width, block_height, 2, sao, sao_top, sao_left, merge_cost);
}
static void sao_search_luma(const encoder_state_t * const state, const videoframe_t *frame, unsigned x_ctb, unsigned y_ctb, sao_info_t *sao, sao_info_t *sao_top, sao_info_t *sao_left, int32_t merge_cost[3])
{
kvz_pixel orig[LCU_LUMA_SIZE];
kvz_pixel rec[LCU_LUMA_SIZE];
const kvz_pixel * orig_list[1] = { NULL };
const kvz_pixel * rec_list[1] = { NULL };
kvz_pixel *data = &frame->source->y[CU_TO_PIXEL(x_ctb, y_ctb, 0, frame->source->stride)];
kvz_pixel *recdata = &frame->rec->y[CU_TO_PIXEL(x_ctb, y_ctb, 0, frame->rec->stride)];
int block_width = LCU_WIDTH;
int block_height = LCU_WIDTH;
// Check for right and bottom boundaries.
if (x_ctb * LCU_WIDTH + LCU_WIDTH >= (unsigned)frame->width) {
block_width = frame->width - x_ctb * LCU_WIDTH;
}
if (y_ctb * LCU_WIDTH + LCU_WIDTH >= (unsigned)frame->height) {
block_height = frame->height - y_ctb * LCU_WIDTH;
}
sao->type = SAO_TYPE_EDGE;
// Fill temporary buffers with picture data.
kvz_pixels_blit(data, orig, block_width, block_height, frame->source->stride, block_width);
kvz_pixels_blit(recdata, rec, block_width, block_height, frame->rec->stride, block_width);
orig_list[0] = orig;
rec_list[0] = rec;
sao_search_best_mode(state, orig_list, rec_list, block_width, block_height, 1, sao, sao_top, sao_left, merge_cost);
}
void kvz_sao_search_lcu(const encoder_state_t* const state, int lcu_x, int lcu_y)
{
assert(!state->encoder_control->cfg.lossless);
videoframe_t* const frame = state->tile->frame;
const int stride = frame->width_in_lcu;
int32_t merge_cost_luma[3] = { INT32_MAX };
int32_t merge_cost_chroma[3] = { INT32_MAX };
sao_info_t *sao_luma = &frame->sao_luma[lcu_y * stride + lcu_x];
sao_info_t *sao_chroma = NULL;
int enable_chroma = state->encoder_control->chroma_format != KVZ_CSP_400;
if (enable_chroma) {
sao_chroma = &frame->sao_chroma[lcu_y * stride + lcu_x];
}
// Merge candidates
sao_info_t *sao_top_luma = lcu_y != 0 ? &frame->sao_luma [(lcu_y - 1) * stride + lcu_x] : NULL;
sao_info_t *sao_left_luma = lcu_x != 0 ? &frame->sao_luma [lcu_y * stride + lcu_x - 1] : NULL;
sao_info_t *sao_top_chroma = NULL;
sao_info_t *sao_left_chroma = NULL;
if (enable_chroma) {
if (lcu_y != 0) sao_top_chroma = &frame->sao_chroma[(lcu_y - 1) * stride + lcu_x];
if (lcu_x != 0) sao_left_chroma = &frame->sao_chroma[lcu_y * stride + lcu_x - 1];
}
sao_search_luma(state, frame, lcu_x, lcu_y, sao_luma, sao_top_luma, sao_left_luma, merge_cost_luma);
if (enable_chroma) {
sao_search_chroma(state, frame, lcu_x, lcu_y, sao_chroma, sao_top_chroma, sao_left_chroma, merge_cost_chroma);
} else {
merge_cost_chroma[0] = 0;
merge_cost_chroma[1] = 0;
merge_cost_chroma[2] = 0;
}
sao_luma->merge_up_flag = sao_luma->merge_left_flag = 0;
// Check merge costs
if (sao_top_luma) {
// Merge up if cost is equal or smaller to the searched mode cost
if (merge_cost_luma[2] + merge_cost_chroma[2] <= merge_cost_luma[0] + merge_cost_chroma[0]) {
*sao_luma = *sao_top_luma;
if (sao_top_chroma) *sao_chroma = *sao_top_chroma;
sao_luma->merge_up_flag = 1;
sao_luma->merge_left_flag = 0;
}
}
if (sao_left_luma) {
// Merge left if cost is equal or smaller to the searched mode cost
// AND smaller than merge up cost, if merge up was already chosen
if (merge_cost_luma[1] + merge_cost_chroma[1] <= merge_cost_luma[0] + merge_cost_chroma[0]) {
if (!sao_luma->merge_up_flag || merge_cost_luma[1] + merge_cost_chroma[1] < merge_cost_luma[2] + merge_cost_chroma[2]) {
*sao_luma = *sao_left_luma;
if (sao_left_chroma) *sao_chroma = *sao_left_chroma;
sao_luma->merge_left_flag = 1;
sao_luma->merge_up_flag = 0;
}
}
}
assert(sao_luma->eo_class < SAO_NUM_EO);
CHECKPOINT_SAO_INFO("sao_luma", *sao_luma);
if (sao_chroma) {
assert(sao_chroma->eo_class < SAO_NUM_EO);
CHECKPOINT_SAO_INFO("sao_chroma", *sao_chroma);
}
}