/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "strategies/sse41/picture-sse41.h" #include "strategies/sse41/reg_sad_pow2_widths-sse41.h" #if COMPILE_INTEL_SSE41 #include #include #include "kvazaar.h" #include "strategyselector.h" uint32_t kvz_reg_sad_sse41(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t width, const int32_t height, const uint32_t stride1, const uint32_t stride2) { if (width == 0) return 0; if (width == 4) return reg_sad_w4(data1, data2, height, stride1, stride2); if (width == 8) return reg_sad_w8(data1, data2, height, stride1, stride2); if (width == 12) return reg_sad_w12(data1, data2, height, stride1, stride2); if (width == 16) return reg_sad_w16(data1, data2, height, stride1, stride2); if (width == 24) return reg_sad_w24(data1, data2, height, stride1, stride2); else return reg_sad_arbitrary(data1, data2, width, height, stride1, stride2); } static optimized_sad_func_ptr_t get_optimized_sad_sse41(int32_t width) { if (width == 0) return reg_sad_w0; if (width == 4) return reg_sad_w4; if (width == 8) return reg_sad_w8; if (width == 12) return reg_sad_w12; if (width == 16) return reg_sad_w16; if (width == 24) return reg_sad_w24; else return NULL; } static uint32_t ver_sad_sse41(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t width, int32_t height, uint32_t stride) { if (width == 0) return 0; if (width == 4) return ver_sad_w4(pic_data, ref_data, height, stride); if (width == 8) return ver_sad_w8(pic_data, ref_data, height, stride); if (width == 12) return ver_sad_w12(pic_data, ref_data, height, stride); if (width == 16) return ver_sad_w16(pic_data, ref_data, height, stride); else return ver_sad_arbitrary(pic_data, ref_data, width, height, stride); } static uint32_t hor_sad_sse41_w32(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t height, uint32_t pic_stride, uint32_t ref_stride, uint32_t left, uint32_t right) { const size_t vec_width = 16; const uint32_t blkwidth_log2 = 5; const uint32_t left_eq_wid = left >> blkwidth_log2; const uint32_t right_eq_wid = right >> blkwidth_log2; const int32_t left_clamped = left - left_eq_wid; const int32_t right_clamped = right - right_eq_wid; const int32_t height_twoline_groups = height & ~1; const int32_t height_residual_lines = height & 1; const __m128i zero = _mm_setzero_si128(); const __m128i vec_widths = _mm_set1_epi8((uint8_t)vec_width); const __m128i lefts = _mm_set1_epi8((uint8_t)left_clamped); const __m128i rights = _mm_set1_epi8((uint8_t)right_clamped); const __m128i nslo = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); const __m128i nshi = _mm_add_epi8 (nslo, vec_widths); const __m128i rightmost_good_idx = _mm_set1_epi8((uint8_t)((vec_width << 1) - right - 1)); const __m128i epol_mask_right_lo = _mm_min_epi8 (nslo, rightmost_good_idx); const __m128i epol_mask_right_hi = _mm_min_epi8 (nshi, rightmost_good_idx); const __m128i epol_mask_lo = _mm_max_epi8 (lefts, epol_mask_right_lo); const __m128i epol_mask_hi = _mm_max_epi8 (lefts, epol_mask_right_hi); const __m128i is_left = _mm_cmpeq_epi8(rights, zero); const __m128i vecwid_for_left = _mm_and_si128 (is_left, vec_widths); const __m128i ns_for_shufmask = _mm_or_si128 (nslo, vecwid_for_left); const __m128i shufmask1_right = _mm_add_epi8 (ns_for_shufmask, rights); const __m128i shufmask1 = _mm_sub_epi8 (shufmask1_right, lefts); const __m128i md2bimask = _mm_cmpgt_epi8(vec_widths, shufmask1); const __m128i move_d_to_b_imask = _mm_or_si128 (is_left, md2bimask); const __m128i move_b_to_d_mask = _mm_cmpgt_epi8(lefts, nslo); // If we're straddling the left border, start from the left border instead, // and if right border, end on the border const int32_t ld_offset = left - right; int32_t y; __m128i sse_inc = _mm_setzero_si128(); for (y = 0; y < height_twoline_groups; y += 2) { __m128i a = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride + 0)); __m128i b = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + 0 + ld_offset)); __m128i c = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride + 16)); __m128i d = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + 16 + ld_offset)); __m128i e = _mm_loadu_si128((__m128i *)(pic_data + (y + 1) * pic_stride + 0)); __m128i f = _mm_loadu_si128((__m128i *)(ref_data + (y + 1) * ref_stride + 0 + ld_offset)); __m128i g = _mm_loadu_si128((__m128i *)(pic_data + (y + 1) * pic_stride + 16)); __m128i h = _mm_loadu_si128((__m128i *)(ref_data + (y + 1) * ref_stride + 16 + ld_offset)); __m128i b_shifted = _mm_shuffle_epi8(b, shufmask1); __m128i d_shifted = _mm_shuffle_epi8(d, shufmask1); __m128i f_shifted = _mm_shuffle_epi8(f, shufmask1); __m128i h_shifted = _mm_shuffle_epi8(h, shufmask1); // TODO: could these be optimized for two-operand efficiency? Only one of // these ever does useful work, the other should leave the vector untouched, // so could the first result be used in the second calculation or something? __m128i b_with_d_data = _mm_blendv_epi8(d_shifted, b_shifted, move_d_to_b_imask); __m128i d_with_b_data = _mm_blendv_epi8(d_shifted, b_shifted, move_b_to_d_mask); __m128i f_with_h_data = _mm_blendv_epi8(h_shifted, f_shifted, move_d_to_b_imask); __m128i h_with_f_data = _mm_blendv_epi8(h_shifted, f_shifted, move_b_to_d_mask); __m128i b_final = _mm_shuffle_epi8(b_with_d_data, epol_mask_lo); __m128i d_final = _mm_shuffle_epi8(d_with_b_data, epol_mask_hi); __m128i f_final = _mm_shuffle_epi8(f_with_h_data, epol_mask_lo); __m128i h_final = _mm_shuffle_epi8(h_with_f_data, epol_mask_hi); __m128i curr_sads_ab = _mm_sad_epu8 (a, b_final); __m128i curr_sads_cd = _mm_sad_epu8 (c, d_final); __m128i curr_sads_ef = _mm_sad_epu8 (e, f_final); __m128i curr_sads_gh = _mm_sad_epu8 (g, h_final); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef); sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh); } if (height_residual_lines) { __m128i a = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride + 0)); __m128i b = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + 0 + ld_offset)); __m128i c = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride + 16)); __m128i d = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + 16 + ld_offset)); __m128i b_shifted = _mm_shuffle_epi8(b, shufmask1); __m128i d_shifted = _mm_shuffle_epi8(d, shufmask1); __m128i b_with_d_data = _mm_blendv_epi8(d_shifted, b_shifted, move_d_to_b_imask); __m128i d_with_b_data = _mm_blendv_epi8(d_shifted, b_shifted, move_b_to_d_mask); __m128i b_final = _mm_shuffle_epi8(b_with_d_data, epol_mask_lo); __m128i d_final = _mm_shuffle_epi8(d_with_b_data, epol_mask_hi); __m128i curr_sads_ab = _mm_sad_epu8 (a, b_final); __m128i curr_sads_cd = _mm_sad_epu8 (c, d_final); sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab); sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd); } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t hor_sad_sse41(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int32_t width, int32_t height, uint32_t pic_stride, uint32_t ref_stride, uint32_t left, uint32_t right) { if (width == 4) return hor_sad_sse41_w4(pic_data, ref_data, height, pic_stride, ref_stride, left, right); if (width == 8) return hor_sad_sse41_w8(pic_data, ref_data, height, pic_stride, ref_stride, left, right); if (width == 16) return hor_sad_sse41_w16(pic_data, ref_data, height, pic_stride, ref_stride, left, right); if (width == 32) return hor_sad_sse41_w32(pic_data, ref_data, height, pic_stride, ref_stride, left, right); else return hor_sad_sse41_arbitrary(pic_data, ref_data, width, height, pic_stride, ref_stride, left, right); } #endif //COMPILE_INTEL_SSE41 int kvz_strategy_register_picture_sse41(void* opaque, uint8_t bitdepth) { bool success = true; #if COMPILE_INTEL_SSE41 if (bitdepth == 8){ success &= kvz_strategyselector_register(opaque, "reg_sad", "sse41", 20, &kvz_reg_sad_sse41); success &= kvz_strategyselector_register(opaque, "get_optimized_sad", "sse41", 20, &get_optimized_sad_sse41); success &= kvz_strategyselector_register(opaque, "ver_sad", "sse41", 20, &ver_sad_sse41); success &= kvz_strategyselector_register(opaque, "hor_sad", "sse41", 20, &hor_sad_sse41); } #endif return success; }