/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2014 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Kvazaar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "search.h" #include #include #include #include #include "config.h" #include "bitstream.h" #include "image.h" #include "strategies/strategies-picture.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "rdo.h" #include "transform.h" #include "encoder.h" // Temporarily for debugging. #define SEARCH_MV_FULL_RADIUS 0 #define IN_FRAME(x, y, width, height, block_width, block_height) \ ((x) >= 0 && (y) >= 0 \ && (x) + (block_width) <= (width) \ && (y) + (block_height) <= (height)) /** * This is used in the hexagon_search to select 3 points to search. * * The start of the hexagonal pattern has been repeated at the end so that * the indices between 1-6 can be used as the start of a 3-point list of new * points to search. * * 6 o-o 1 / 7 * / \ * 5 o 0 o 2 / 8 * \ / * 4 o-o 3 */ const vector2d large_hexbs[10] = { { 0, 0 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 }, { 1, -2 }, { 2, 0 } }; /** * This is used as the last step of the hexagon search. */ const vector2d small_hexbs[5] = { { 0, 0 }, { -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 } }; static uint32_t get_ep_ex_golomb_bitcost(uint32_t symbol, uint32_t count) { int32_t num_bins = 0; while (symbol >= (uint32_t)(1 << count)) { ++num_bins; symbol -= 1 << count; ++count; } num_bins ++; return num_bins; } static uint32_t get_mvd_coding_cost(vector2d *mvd) { uint32_t bitcost = 0; const int32_t mvd_hor = mvd->x; const int32_t mvd_ver = mvd->y; const int8_t hor_abs_gr0 = mvd_hor != 0; const int8_t ver_abs_gr0 = mvd_ver != 0; const uint32_t mvd_hor_abs = abs(mvd_hor); const uint32_t mvd_ver_abs = abs(mvd_ver); // Greater than 0 for x/y bitcost += 2; if (hor_abs_gr0) { if (mvd_hor_abs > 1) { bitcost += get_ep_ex_golomb_bitcost(mvd_hor_abs-2, 1) - 2; // TODO: tune the costs } // Greater than 1 + sign bitcost += 2; } if (ver_abs_gr0) { if (mvd_ver_abs > 1) { bitcost += get_ep_ex_golomb_bitcost(mvd_ver_abs-2, 1) - 2; // TODO: tune the costs } // Greater than 1 + sign bitcost += 2; } return bitcost; } static int calc_mvd_cost(const encoder_state * const encoder_state, int x, int y, int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3], int16_t num_cand,int32_t ref_idx, uint32_t *bitcost) { uint32_t temp_bitcost = 0; uint32_t merge_idx; int cand1_cost,cand2_cost; vector2d mvd_temp1, mvd_temp2; int8_t merged = 0; int8_t cur_mv_cand = 0; x <<= 2; y <<= 2; // Check every candidate to find a match for(merge_idx = 0; merge_idx < (uint32_t)num_cand; merge_idx++) { if (merge_cand[merge_idx][0] == x && merge_cand[merge_idx][1] == y && merge_cand[merge_idx][2] == ref_idx) { temp_bitcost += merge_idx; merged = 1; break; } } // Check mvd cost only if mv is not merged if(!merged) { mvd_temp1.x = x - mv_cand[0][0]; mvd_temp1.y = y - mv_cand[0][1]; cand1_cost = get_mvd_coding_cost(&mvd_temp1); mvd_temp2.x = x - mv_cand[1][0]; mvd_temp2.y = y - mv_cand[1][1]; cand2_cost = get_mvd_coding_cost(&mvd_temp2); // Select candidate 1 if it has lower cost if (cand2_cost < cand1_cost) { cur_mv_cand = 1; } temp_bitcost += cur_mv_cand ? cand2_cost : cand1_cost; } *bitcost = temp_bitcost; return temp_bitcost*(int32_t)(encoder_state->global->cur_lambda_cost+0.5); } /** * \brief Do motion search using the HEXBS algorithm. * * \param depth log2 depth of the search * \param pic Picture motion vector is searched for. * \param ref Picture motion vector is searched from. * \param orig Top left corner of the searched for block. * \param mv_in_out Predicted mv in and best out. Quarter pixel precision. * * \returns Cost of the motion vector. * * Motion vector is searched by first searching iteratively with the large * hexagon pattern until the best match is at the center of the hexagon. * As a final step a smaller hexagon is used to check the adjacent pixels. * * If a non 0,0 predicted motion vector predictor is given as mv_in_out, * the 0,0 vector is also tried. This is hoped to help in the case where * the predicted motion vector is way off. In the future even more additional * points like 0,0 might be used, such as vectors from top or left. */ static unsigned hexagon_search(const encoder_state * const encoder_state, unsigned depth, const image *pic, const image *ref, const vector2d *orig, vector2d *mv_in_out, int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3], int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out) { vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = UINT32_MAX; uint32_t best_bitcost = 0, bitcost; unsigned i; unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs. int max_lcu_below = -1; if (encoder_state->encoder_control->owf) { max_lcu_below = 1; } // Search the initial 7 points of the hexagon. for (i = 0; i < 7; ++i) { const vector2d *pattern = &large_hexbs[i]; unsigned cost = image_calc_sad(pic, ref, orig->x, orig->y, (encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + pattern->x, (encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + pattern->y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(encoder_state, mv.x + pattern->x, mv.y + pattern->y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); if (cost < best_cost) { best_cost = cost; best_index = i; best_bitcost = bitcost; } } // Try the 0,0 vector. if (!(mv.x == 0 && mv.y == 0)) { unsigned cost = image_calc_sad(pic, ref, orig->x, orig->y, (encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x, (encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(encoder_state, 0, 0, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); // If the 0,0 is better, redo the hexagon around that point. if (cost < best_cost) { best_cost = cost; best_bitcost = bitcost; best_index = 0; mv.x = 0; mv.y = 0; for (i = 1; i < 7; ++i) { const vector2d *pattern = &large_hexbs[i]; unsigned cost = image_calc_sad(pic, ref, orig->x, orig->y, (encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + pattern->x, (encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + pattern->y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(encoder_state, pattern->x, pattern->y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); if (cost < best_cost) { best_cost = cost; best_index = i; best_bitcost = bitcost; } } } } // Iteratively search the 3 new points around the best match, until the best // match is in the center. while (best_index != 0) { unsigned start; // Starting point of the 3 offsets to be searched. if (best_index == 1) { start = 6; } else if (best_index == 8) { start = 1; } else { start = best_index - 1; } // Move the center to the best match. mv.x += large_hexbs[best_index].x; mv.y += large_hexbs[best_index].y; best_index = 0; // Iterate through the next 3 points. for (i = 0; i < 3; ++i) { const vector2d *offset = &large_hexbs[start + i]; unsigned cost = image_calc_sad(pic, ref, orig->x, orig->y, (encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x, (encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(encoder_state, mv.x + offset->x, mv.y + offset->y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); if (cost < best_cost) { best_cost = cost; best_index = start + i; best_bitcost = bitcost; } ++offset; } } // Move the center to the best match. mv.x += large_hexbs[best_index].x; mv.y += large_hexbs[best_index].y; best_index = 0; // Do the final step of the search with a small pattern. for (i = 1; i < 5; ++i) { const vector2d *offset = &small_hexbs[i]; unsigned cost = image_calc_sad(pic, ref, orig->x, orig->y, (encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x, (encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(encoder_state, mv.x + offset->x, mv.y + offset->y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); if (cost > 0 && cost < best_cost) { best_cost = cost; best_index = i; best_bitcost = bitcost; } } // Adjust the movement vector according to the final best match. mv.x += small_hexbs[best_index].x; mv.y += small_hexbs[best_index].y; // Return final movement vector in quarter-pixel precision. mv_in_out->x = mv.x << 2; mv_in_out->y = mv.y << 2; *bitcost_out = best_bitcost; return best_cost; } #if SEARCH_MV_FULL_RADIUS static unsigned search_mv_full(unsigned depth, const picture *pic, const picture *ref, const vector2d *orig, vector2d *mv_in_out, int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3], int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out) { vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = UINT32_MAX; int x, y; uint32_t best_bitcost = 0, bitcost; vector2d min_mv, max_mv; /*if (abs(mv.x) > SEARCH_MV_FULL_RADIUS || abs(mv.y) > SEARCH_MV_FULL_RADIUS) { best_cost = calc_sad(pic, ref, orig->x, orig->y, orig->x, orig->y, block_width, block_width); mv.x = 0; mv.y = 0; }*/ min_mv.x = mv.x - SEARCH_MV_FULL_RADIUS; min_mv.y = mv.y - SEARCH_MV_FULL_RADIUS; max_mv.x = mv.x + SEARCH_MV_FULL_RADIUS; max_mv.y = mv.y + SEARCH_MV_FULL_RADIUS; for (y = min_mv.y; y < max_mv.y; ++y) { for (x = min_mv.x; x < max_mv.x; ++x) { unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + x, orig->y + y, block_width, block_width); cost += calc_mvd_cost(x, y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); if (cost < best_cost) { best_cost = cost; best_bitcost = bitcost; mv.x = x; mv.y = y; } } } mv_in_out->x = mv.x << 2; mv_in_out->y = mv.y << 2; *bitcost_out = best_bitcost; return best_cost; } #endif /** * Update lcu to have best modes at this depth. * \return Cost of best mode. */ static int search_cu_inter(const encoder_state * const encoder_state, int x, int y, int depth, lcu_t *lcu) { const videoframe * const frame = encoder_state->tile->frame; uint32_t ref_idx = 0; int x_local = (x&0x3f), y_local = (y&0x3f); int x_cu = x>>3; int y_cu = y>>3; int cu_pos = LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH; cu_info *cur_cu = &lcu->cu[cu_pos]; int16_t mv_cand[2][2]; // Search for merge mode candidate int16_t merge_cand[MRG_MAX_NUM_CANDS][3]; // Get list of candidates int16_t num_cand = inter_get_merge_cand(x, y, depth, merge_cand, lcu); // Select better candidate cur_cu->inter.mv_cand = 0; // Default to candidate 0 cur_cu->inter.cost = UINT_MAX; for (ref_idx = 0; ref_idx < encoder_state->global->ref->used_size; ref_idx++) { image *ref_image = encoder_state->global->ref->images[ref_idx]; const cu_info *ref_cu = &encoder_state->global->ref->cu_arrays[ref_idx]->data[x_cu + y_cu * (frame->width_in_lcu << MAX_DEPTH)]; uint32_t temp_bitcost = 0; uint32_t temp_cost = 0; vector2d orig, mv, mvd; int32_t merged = 0; uint8_t cu_mv_cand = 0; int8_t merge_idx = 0; int8_t temp_ref_idx = cur_cu->inter.mv_ref; orig.x = x_cu * CU_MIN_SIZE_PIXELS; orig.y = y_cu * CU_MIN_SIZE_PIXELS; mv.x = 0; mv.y = 0; if (ref_cu->type == CU_INTER) { mv.x = ref_cu->inter.mv[0]; mv.y = ref_cu->inter.mv[1]; } // Get MV candidates cur_cu->inter.mv_ref = ref_idx; inter_get_mv_cand(encoder_state, x, y, depth, mv_cand, cur_cu, lcu); cur_cu->inter.mv_ref = temp_ref_idx; #if SEARCH_MV_FULL_RADIUS temp_cost += search_mv_full(depth, frame, ref_pic, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost); #else temp_cost += hexagon_search(encoder_state, depth, frame->source, ref_image, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost); #endif merged = 0; // Check every candidate to find a match for(merge_idx = 0; merge_idx < num_cand; merge_idx++) { if (merge_cand[merge_idx][0] == mv.x && merge_cand[merge_idx][1] == mv.y && (uint32_t)merge_cand[merge_idx][2] == ref_idx) { merged = 1; break; } } // Only check when candidates are different if (!merged && (mv_cand[0][0] != mv_cand[1][0] || mv_cand[0][1] != mv_cand[1][1])) { vector2d mvd_temp1, mvd_temp2; int cand1_cost,cand2_cost; mvd_temp1.x = mv.x - mv_cand[0][0]; mvd_temp1.y = mv.y - mv_cand[0][1]; cand1_cost = get_mvd_coding_cost(&mvd_temp1); mvd_temp2.x = mv.x - mv_cand[1][0]; mvd_temp2.y = mv.y - mv_cand[1][1]; cand2_cost = get_mvd_coding_cost(&mvd_temp2); // Select candidate 1 if it has lower cost if (cand2_cost < cand1_cost) { cu_mv_cand = 1; } } mvd.x = mv.x - mv_cand[cu_mv_cand][0]; mvd.y = mv.y - mv_cand[cu_mv_cand][1]; if(temp_cost < cur_cu->inter.cost) { cur_cu->merged = merged; cur_cu->merge_idx = merge_idx; cur_cu->inter.mv_ref = ref_idx; cur_cu->inter.mv_dir = 1; cur_cu->inter.mv[0] = (int16_t)mv.x; cur_cu->inter.mv[1] = (int16_t)mv.y; cur_cu->inter.mvd[0] = (int16_t)mvd.x; cur_cu->inter.mvd[1] = (int16_t)mvd.y; cur_cu->inter.cost = temp_cost; cur_cu->inter.bitcost = temp_bitcost + ref_idx; cur_cu->inter.mv_cand = cu_mv_cand; } } return cur_cu->inter.cost; } /** * Copy all non-reference CU data from depth+1 to depth. */ static void work_tree_copy_up(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1]) { // Copy non-reference CUs. { const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; const int width_cu = LCU_WIDTH >> MAX_DEPTH >> depth; int x, y; for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { const cu_info *from_cu = &work_tree[depth + 1].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; cu_info *to_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy reconstructed pixels. { const int x = SUB_SCU(x_px); const int y = SUB_SCU(y_px); const int width_px = LCU_WIDTH >> depth; const int luma_index = x + y * LCU_WIDTH; const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2); const lcu_yuv_t *from = &work_tree[depth + 1].rec; lcu_yuv_t *to = &work_tree[depth].rec; const lcu_coeff_t *from_coeff = &work_tree[depth + 1].coeff; lcu_coeff_t *to_coeff = &work_tree[depth].coeff; pixels_blit(&from->y[luma_index], &to->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); pixels_blit(&from->u[chroma_index], &to->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); pixels_blit(&from->v[chroma_index], &to->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); // Copy coefficients up. They do not have to be copied down because they // are not used for the search. coefficients_blit(&from_coeff->y[luma_index], &to_coeff->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); coefficients_blit(&from_coeff->u[chroma_index], &to_coeff->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); coefficients_blit(&from_coeff->v[chroma_index], &to_coeff->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } /** * Copy all non-reference CU data from depth to depth+1..MAX_PU_DEPTH. */ static void work_tree_copy_down(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1]) { // TODO: clean up to remove the copy pasta const int width_px = LCU_WIDTH >> depth; int d; for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) { const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; const int width_cu = width_px >> MAX_DEPTH; int x, y; for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { const cu_info *from_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; cu_info *to_cu = &work_tree[d].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy reconstructed pixels. for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) { const int x = SUB_SCU(x_px); const int y = SUB_SCU(y_px); const int luma_index = x + y * LCU_WIDTH; const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2); lcu_yuv_t *from = &work_tree[depth].rec; lcu_yuv_t *to = &work_tree[d].rec; pixels_blit(&from->y[luma_index], &to->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); pixels_blit(&from->u[chroma_index], &to->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); pixels_blit(&from->v[chroma_index], &to->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } static void lcu_set_intra_mode(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth, int pred_mode, int chroma_mode, int part_mode) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; // NxN can only be applied to a single CU at a time. if (part_mode == SIZE_NxN) { cu_info *cu = &lcu_cu[x_cu + y_cu * LCU_T_CU_WIDTH]; cu->depth = MAX_DEPTH; cu->type = CU_INTRA; // It is assumed that cu->intra[].mode's are already set. cu->part_size = part_mode; cu->tr_depth = tr_depth; return; } // Set mode in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; cu->depth = depth; cu->type = CU_INTRA; cu->intra[0].mode = pred_mode; cu->intra[1].mode = pred_mode; cu->intra[2].mode = pred_mode; cu->intra[3].mode = pred_mode; cu->intra[0].mode_chroma = chroma_mode; cu->part_size = part_mode; cu->tr_depth = tr_depth; cu->coded = 1; } } } static void lcu_set_inter(lcu_t *lcu, int x_px, int y_px, int depth, cu_info *cur_cu) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; // Set mode in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; //Check if this could be moved inside the if cu->coded = 1; if (cu != cur_cu) { cu->depth = cur_cu->depth; cu->type = CU_INTER; cu->tr_depth = cur_cu->tr_depth; cu->merged = cur_cu->merged; cu->skipped = cur_cu->skipped; memcpy(&cu->inter, &cur_cu->inter, sizeof(cu_info_inter)); } } } } static void lcu_set_coeff(lcu_t *lcu, int x_px, int y_px, int depth, cu_info *cur_cu) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; int tr_split = cur_cu->tr_depth-cur_cu->depth; // Set coeff flags in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; // Use TU top-left CU to propagate coeff flags uint32_t mask = ~((width_cu>>tr_split)-1); cu_info *cu_from = &lcu_cu[(x & mask) + (y & mask) * LCU_T_CU_WIDTH]; if (cu != cu_from) { // Chroma coeff data is not used, luma is needed for deblocking cu->cbf.y = cu_from->cbf.y; } } } } /** * Calculate "final cost" for the block * \return Cost of block * * Take SSD between reconstruction and original and add cost from * coding (bitcost * lambda) and cost for coding coefficients (estimated * here as (coefficient_sum * 1.5) * lambda) */ static int lcu_get_final_cost_luma(const encoder_state * const encoder_state, const int x_px, const int y_px, const int depth, lcu_t *lcu) { cu_info *cur_cu; int x_local = (x_px&0x3f), y_local = (y_px&0x3f); int cost = 0; int coeff_cost = 0; const int rdo = encoder_state->encoder_control->rdo; int width = LCU_WIDTH>>depth; int x,y; cur_cu = &lcu->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH]; // SSD between reconstruction and original for (y = y_local; y < y_local+width; ++y) { for (x = x_local; x < x_local+width; ++x) { int diff = (int)lcu->rec.y[y * LCU_WIDTH + x] - (int)lcu->ref.y[y * LCU_WIDTH + x]; cost += diff*diff; } } if(rdo == 1) { // sum of coeffs for (y = y_local; y < y_local+width; ++y) { for (x = x_local; x < x_local+width; ++x) { coeff_cost += abs((int)lcu->coeff.y[y * LCU_WIDTH + x]); } } // Coefficient costs cost += (coeff_cost + (coeff_cost>>1)) * (int32_t)(encoder_state->global->cur_lambda_cost+0.5); // Calculate actual bit costs for coding the coeffs // RDO } else if (rdo == 2) { coefficient coeff_temp[32*32]; int i; int blocks = (width == 64)?4:1; int8_t luma_scan_mode = get_scan_order(cur_cu->type, cur_cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode, depth); for(i = 0; i < blocks; i++) { // For 64x64 blocks we need to do transform split to 32x32 int blk_y = i&2 ? 32:0 + y_local; int blk_x = i&1 ? 32:0 + x_local; int blockwidth = (width == 64)?32:width; // Calculate luma coeff bit count coefficients_blit(&lcu->coeff.y[(blk_y*LCU_WIDTH)+blk_x],coeff_temp,blockwidth,blockwidth,LCU_WIDTH,blockwidth); coeff_cost += get_coeff_cost(encoder_state, coeff_temp, blockwidth, 0, luma_scan_mode); } // Multiply bit count with lambda to get RD-cost cost += coeff_cost * (int32_t)(encoder_state->global->cur_lambda_cost+0.5); } return cost; } static int lcu_get_final_cost_chroma(const encoder_state * const encoder_state, const int x_px, const int y_px, const int depth, lcu_t *lcu) { cu_info *cur_cu; int x_local = (x_px&0x3f), y_local = (y_px&0x3f); int cost = 0; int coeff_cost = 0; const int rdo = encoder_state->encoder_control->rdo; int width = LCU_WIDTH>>depth; int x,y; cur_cu = &lcu->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH]; // Chroma SSD for (y = y_local>>1; y < (y_local+width)>>1; ++y) { for (x = x_local>>1; x < (x_local+width)>>1; ++x) { int diff = (int)lcu->rec.u[y * (LCU_WIDTH>>1) + x] - (int)lcu->ref.u[y * (LCU_WIDTH>>1) + x]; cost += diff*diff; diff = (int)lcu->rec.v[y * (LCU_WIDTH>>1) + x] - (int)lcu->ref.v[y * (LCU_WIDTH>>1) + x]; cost += diff*diff; } } if(rdo == 1) { // Chroma sum of coeffs for (y = y_local>>1; y < (y_local+width)>>1; ++y) { for (x = x_local>>1; x < (x_local+width)>>1; ++x) { coeff_cost += abs((int)lcu->coeff.u[y * (LCU_WIDTH>>1) + x]); coeff_cost += abs((int)lcu->coeff.v[y * (LCU_WIDTH>>1) + x]); } } // Coefficient costs cost += (coeff_cost + (coeff_cost>>1)) * (int32_t)(encoder_state->global->cur_lambda_cost+0.5); // Calculate actual bit costs for coding the coeffs // RDO } else if (rdo == 2) { coefficient coeff_temp_u[16*16]; coefficient coeff_temp_v[16*16]; int i; int blocks = (width == 64)?4:1; int8_t chroma_scan_mode = get_scan_order(cur_cu->type, cur_cu->intra[0].mode_chroma, depth); for(i = 0; i < blocks; i++) { // For 64x64 blocks we need to do transform split to 32x32 int blk_y = i&2 ? 32:0 + y_local; int blk_x = i&1 ? 32:0 + x_local; int blockwidth = (width == 64)?32:width; blk_y >>= 1; blk_x >>= 1; if (blockwidth > 4) { // Chroma is 1/4th of luma unless luma is 4x4. blockwidth >>= 1; } else if (x_px % 8 != 0 || y_px % 8 != 0) { // Only add chroma cost for 4x4 blocks for the one on the 8x8 grid. break; } coefficients_blit(&lcu->coeff.u[(blk_y*(LCU_WIDTH>>1))+blk_x],coeff_temp_u,blockwidth,blockwidth,LCU_WIDTH>>1,blockwidth); coefficients_blit(&lcu->coeff.v[(blk_y*(LCU_WIDTH>>1))+blk_x],coeff_temp_v,blockwidth,blockwidth,LCU_WIDTH>>1,blockwidth); coeff_cost += get_coeff_cost(encoder_state, coeff_temp_u, blockwidth, 2, chroma_scan_mode); coeff_cost += get_coeff_cost(encoder_state, coeff_temp_v, blockwidth, 2, chroma_scan_mode); } // Multiply bit count with lambda to get RD-cost cost += coeff_cost * (int32_t)(encoder_state->global->cur_lambda_cost+0.5); } return cost; } static void sort_modes(int8_t *modes, uint32_t *costs, int length) { int i, j; for (i = 0; i < length; ++i) { j = i; while (j > 0 && costs[j] < costs[j - 1]) { SWAP(costs[j], costs[j - 1], uint32_t); SWAP(modes[j], modes[j - 1], int8_t); --j; } } } static uint32_t search_intra_get_mode_cost(encoder_state * const encoder_state, pixel *ref[2], cost_pixel_nxn_func *cost_func, pixel *pred, int width, int16_t recstride, pixel *orig_block, int8_t *intra_preds, int8_t mode) { uint32_t sad = 0; uint32_t mode_cost = intra_pred_ratecost(mode, intra_preds); intra_get_pred(encoder_state->encoder_control, ref, recstride, pred, width, mode, 0); sad = cost_func(pred, orig_block); sad += mode_cost * (int)(encoder_state->global->cur_lambda_cost + 0.5); return sad; } static int8_t search_intra_rough(encoder_state * const encoder_state, pixel *orig, int32_t origstride, pixel *rec, int16_t recstride, int width, int8_t *intra_preds, int8_t modes[35], uint32_t costs[35]) { int16_t mode; cost_pixel_nxn_func *cost_func = pixels_get_sad_func(width); // Temporary block arrays pixel pred[LCU_WIDTH * LCU_WIDTH + 1]; pixel orig_block[LCU_WIDTH * LCU_WIDTH + 1]; pixel rec_filtered_temp[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8) + 1]; pixel *ref[2] = {rec, &rec_filtered_temp[recstride + 1]}; assert(width == 4 || width == 8 || width == 16 || width == 32); // Store original block for SAD computation pixels_blit(orig, orig_block, width, width, origstride, width); // Generate filtered reference pixels. { int16_t x, y; for (y = -1; y < recstride; y++) { ref[1][y*recstride - 1] = rec[y*recstride - 1]; } for (x = 0; x < recstride; x++) { ref[1][x - recstride] = rec[x - recstride]; } intra_filter(ref[1], recstride, width, 0); } int8_t modes_selected = 0; unsigned min_cost = UINT_MAX; unsigned max_cost = 0; // Initial offset decides how many modes are tried before moving on to the // recursive search. int offset; if (encoder_state->encoder_control->full_intra_search) { offset = 1; } else if (width == 4) { offset = 2; } else if (width == 8) { offset = 4; } else { offset = 8; } // Calculate SAD for evenly spaced modes to select the starting point for // the recursive search. for (int mode = 2; mode <= 34; mode += offset) { intra_get_pred(encoder_state->encoder_control, ref, recstride, pred, width, mode, 0); costs[modes_selected] = cost_func(pred, orig_block); modes[modes_selected] = mode; min_cost = MIN(min_cost, costs[modes_selected]); max_cost = MAX(max_cost, costs[modes_selected]); ++modes_selected; } // Skip recursive search if all modes have the same cost. if (min_cost != max_cost) { // Do a recursive search to find the best mode, always centering on the // current best mode. while (offset > 1) { offset >>= 1; sort_modes(modes, costs, modes_selected); int8_t mode = modes[0] - offset; if (mode >= 2) { intra_get_pred(encoder_state->encoder_control, ref, recstride, pred, width, mode, 0); costs[modes_selected] = cost_func(pred, orig_block); modes[modes_selected] = mode; ++modes_selected; } mode = modes[0] + offset; if (mode <= 34) { intra_get_pred(encoder_state->encoder_control, ref, recstride, pred, width, mode, 0); costs[modes_selected] = cost_func(pred, orig_block); modes[modes_selected] = mode; ++modes_selected; } } } int8_t add_modes[5] = {intra_preds[0], intra_preds[1], intra_preds[2], 0, 1}; // Add DC, planar and missing predicted modes. for (int8_t pred_i = 0; pred_i < 5; ++pred_i) { bool has_mode = false; int8_t mode = add_modes[pred_i]; for (int mode_i = 0; mode_i < modes_selected; ++mode_i) { if (modes[mode_i] == add_modes[pred_i]) { has_mode = true; break; } } if (!has_mode) { intra_get_pred(encoder_state->encoder_control, ref, recstride, pred, width, mode, 0); costs[modes_selected] = cost_func(pred, orig_block); modes[modes_selected] = mode; ++modes_selected; } } // Add prediction mode coding cost as the last thing. We don't want this // affecting the halving search. int lambda_cost = (int)(encoder_state->global->cur_lambda_cost + 0.5); for (int mode_i = 0; mode_i < modes_selected; ++mode_i) { costs[mode_i] += lambda_cost * intra_pred_ratecost(modes[mode_i], intra_preds); } sort_modes(modes, costs, modes_selected); return modes_selected; } static void search_intra_rdo(encoder_state * const encoder_state, pixel *orig, int32_t origstride, pixel *rec, int16_t recstride, int width, int8_t *intra_preds, int8_t modes[35], uint32_t costs[35], int modes_to_check) { pixel pred[LCU_WIDTH * LCU_WIDTH + 1]; pixel orig_block[LCU_WIDTH * LCU_WIDTH + 1]; int rdo_mode; int pred_mode; pixel rec_filtered_temp[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8) + 1]; pixel *ref[2] = {rec, &rec_filtered_temp[recstride + 1]}; // Generate filtered reference pixels. { int x, y; for (y = -1; y < recstride; y++) { ref[1][y*recstride - 1] = rec[y*recstride - 1]; } for (x = 0; x < recstride; x++) { ref[1][x - recstride] = rec[x - recstride]; } intra_filter(ref[1], recstride, width, 0); } pixels_blit(orig, orig_block, width, width, origstride, width); // Check that the predicted modes are in the RDO mode list for(pred_mode = 0; pred_mode < 3; pred_mode++) { int mode_found = 0; for(rdo_mode = 0; rdo_mode < modes_to_check; rdo_mode ++) { if(intra_preds[pred_mode] == modes[rdo_mode]) { mode_found = 1; break; } } // Add this prediction mode to RDO checking if(!mode_found) { modes[modes_to_check] = intra_preds[pred_mode]; modes_to_check++; } } for(rdo_mode = 0; rdo_mode < modes_to_check; rdo_mode ++) { int rdo_bitcost; // The reconstruction is calculated again here, it could be saved from before.. intra_get_pred(encoder_state->encoder_control, ref, recstride, pred, width, modes[rdo_mode], 0); costs[rdo_mode] = rdo_cost_intra(encoder_state,pred,orig_block,width,modes[rdo_mode], width == 4 ? 1 : 0); // Bitcost also calculated again for this mode rdo_bitcost = intra_pred_ratecost(modes[rdo_mode],intra_preds); // Add bitcost * lambda costs[rdo_mode] += rdo_bitcost * (int)(encoder_state->global->cur_lambda_cost + 0.5); } sort_modes(modes, costs, modes_to_check); } /** * Update lcu to have best modes at this depth. * \return Cost of best mode. */ static int search_cu_intra(encoder_state * const encoder_state, const int x_px, const int y_px, const int depth, lcu_t *lcu) { const videoframe * const frame = encoder_state->tile->frame; const vector2d lcu_px = { x_px & 0x3f, y_px & 0x3f }; const vector2d lcu_cu = { lcu_px.x >> 3, lcu_px.y >> 3 }; const int8_t cu_width = (LCU_WIDTH >> (depth)); const int cu_index = LCU_CU_OFFSET + lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH; cu_info *cur_cu = &lcu->cu[cu_index]; pixel rec_buffer[(LCU_WIDTH * 2 + 1) * (LCU_WIDTH * 2 + 1)]; pixel *cu_in_rec_buffer = &rec_buffer[cu_width * 2 + 8 + 1]; int8_t candidate_modes[3]; cu_info *left_cu = 0; cu_info *above_cu = 0; if ((x_px >> 3) > 0) { left_cu = &lcu->cu[cu_index - 1]; } // Don't take the above CU across the LCU boundary. if ((y_px >> 3) > 0 && lcu_cu.y != 0) { above_cu = &lcu->cu[cu_index - LCU_T_CU_WIDTH]; } // Get intra predictors intra_get_dir_luma_predictor(x_px, y_px, candidate_modes, cur_cu, left_cu, above_cu); // Build reconstructed block to use in prediction with extrapolated borders intra_build_reference_border(encoder_state->encoder_control, x_px, y_px, cu_width * 2 + 8, rec_buffer, cu_width * 2 + 8, 0, frame->width, frame->height, lcu); // Find best intra mode for 2Nx2N. { pixel *ref_pixels = &lcu->ref.y[lcu_px.x + lcu_px.y * LCU_WIDTH]; unsigned pu_index = PU_INDEX(x_px >> 2, y_px >> 2); int8_t modes[35]; uint32_t costs[35]; int8_t number_of_modes = search_intra_rough(encoder_state, ref_pixels, LCU_WIDTH, cu_in_rec_buffer, cu_width * 2 + 8, cu_width, candidate_modes, modes, costs, &number_of_modes); if (encoder_state->encoder_control->rdo == 2) { int num_modes_to_check = MIN(number_of_modes, (cu_width <= 8) ? 8 : 3); search_intra_rdo(encoder_state, ref_pixels, LCU_WIDTH, cu_in_rec_buffer, cu_width * 2 + 8, cu_width, candidate_modes, modes, costs, num_modes_to_check); } cur_cu->intra[pu_index].mode = modes[0]; cur_cu->intra[pu_index].cost = costs[0]; cur_cu->intra[pu_index].bitcost = intra_pred_ratecost(modes[0], candidate_modes); cur_cu->intra[0].mode_chroma = cur_cu->intra[0].mode; } return cur_cu->intra[PU_INDEX(x_px >> 2, y_px >> 2)].cost; } /** * Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode. * - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH. * - Data structure work_tree is maintained such that the neighbouring SCUs * and pixels to the left and up of current CU are the final CUs decided * via the search. This is done by copying the relevant data to all * relevant levels whenever a decision is made whether to split or not. * - All the final data for the LCU gets eventually copied to depth 0, which * will be the final output of the recursion. */ static int search_cu(encoder_state * const encoder_state, int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH]) { const videoframe * const frame = encoder_state->tile->frame; int cu_width = LCU_WIDTH >> depth; int cost = MAX_INT; cu_info *cur_cu; int x_local = (x&0x3f), y_local = (y&0x3f); // Stop recursion if the CU is completely outside the frame. if (x >= frame->width || y >= frame->height) { // Return zero cost because this CU does not have to be coded. return 0; } cur_cu = &(&work_tree[depth])->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH]; // Assign correct depth cur_cu->depth = depth > MAX_DEPTH ? MAX_DEPTH : depth; cur_cu->tr_depth = depth > 0 ? depth : 1; cur_cu->type = CU_NOTSET; cur_cu->part_size = depth > MAX_DEPTH ? SIZE_NxN : SIZE_2Nx2N; // If the CU is completely inside the frame at this depth, search for // prediction modes at this depth. if (x + cu_width <= frame->width && y + cu_width <= frame->height) { if (encoder_state->global->slicetype != SLICE_I && depth >= MIN_INTER_SEARCH_DEPTH && depth <= MAX_INTER_SEARCH_DEPTH) { int mode_cost = search_cu_inter(encoder_state, x, y, depth, &work_tree[depth]); if (mode_cost < cost) { cost = mode_cost; cur_cu->type = CU_INTER; } } if (depth >= MIN_INTRA_SEARCH_DEPTH && depth <= MAX_INTRA_SEARCH_DEPTH) { int mode_cost = search_cu_intra(encoder_state, x, y, depth, &work_tree[depth]); if (mode_cost < cost) { cost = mode_cost; cur_cu->type = CU_INTRA; } } // Reconstruct best mode because we need the reconstructed pixels for // mode search of adjacent CUs. if (cur_cu->type == CU_INTRA) { lcu_set_intra_mode(&work_tree[depth], x, y, depth, cur_cu->tr_depth, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode, cur_cu->intra[0].mode_chroma, cur_cu->part_size); intra_recon_lcu_luma(encoder_state, x, y, depth, &work_tree[depth]); intra_recon_lcu_chroma(encoder_state, x, y, depth, &work_tree[depth]); } else if (cur_cu->type == CU_INTER) { int cbf; inter_recon_lcu(encoder_state, encoder_state->global->ref->images[cur_cu->inter.mv_ref], x, y, LCU_WIDTH>>depth, cur_cu->inter.mv, &work_tree[depth]); quantize_lcu_luma_residual(encoder_state, x, y, depth, &work_tree[depth]); quantize_lcu_chroma_residual(encoder_state, x, y, depth, &work_tree[depth]); cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth); if(cur_cu->merged && !cbf) { cur_cu->merged = 0; cur_cu->skipped = 1; // Selecting skip reduces bits needed to code the CU cur_cu->inter.bitcost--; } lcu_set_inter(&work_tree[depth], x, y, depth, cur_cu); lcu_set_coeff(&work_tree[depth], x, y, depth, cur_cu); } } if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) { cost = lcu_get_final_cost_luma(encoder_state, x, y, depth, &work_tree[depth]); cost += lcu_get_final_cost_chroma(encoder_state, x, y, depth, &work_tree[depth]); // Bitcost cost += (cur_cu->type == CU_INTER ? cur_cu->inter.bitcost : cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].bitcost) * (int32_t)(encoder_state->global->cur_lambda_cost+0.5); } // Recursively split all the way to max search depth. if (depth < MAX_INTRA_SEARCH_DEPTH || depth < MAX_INTER_SEARCH_DEPTH) { int half_cu = cu_width / 2; // Using Cost = lambda * 9 to compensate on the price of the split int split_cost = (int)(encoder_state->global->cur_lambda_cost + 0.5) * 9; int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth); // If skip mode was selected for the block, skip further search. // Skip mode means there's no coefficients in the block, so splitting // might not give any better results but takes more time to do. if(cur_cu->type == CU_NOTSET || cbf) { split_cost += search_cu(encoder_state, x, y, depth + 1, work_tree); split_cost += search_cu(encoder_state, x + half_cu, y, depth + 1, work_tree); split_cost += search_cu(encoder_state, x, y + half_cu, depth + 1, work_tree); split_cost += search_cu(encoder_state, x + half_cu, y + half_cu, depth + 1, work_tree); } else { split_cost = INT_MAX; } if (split_cost < cost) { // Copy split modes to this depth. cost = split_cost; work_tree_copy_up(x, y, depth, work_tree); } else { // Copy this CU's mode all the way down for use in adjacent CUs mode // search. work_tree_copy_down(x, y, depth, work_tree); } } return cost; } /** * Initialize lcu_t for search. * - Copy reference CUs. * - Copy reference pixels from neighbouring LCUs. * - Copy reference pixels from this LCU. */ static void init_lcu_t(const encoder_state * const encoder_state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf) { const videoframe * const frame = encoder_state->tile->frame; // Copy reference cu_info structs from neighbouring LCUs. { const int x_cu = x >> MAX_DEPTH; const int y_cu = y >> MAX_DEPTH; // Use top-left sub-cu of LCU as pointer to lcu->cu array to make things // simpler. cu_info *lcu_cu = &lcu->cu[LCU_CU_OFFSET]; // Copy top CU row. if (y_cu > 0) { int i; for (i = 0; i < LCU_CU_WIDTH; ++i) { const cu_info *from_cu = videoframe_get_cu_const(frame, x_cu + i, y_cu - 1); cu_info *to_cu = &lcu_cu[i - LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy left CU column. if (x_cu > 0) { int i; for (i = 0; i < LCU_CU_WIDTH; ++i) { const cu_info *from_cu = videoframe_get_cu_const(frame, x_cu - 1, y_cu + i); cu_info *to_cu = &lcu_cu[-1 + i * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy top-left CU. if (x_cu > 0 && y_cu > 0) { const cu_info *from_cu = videoframe_get_cu_const(frame, x_cu - 1, y_cu - 1); cu_info *to_cu = &lcu_cu[-1 - LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } // Copy top-right CU. if (y_cu > 0 && x + LCU_WIDTH < frame->width) { const cu_info *from_cu = videoframe_get_cu_const(frame, x_cu + LCU_CU_WIDTH, y_cu - 1); cu_info *to_cu = &lcu->cu[LCU_T_CU_WIDTH*LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy reference pixels. { const int pic_width = frame->width; // Copy top reference pixels. if (y > 0) { // hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH // number of allocated pixels left. int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x); int x_min_in_lcu = (x>0) ? 0 : 1; memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu-1)], x_max + (1-x_min_in_lcu)); memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu-1)], x_max / 2 + (1-x_min_in_lcu)); memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu-1)], x_max / 2 + (1-x_min_in_lcu)); } // Copy left reference pixels. if (x > 0) { int y_min_in_lcu = (y>0) ? 0 : 1; memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[OFFSET_VER_BUF(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH + (1-y_min_in_lcu)); memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH / 2 + (1-y_min_in_lcu)); memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH / 2 + (1-y_min_in_lcu)); } } // Copy LCU pixels. { const videoframe * const frame = encoder_state->tile->frame; int x_max = MIN(x + LCU_WIDTH, frame->width) - x; int y_max = MIN(y + LCU_WIDTH, frame->height) - y; int x_c = x / 2; int y_c = y / 2; int x_max_c = x_max / 2; int y_max_c = y_max / 2; pixels_blit(&frame->source->y[x + y * frame->source->stride], lcu->ref.y, x_max, y_max, frame->source->stride, LCU_WIDTH); pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride/2], lcu->ref.u, x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2); pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride/2], lcu->ref.v, x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2); } } /** * Copy CU and pixel data to it's place in picture datastructure. */ static void copy_lcu_to_cu_data(const encoder_state * const encoder_state, int x_px, int y_px, const lcu_t *lcu) { // Copy non-reference CUs to picture. { const int x_cu = x_px >> MAX_DEPTH; const int y_cu = y_px >> MAX_DEPTH; videoframe * const frame = encoder_state->tile->frame; // Use top-left sub-cu of LCU as pointer to lcu->cu array to make things // simpler. const cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; for (y = 0; y < LCU_CU_WIDTH; ++y) { for (x = 0; x < LCU_CU_WIDTH; ++x) { const cu_info *from_cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; cu_info *to_cu = videoframe_get_cu(frame, x_cu + x, y_cu + y); memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy pixels to picture. { videoframe * const pic = encoder_state->tile->frame; const int pic_width = pic->width; const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px; const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px; const int luma_index = x_px + y_px * pic_width; const int chroma_index = (x_px / 2) + (y_px / 2) * (pic_width / 2); pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride], x_max, y_max, LCU_WIDTH, pic->rec->stride); coefficients_blit(lcu->coeff.y, &pic->coeff_y[luma_index], x_max, y_max, LCU_WIDTH, pic_width); pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); coefficients_blit(lcu->coeff.u, &pic->coeff_u[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); coefficients_blit(lcu->coeff.v, &pic->coeff_v[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); } } /** * Search LCU for modes. * - Best mode gets copied to current picture. */ void search_lcu(encoder_state * const encoder_state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf) { lcu_t work_tree[MAX_PU_DEPTH + 1]; int depth; // Initialize work tree. for (depth = 0; depth <= MAX_PU_DEPTH; ++depth) { memset(&work_tree[depth], 0, sizeof(work_tree[depth])); init_lcu_t(encoder_state, x, y, &work_tree[depth], hor_buf, ver_buf); } // Start search from depth 0. search_cu(encoder_state, x, y, 0, work_tree); copy_lcu_to_cu_data(encoder_state, x, y, &work_tree[0]); }