/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
#include "cfg.h"
#include "gop.h"
#include "alf.h"
#include
#include
#include
#include
#include
kvz_config *kvz_config_alloc(void)
{
return calloc(1, sizeof(kvz_config));
}
int kvz_config_init(kvz_config *cfg)
{
cfg->width = 0;
cfg->height = 0;
cfg->framerate = 25; // deprecated and will be removed.
cfg->framerate_num = 25;
cfg->framerate_denom = 1;
cfg->qp = 22;
cfg->intra_qp_offset = 0;
cfg->intra_qp_offset_auto = true;
cfg->intra_period = 64;
cfg->vps_period = 0;
cfg->deblock_enable = 0;
cfg->deblock_beta = 0;
cfg->deblock_tc = 0;
cfg->sao_type = 3;
cfg->alf_type = 0;
cfg->alf_info_in_ph_flag = 0;
cfg->alf_non_linear_luma = 1;
cfg->alf_non_linear_chroma = 1;
cfg->alf_allow_predefined_filters = 1;
cfg->rdoq_enable = 1;
cfg->rdoq_skip = 1;
cfg->signhide_enable = true;
cfg->smp_enable = false;
cfg->amp_enable = false;
cfg->rdo = 1;
cfg->mv_rdo = 0;
cfg->full_intra_search = 0;
cfg->trskip_enable = 0;
cfg->mts = 0;
cfg->mts_implicit = 0;
cfg->tr_depth_intra = 0;
cfg->ime_algorithm = 0; /* hexbs */
cfg->fme_level = 4;
cfg->source_scan_type = 0; /* progressive */
cfg->vui.sar_width = 0;
cfg->vui.sar_height = 0;
cfg->vui.overscan = 0; /* undef */
cfg->vui.videoformat = 5; /* undef */
cfg->vui.fullrange = 0; /* limited range */
cfg->vui.colorprim = 2; /* undef */
cfg->vui.transfer = 2; /* undef */
cfg->vui.colormatrix = 2; /* undef */
cfg->vui.chroma_loc = 0; /* left center */
cfg->aud_enable = 0;
cfg->cqmfile = NULL;
cfg->ref_frames = 1;
cfg->gop_len = 4;
cfg->gop_lowdelay = true;
cfg->bipred = 0;
cfg->target_bitrate = 0;
cfg->hash = KVZ_HASH_CHECKSUM;
cfg->lossless = false;
cfg->tmvp_enable = true;
cfg->implicit_rdpcm = false;
cfg->fast_residual_cost_limit = 0;
cfg->cu_split_termination = KVZ_CU_SPLIT_TERMINATION_ZERO;
cfg->tiles_width_count = 1;
cfg->tiles_height_count = 1;
cfg->tiles_width_split = NULL;
cfg->tiles_height_split = NULL;
cfg->wpp = 1;
cfg->owf = -1;
cfg->slice_count = 1;
cfg->slice_addresses_in_ts = MALLOC(int32_t, 1);
cfg->slice_addresses_in_ts[0] = 0;
cfg->threads = -1;
cfg->cpuid = 1;
// Defaults for what sizes of PUs are tried.
memset( cfg->pu_depth_inter.min, -1, sizeof( cfg->pu_depth_inter.min ) );
memset( cfg->pu_depth_inter.max, -1, sizeof( cfg->pu_depth_inter.max ) );
memset( cfg->pu_depth_intra.min, -1, sizeof( cfg->pu_depth_intra.min ) );
memset( cfg->pu_depth_intra.max, -1, sizeof( cfg->pu_depth_intra.max ) );
*cfg->pu_depth_inter.min = 2; // 0-3
*cfg->pu_depth_inter.max = 3; // 0-3
*cfg->pu_depth_intra.min = 2; // 0-4
*cfg->pu_depth_intra.max = 3; // 0-4
cfg->add_encoder_info = true;
cfg->calc_psnr = true;
cfg->mv_constraint = KVZ_MV_CONSTRAIN_NONE;
cfg->crypto_features = KVZ_CRYPTO_OFF;
cfg->me_early_termination = 1;
cfg->intra_rdo_et = 0;
cfg->input_format = KVZ_FORMAT_P420;
cfg->input_bitdepth = 8;
cfg->gop_lp_definition.d = 3;
cfg->gop_lp_definition.t = 1;
cfg->open_gop = true;
cfg->roi.width = 0;
cfg->roi.height = 0;
cfg->roi.dqps = NULL;
cfg->set_qp_in_cu = false;
cfg->erp_aqp = false;
cfg->slices = KVZ_SLICES_NONE;
cfg->optional_key = NULL;
cfg->level = 62; // default hevc level, 6.2 (the highest)
cfg->force_level = true; // don't care about level limits by-default
cfg->high_tier = false;
cfg->me_max_steps = (uint32_t)-1;
cfg->vaq = 0;
cfg->scaling_list = KVZ_SCALING_LIST_OFF;
cfg->max_merge = 5;
cfg->early_skip = true;
cfg->intra_smoothing_disabled = false;
cfg->ml_pu_depth_intra = false;
cfg->partial_coding.startCTU_x = 0;
cfg->partial_coding.startCTU_y = 0;
cfg->partial_coding.fullWidth = 0;
cfg->partial_coding.fullHeight = 0;
cfg->zero_coeff_rdo = true;
cfg->rc_algorithm = KVZ_NO_RC;
cfg->intra_bit_allocation = false;
cfg->clip_neighbour = true;
cfg->file_format = KVZ_FORMAT_AUTO;
cfg->stats_file_prefix = NULL;
int8_t in[] = { 17, 27, 32, 44 };
int8_t out[] = { 17, 29, 34, 41 };
cfg->num_used_table = 1;
cfg->qp_table_length_minus1[0] = 2;
cfg->qp_table_start_minus26[0] = 17 - 26;
cfg->delta_qp_in_val_minus1[0] = malloc(cfg->qp_table_length_minus1[0] + 1);
cfg->delta_qp_out_val[0] = malloc(cfg->qp_table_length_minus1[0] + 1);
for (int i = 0; i < cfg->qp_table_length_minus1[0] + 1; i++) {
cfg->delta_qp_in_val_minus1[0][i] = in[i + 1] - in[i] - (int8_t)1;
cfg->delta_qp_out_val[0][i] = out[i + 1] - out[i];
}
return 1;
}
int kvz_config_destroy(kvz_config *cfg)
{
if (cfg) {
FREE_POINTER(cfg->cqmfile);
FREE_POINTER(cfg->tiles_width_split);
FREE_POINTER(cfg->tiles_height_split);
FREE_POINTER(cfg->slice_addresses_in_ts);
FREE_POINTER(cfg->roi.dqps);
FREE_POINTER(cfg->optional_key);
if (cfg->param_set_map)
{
FREE_POINTER(cfg->param_set_map);
}
for (int i = 0; i < cfg->num_used_table; i++) {
if (cfg->delta_qp_in_val_minus1[i]) FREE_POINTER(cfg->delta_qp_in_val_minus1[i]);
if (cfg->delta_qp_out_val[i]) FREE_POINTER(cfg->delta_qp_out_val[i]);
}
}
free(cfg);
return 1;
}
static int atobool(const char *str)
{
if (!strcmp(str, "1") ||
!strcmp(str, "true") ||
!strcmp(str, "yes"))
return 1;
if (!strcmp(str, "0") ||
!strcmp(str, "false") ||
!strcmp(str, "no"))
return 0;
return 0;
}
static int parse_enum_n(const char *arg, unsigned num_chars, const char * const *names, int8_t *dst)
{
int8_t i;
for (i = 0; names[i]; i++) {
if (!strncmp(arg, names[i], num_chars)) {
*dst = i;
return 1;
}
}
return 0;
}
static int parse_enum(const char *arg, const char * const *names, int8_t *dst)
{
return parse_enum_n(arg, 255, names, dst);
}
static int parse_tiles_specification(const char* const arg, int32_t * const ntiles, int32_t** const array) {
const char* current_arg = NULL;
int32_t current_value;
int32_t values[MAX_TILES_PER_DIM];
int i;
//Free pointer in any case
if (*array) {
FREE_POINTER(*array);
}
//If the arg starts with u, we want an uniform split
if (arg[0]=='u') {
*ntiles = atoi(arg + 1);
if (MAX_TILES_PER_DIM <= *ntiles || 1 >= *ntiles) {
fprintf(stderr, "Invalid number of tiles (1 <= %d <= %d = MAX_TILES_PER_DIM)!\n", *ntiles, MAX_TILES_PER_DIM);
return 0;
}
//Done with parsing
return 1;
}
//We have a comma-separated list of int for the split...
current_arg = arg;
*ntiles = 1;
do {
int ret = sscanf(current_arg, "%d", ¤t_value);
if (ret != 1) {
fprintf(stderr, "Could not parse integer \"%s\"!\n", current_arg);
return 0;
}
current_arg = strchr(current_arg, ',');
//Skip the , if we found one
if (current_arg) ++current_arg;
values[*ntiles - 1] = current_value;
++(*ntiles);
if (MAX_TILES_PER_DIM <= *ntiles) break;
} while (current_arg);
if (MAX_TILES_PER_DIM <= *ntiles || 1 >= *ntiles) {
fprintf(stderr, "Invalid number of tiles (1 <= %d <= %d = MAX_TILES_PER_DIM)!\n", *ntiles, MAX_TILES_PER_DIM);
return 0;
}
*array = MALLOC(int32_t, *ntiles - 1);
if (!*array) {
fprintf(stderr, "Could not allocate array for tiles\n");
return 0;
}
//TODO: memcpy?
for (i = 0; i < *ntiles - 1; ++i) {
(*array)[i] = values[i];
}
return 1;
}
static int parse_uint8(const char *numstr,uint8_t* number,int min, int max)
{
char *tail;
int d = strtol(numstr, &tail, 10);
if (*tail || d < min || d > max){
fprintf(stderr, "Expected number between %d and %d\n", min, max);
if(number)
*number = 0;
return 0;
} else{
if (number)
*number = (uint8_t) d;
return 1;
}
}
static int parse_array(const char *array, uint8_t *coeff_key, int size,
int min, int max)
{
char *key = strdup(array);
const char delim[] = ",;:";
char *token;
int i = 0;
token = strtok(key, delim);
while(token!=NULL&&i=size && (token != NULL)){
fprintf(stderr, "parsing failed : too many members.\n");
free(key);
return 0;
}
else if (i 1) memset( depths_max + 1, -1, (size - 1) * sizeof( *depths_max ) );
if(size > 1) memset( depths_min + 1, -1, (size - 1) * sizeof( *depths_min ) );
token = strtok( list, "," );
while( ptr < len && list[ptr + 1] == ',' )
{
i++;
ptr++;
}
while( retval && token != NULL && i < size ) {
retval &= (sscanf( token, "%d-%d", &depths_min[i], &depths_max[i] ) == 2);
ptr += (retval ? 4 : 0);
i++;
token = strtok( NULL, "," );
while(ptr < len && list[ptr + 1] == ',' ){
i++;
ptr++;
}
}
if( i >= size && ( token != NULL ) ) {
fprintf( stderr, "parsing failed : too many values.\n" );
retval = 0;
}
free( list );
return retval;
}
static int parse_slice_specification(const char* const arg, int32_t * const nslices, int32_t** const array) {
const char* current_arg = NULL;
int32_t current_value;
int32_t values[MAX_SLICES];
int i;
//Free pointer in any case
if (*array) {
FREE_POINTER(*array);
}
//If the arg starts with u, we want an uniform split
if (arg[0]=='u') {
*nslices = atoi(arg+1);
if (MAX_SLICES <= *nslices || 0 >= *nslices) {
fprintf(stderr, "Invalid number of tiles (0 < %d <= %d = MAX_SLICES)!\n", *nslices + 1, MAX_SLICES);
return 0;
}
//Done with parsing
return 1;
}
//We have a comma-separated list of int for the split...
current_arg = arg;
//We always have a slice starting at 0
values[0] = 0;
*nslices = 1;
do {
int ret = sscanf(current_arg, "%d", ¤t_value);
if (ret != 1) {
fprintf(stderr, "Could not parse integer \"%s\"!\n", current_arg);
return 0;
}
current_arg = strchr(current_arg, ',');
//Skip the , if we found one
if (current_arg) ++current_arg;
values[*nslices] = current_value;
++(*nslices);
if (MAX_SLICES <= *nslices) break;
} while (current_arg);
if (MAX_SLICES <= *nslices || 0 >= *nslices) {
fprintf(stderr, "Invalid number of slices (0 < %d <= %d = MAX_SLICES)!\n", *nslices, MAX_SLICES);
return 0;
}
*array = MALLOC(int32_t, *nslices);
if (!*array) {
fprintf(stderr, "Could not allocate array for slices\n");
return 0;
}
//TODO: memcpy?
for (i = 0; i < *nslices; ++i) {
(*array)[i] = values[i];
}
return 1;
}
int kvz_config_parse(kvz_config *cfg, const char *name, const char *value)
{
static const char * const me_names[] = { "hexbs", "tz", "full", "full8", "full16", "full32", "full64", "dia", NULL };
static const char * const source_scan_type_names[] = { "progressive", "tff", "bff", NULL };
static const char * const overscan_names[] = { "undef", "show", "crop", NULL };
static const char * const videoformat_names[] = { "component", "pal", "ntsc", "secam", "mac", "undef", NULL };
static const char * const range_names[] = { "tv", "pc", NULL };
static const char * const colorprim_names[] = { "", "bt709", "undef", "", "bt470m", "bt470bg", "smpte170m",
"smpte240m", "film", "bt2020", NULL };
static const char * const transfer_names[] = { "", "bt709", "undef", "", "bt470m", "bt470bg", "smpte170m",
"smpte240m", "linear", "log100", "log316", "iec61966-2-4",
"bt1361e", "iec61966-2-1", "bt2020-10", "bt2020-12", NULL };
static const char * const colormatrix_names[] = { "GBR", "bt709", "undef", "", "fcc", "bt470bg", "smpte170m",
"smpte240m", "YCgCo", "bt2020nc", "bt2020c", NULL };
static const char * const mv_constraint_names[] = { "none", "frame", "tile", "frametile", "frametilemargin", NULL };
static const char * const hash_names[] = { "none", "checksum", "md5", NULL };
static const char * const cu_split_termination_names[] = { "zero", "off", NULL };
static const char * const crypto_toggle_names[] = { "off", "on", NULL };
static const char * const crypto_feature_names[] = { "mvs", "mv_signs", "trans_coeffs", "trans_coeff_signs", "intra_pred_modes", NULL };
static const char * const me_early_termination_names[] = { "off", "on", "sensitive", NULL };
static const char * const sao_names[] = { "off", "edge", "band", "full", NULL };
static const char * const alf_names[] = { "off", "no-cc", "full", NULL };
static const char * const mts_names[] = { "off", "intra", "inter", "both", "implicit", NULL };
static const char * const scaling_list_names[] = { "off", "custom", "default", NULL };
static const char * const rc_algorithm_names[] = { "no-rc", "lambda", "oba", NULL };
static const char * const file_format_names[] = {"auto", "y4m", "yuv", NULL};
static const char * const preset_values[11][25*2] = {
{
"ultrafast",
"rd", "0",
"pu-depth-intra", "2-3",
"pu-depth-inter", "1-2",
"me", "hexbs",
"gop", "8",
"ref", "1",
"bipred", "1",
"deblock", "0:0",
"signhide", "0",
"subme", "0",
"sao", "off",
"rdoq", "0",
"rdoq-skip", "0",
"transform-skip", "0",
"mv-rdo", "0",
"full-intra-search", "0",
"smp", "0",
"amp", "0",
"cu-split-termination", "zero",
"me-early-termination", "sensitive",
"intra-rdo-et", "0",
"early-skip", "1",
"fast-residual-cost", "28",
"max-merge", "5",
NULL
},
{
"superfast",
"rd", "0",
"pu-depth-intra", "2-3",
"pu-depth-inter", "1-2",
"me", "hexbs",
"gop", "8",
"ref", "1",
"bipred", "1",
"deblock", "0:0",
"signhide", "0",
"subme", "2",
"sao", "full",
"rdoq", "0",
"rdoq-skip", "0",
"transform-skip", "0",
"mv-rdo", "0",
"full-intra-search", "0",
"smp", "0",
"amp", "0",
"cu-split-termination", "zero",
"me-early-termination", "sensitive",
"intra-rdo-et", "0",
"early-skip", "1",
"fast-residual-cost", "28",
"max-merge", "5",
NULL
},
{
"veryfast",
"rd", "0",
"pu-depth-intra", "2-3",
"pu-depth-inter", "1-3",
"me", "hexbs",
"gop", "8",
"ref", "1",
"bipred", "1",
"deblock", "0:0",
"signhide", "0",
"subme", "2",
"sao", "full",
"rdoq", "0",
"rdoq-skip", "0",
"transform-skip", "0",
"mv-rdo", "0",
"full-intra-search", "0",
"smp", "0",
"amp", "0",
"cu-split-termination", "zero",
"me-early-termination", "sensitive",
"intra-rdo-et", "0",
"early-skip", "1",
"fast-residual-cost", "28",
"max-merge", "5",
NULL
},
{
"faster",
"rd", "0",
"pu-depth-intra", "2-3",
"pu-depth-inter", "1-3",
"me", "hexbs",
"gop", "8",
"ref", "1",
"bipred", "1",
"deblock", "0:0",
"signhide", "0",
"subme", "4",
"sao", "full",
"rdoq", "0",
"rdoq-skip", "0",
"transform-skip", "0",
"mv-rdo", "0",
"full-intra-search", "0",
"smp", "0",
"amp", "0",
"cu-split-termination", "zero",
"me-early-termination", "sensitive",
"intra-rdo-et", "0",
"early-skip", "1",
"fast-residual-cost", "0",
"max-merge", "5",
NULL
},
{
"fast",
"rd", "0",
"pu-depth-intra", "1-3",
"pu-depth-inter", "1-3",
"me", "hexbs",
"gop", "8",
"ref", "2",
"bipred", "1",
"deblock", "0:0",
"signhide", "0",
"subme", "4",
"sao", "full",
"rdoq", "0",
"rdoq-skip", "0",
"transform-skip", "0",
"mv-rdo", "0",
"full-intra-search", "0",
"smp", "0",
"amp", "0",
"cu-split-termination", "zero",
"me-early-termination", "sensitive",
"intra-rdo-et", "0",
"early-skip", "1",
"fast-residual-cost", "0",
"max-merge", "5",
NULL
},
{
"medium",
"rd", "0",
"pu-depth-intra", "1-4",
"pu-depth-inter", "0-3",
"me", "hexbs",
"gop", "16",
"ref", "4",
"bipred", "1",
"deblock", "0:0",
"signhide", "0",
"subme", "4",
"sao", "full",
"rdoq", "1",
"rdoq-skip", "0",
"transform-skip", "0",
"mv-rdo", "0",
"full-intra-search", "0",
"smp", "0",
"amp", "0",
"cu-split-termination", "zero",
"me-early-termination", "on",
"intra-rdo-et", "0",
"early-skip", "1",
"fast-residual-cost", "0",
"max-merge", "5",
NULL
},
{
"slow",
"rd", "1",
"pu-depth-intra", "1-4",
"pu-depth-inter", "0-3",
"me", "hexbs",
"gop", "16",
"ref", "4",
"bipred", "1",
"deblock", "0:0",
"signhide", "0",
"subme", "4",
"sao", "full",
"rdoq", "1",
"rdoq-skip", "0",
"transform-skip", "0",
"mv-rdo", "0",
"full-intra-search", "0",
"smp", "0",
"amp", "0",
"cu-split-termination", "zero",
"me-early-termination", "on",
"intra-rdo-et", "0",
"early-skip", "1",
"fast-residual-cost", "0",
"max-merge", "5",
NULL
},
{
"slower",
"rd", "2",
"pu-depth-intra", "1-4",
"pu-depth-inter", "0-3",
"me", "hexbs",
"gop", "16",
"ref", "4",
"bipred", "1",
"deblock", "0:0",
"signhide", "1",
"subme", "4",
"sao", "full",
"rdoq", "1",
"rdoq-skip", "0",
"transform-skip", "0",
"mv-rdo", "0",
"full-intra-search", "0",
"smp", "0",
"amp", "0",
"cu-split-termination", "zero",
"me-early-termination", "off",
"intra-rdo-et", "0",
"early-skip", "1",
"fast-residual-cost", "0",
"max-merge", "5",
NULL
},
{
"veryslow",
"rd", "2",
"pu-depth-intra", "1-4",
"pu-depth-inter", "0-3",
"me", "tz",
"gop", "16",
"ref", "4",
"bipred", "1",
"deblock", "0:0",
"signhide", "1",
"subme", "4",
"sao", "full",
"rdoq", "1",
"rdoq-skip", "0",
"transform-skip", "1",
"mv-rdo", "0",
"full-intra-search", "0",
"smp", "1",
"amp", "0",
"cu-split-termination", "zero",
"me-early-termination", "off",
"intra-rdo-et", "0",
"early-skip", "1",
"fast-residual-cost", "0",
"max-merge", "5",
NULL
},
{
"placebo",
"rd", "2",
"pu-depth-intra", "1-4",
"pu-depth-inter", "0-3",
"me", "tz",
"gop", "16",
"ref", "4",
"bipred", "1",
"deblock", "0:0",
"signhide", "1",
"subme", "4",
"sao", "full",
"rdoq", "1",
"rdoq-skip", "0",
"transform-skip", "1",
"mv-rdo", "1",
"full-intra-search", "0",
"smp", "1",
"amp", "1",
"cu-split-termination", "off",
"me-early-termination", "off",
"intra-rdo-et", "0",
"early-skip", "0",
"fast-residual-cost", "0",
"max-merge", "5",
NULL
},
{ NULL }
};
if (!name)
return 0;
if (!value)
value = "true";
// Treat "--no-param" as --param 0
if ((!strncmp(name, "no-", 3))) {
name += 3;
value = atobool(value) ? "false" : "true";
}
#define OPT(STR) (!strcmp(name, STR))
if OPT("width")
cfg->width = atoi(value);
else if OPT("height")
cfg->height = atoi(value);
else if OPT("input-res")
if (!strcmp(value, "auto")) {
return 1;
} else {
return (sscanf(value, "%dx%d", &cfg->width, &cfg->height) == 2);
}
else if OPT("input-fps") {
int32_t fps_num, fps_denom;
if (sscanf(value, "%d/%d", &fps_num, &fps_denom) == 2) {
cfg->framerate_num = fps_num;
cfg->framerate_denom = fps_denom;
} else {
// Accept decimal notation, making sure not to round 0 to 1.
cfg->framerate_num = (int)(atof(value) * 1000 + 0.49);
cfg->framerate_denom = 1000;
}
}
else if OPT("qp")
cfg->qp = atoi(value);
else if OPT("period")
cfg->intra_period = atoi(value);
else if OPT("vps-period")
cfg->vps_period = atoi(value);
else if OPT("ref")
cfg->ref_frames = atoi(value);
else if OPT("deblock") {
int beta, tc;
if (2 == sscanf(value, "%d:%d", &beta, &tc)) {
cfg->deblock_enable = 1;
cfg->deblock_beta = beta;
cfg->deblock_tc = tc;
} else {
cfg->deblock_enable = atobool(value);
}
}
else if OPT("sao") {
int8_t sao_type = 0;
if (!parse_enum(value, sao_names, &sao_type)) sao_type = atobool(value) ? 3 : 0;
cfg->sao_type = sao_type;
}
else if OPT("alf") {
int8_t alf_type = 0;
if (!parse_enum(value, alf_names, &alf_type)) alf_type = atobool(value) ? 2 : 0;
cfg->alf_type = alf_type;
if (alf_type)
{
kvz_set_aps_map(cfg);
}
}
else if OPT("rdoq")
cfg->rdoq_enable = atobool(value);
else if OPT("signhide")
cfg->signhide_enable = (bool)atobool(value);
else if OPT("smp")
cfg->smp_enable = (bool)atobool(value);
else if OPT("amp")
cfg->amp_enable = (bool)atobool(value);
else if OPT("rd")
cfg->rdo = atoi(value);
else if OPT("full-intra-search")
cfg->full_intra_search = atobool(value);
else if OPT("transform-skip")
cfg->trskip_enable = atobool(value);
else if OPT("mts") {
int8_t mts_type = 0;
if (!parse_enum(value, mts_names, &mts_type)) mts_type = atobool(value) ? 3 : 0;
cfg->mts = mts_type;
cfg->mts_implicit = (mts_type == KVZ_MTS_IMPLICIT);
}
else if OPT("tr-depth-intra")
cfg->tr_depth_intra = atoi(value);
else if OPT("me") {
int8_t ime_algorithm = 0;
if (!parse_enum(value, me_names, &ime_algorithm)) return 0;
cfg->ime_algorithm = ime_algorithm;
}
else if OPT("subme")
cfg->fme_level = atoi(value);
else if OPT("source-scan-type")
return parse_enum(value, source_scan_type_names, &cfg->source_scan_type);
else if OPT("mv-constraint")
{
int8_t constraint = KVZ_MV_CONSTRAIN_NONE;
int result = parse_enum(value, mv_constraint_names, &constraint);
cfg->mv_constraint = constraint;
return result;
}
else if OPT("sar")
return sscanf(value, "%d:%d", &cfg->vui.sar_width, &cfg->vui.sar_height) == 2;
else if OPT("overscan")
return parse_enum(value, overscan_names, &cfg->vui.overscan);
else if OPT("videoformat")
return parse_enum(value, videoformat_names, &cfg->vui.videoformat);
else if OPT("range")
return parse_enum(value, range_names, &cfg->vui.fullrange);
else if OPT("colorprim")
return parse_enum(value, colorprim_names, &cfg->vui.colorprim);
else if OPT("transfer")
return parse_enum(value, transfer_names, &cfg->vui.transfer);
else if OPT("colormatrix")
return parse_enum(value, colormatrix_names, &cfg->vui.colormatrix);
else if OPT("chromaloc")
cfg->vui.chroma_loc = atoi(value);
else if OPT("aud")
cfg->aud_enable = atobool(value);
else if OPT("cqmfile") {
char* cqmfile = strdup(value);
if (!cqmfile) {
fprintf(stderr, "Failed to allocate memory for CQM file name.\n");
return 0;
}
FREE_POINTER(cfg->cqmfile);
cfg->cqmfile = cqmfile;
cfg->scaling_list = KVZ_SCALING_LIST_CUSTOM;
}
else if OPT("scaling-list") {
int8_t scaling_list = KVZ_SCALING_LIST_OFF;
int result = parse_enum(value, scaling_list_names, &scaling_list);
cfg->scaling_list = scaling_list;
return result;
}
else if OPT("tiles-width-split") {
int retval = parse_tiles_specification(value, &cfg->tiles_width_count, &cfg->tiles_width_split);
if (cfg->tiles_width_count > 1 && cfg->tmvp_enable) {
cfg->tmvp_enable = false;
fprintf(stderr, "Disabling TMVP because tiles are used.\n");
}
if (cfg->wpp) {
cfg->wpp = false;
fprintf(stderr, "Disabling WPP because tiles were enabled.\n");
}
return retval;
}
else if OPT("tiles-height-split") {
int retval = parse_tiles_specification(value, &cfg->tiles_height_count, &cfg->tiles_height_split);
if (cfg->tiles_height_count > 1 && cfg->tmvp_enable) {
cfg->tmvp_enable = false;
fprintf(stderr, "Disabling TMVP because tiles are used.\n");
}
if (cfg->wpp) {
cfg->wpp = false;
fprintf(stderr, "Disabling WPP because tiles were enabled.\n");
}
return retval;
}
else if OPT("tiles")
{
// A simpler interface for setting tiles, accepting only uniform split.
unsigned width;
unsigned height;
if (2 != sscanf(value, "%ux%u", &width, &height)) {
fprintf(stderr, "Wrong format for tiles. Expected \"%%ux%%u\", but got \"%s\"\n", value);
return 0;
}
if (MAX_TILES_PER_DIM <= width || 1 > width) {
fprintf(stderr, "Invalid number of tiles (0 < %d <= %d = MAX_TILES_PER_DIM)!\n", width, MAX_TILES_PER_DIM);
return 0;
}
if (MAX_TILES_PER_DIM <= height || 1 > height) {
fprintf(stderr, "Invalid number of tiles (0 < %d <= %d = MAX_TILES_PER_DIM)!\n", height, MAX_TILES_PER_DIM);
return 0;
}
// Free split arrays incase they have already been set by another parameter.
FREE_POINTER(cfg->tiles_width_split);
FREE_POINTER(cfg->tiles_height_split);
cfg->tiles_width_count = width;
cfg->tiles_height_count = height;
if (cfg->tmvp_enable) {
cfg->tmvp_enable = false;
fprintf(stderr, "Disabling TMVP because tiles are used.\n");
}
if (cfg->wpp) {
cfg->wpp = false;
fprintf(stderr, "Disabling WPP because tiles were enabled.\n");
}
return 1;
}
else if OPT("wpp")
cfg->wpp = atobool(value);
else if OPT("owf") {
cfg->owf = atoi(value);
if (cfg->owf == 0 && !strcmp(value, "auto")) {
// -1 means automatic selection
cfg->owf = -1;
}
} else if OPT("slices") {
if (!strcmp(value, "tiles")) {
cfg->slices = KVZ_SLICES_TILES;
return 1;
} else if (!strcmp(value, "wpp")) {
cfg->slices = KVZ_SLICES_WPP;
return 1;
} else if (!strcmp(value, "tiles+wpp")) {
cfg->slices = KVZ_SLICES_TILES | KVZ_SLICES_WPP;
return 1;
} else {
return parse_slice_specification(value, &cfg->slice_count, &cfg->slice_addresses_in_ts);
}
} else if OPT("threads") {
cfg->threads = atoi(value);
if (cfg->threads == 0 && !strcmp(value, "auto")) {
// -1 means automatic selection
cfg->threads = -1;
}
}
else if OPT("cpuid")
cfg->cpuid = atobool(value);
else if OPT("pu-depth-inter")
return parse_pu_depth_list(value, cfg->pu_depth_inter.min, cfg->pu_depth_inter.max, KVZ_MAX_GOP_LAYERS);
else if OPT("pu-depth-intra")
return parse_pu_depth_list(value, cfg->pu_depth_intra.min, cfg->pu_depth_intra.max, KVZ_MAX_GOP_LAYERS);
else if OPT("info")
cfg->add_encoder_info = atobool(value);
else if OPT("gop") {
if (!strncmp(value, "lp-", 3)) { // Handle GOPs starting with "lp-".
struct {
unsigned g; // length
unsigned d; // depth
unsigned t; // temporal
} gop = { 0, 0, 0 };
// Parse --gop=lp-g#d#t#
if (sscanf(value, "lp-g%ud%ut%u", &gop.g, &gop.d, &gop.t) != 3) {
fprintf(stderr, "Error in GOP syntax. Example: lp-g8d4t2\n");
return 0;
}
if (gop.g < 1 || gop.g > 32) {
fprintf(stderr, "gop.g must be between 1 and 32.\n");
return 0;
}
if (gop.d < 1 || gop.d > 8) {
fprintf(stderr, "gop.d must be between 1 and 8.\n");
return 0;
}
if (gop.t < 1 || gop.t > 15) {
fprintf(stderr, "gop.t must be between 1 and 15.\n");
return 0;
}
cfg->gop_lowdelay = true;
cfg->gop_len = gop.g;
cfg->gop_lp_definition.d = gop.d;
cfg->gop_lp_definition.t = gop.t;
cfg->intra_bit_allocation = true;
cfg->clip_neighbour = false;
} else if (atoi(value) == 8) {
cfg->gop_lowdelay = 0;
cfg->gop_len = sizeof(kvz_gop_ra8) / sizeof(kvz_gop_ra8[0]);
memcpy(cfg->gop, kvz_gop_ra8, sizeof(kvz_gop_ra8));
cfg->intra_bit_allocation = false;
cfg->clip_neighbour = true;
} else if (atoi(value) == 16) {
cfg->gop_lowdelay = 0;
cfg->gop_len = sizeof(kvz_gop_ra16) / sizeof(kvz_gop_ra16[0]);
memcpy(cfg->gop, kvz_gop_ra16, sizeof(kvz_gop_ra16));
cfg->intra_bit_allocation = false;
cfg->clip_neighbour = true;
} else if (atoi(value) == 0) {
//Disable gop
cfg->gop_len = 0;
cfg->gop_lowdelay = 0;
cfg->gop_lp_definition.d = 0;
cfg->gop_lp_definition.t = 0;
} else if (atoi(value)) {
fprintf(stderr, "Input error: unsupported gop length, must be 0 or 8\n");
return 0;
}
}
else if OPT("intra-qp-offset") {
cfg->intra_qp_offset = atoi(value);
if( cfg->intra_qp_offset == 0 && !strcmp( value, "auto" ) )
{
cfg->intra_qp_offset_auto = true;
} else {
cfg->intra_qp_offset_auto = false;
}
}
else if OPT("open-gop") {
cfg->open_gop = (bool)atobool(value);
}
else if OPT("bipred")
cfg->bipred = atobool(value);
else if OPT("bitrate") {
cfg->target_bitrate = atoi(value);
if (!cfg->rc_algorithm) {
cfg->rc_algorithm = KVZ_LAMBDA;
}
}
else if OPT("preset") {
int preset_line = 0;
// Accept numbers from 0 to 9.
if ((atoi(value) == 0 && !strcmp(value, "0")) || (atoi(value) >= 1 && atoi(value) <= 9)) {
preset_line = atoi(value);
} else {
// Find the selected preset from the list
while (preset_values[preset_line][0] != NULL) {
if (!strcmp(value, preset_values[preset_line][0])) {
break;
}
preset_line++;
}
}
if (preset_values[preset_line][0] != NULL) {
fprintf(stderr, "Using preset %s: ", value);
// Loop all the name and value pairs and push to the config parser
for (int preset_value = 1; preset_values[preset_line][preset_value] != NULL; preset_value += 2) {
fprintf(stderr, "--%s=%s ", preset_values[preset_line][preset_value], preset_values[preset_line][preset_value + 1]);
kvz_config_parse(cfg, preset_values[preset_line][preset_value], preset_values[preset_line][preset_value + 1]);
}
fprintf(stderr, "\n");
} else {
fprintf(stderr, "Input error: unknown preset \"%s\"\n", value);
return 0;
}
}
else if OPT("mv-rdo")
cfg->mv_rdo = atobool(value);
else if OPT("psnr")
cfg->calc_psnr = (bool)atobool(value);
else if OPT("hash")
{
int8_t hash;
int result;
if ((result = parse_enum(value, hash_names, &hash))) {
cfg->hash = hash;
}
return result;
}
else if OPT("cu-split-termination")
{
int8_t mode = KVZ_CU_SPLIT_TERMINATION_ZERO;
int result = parse_enum(value, cu_split_termination_names, &mode);
cfg->cu_split_termination = mode;
return result;
}
else if OPT("crypto")
{
// on, off, feature1+feature2
const char *token_begin = value;
const char *cur = token_begin;
cfg->crypto_features = KVZ_CRYPTO_OFF;
// If value is on or off, set all features to on or off.
int8_t toggle = 0;
if (parse_enum(token_begin, crypto_toggle_names, &toggle)) {
if (toggle == 1) {
cfg->crypto_features = KVZ_CRYPTO_ON;
}
} else {
// Try and parse "feature1+feature2" type list.
for (;;) {
if (*cur == '+' || *cur == '\0') {
int8_t feature = 0;
int num_chars = cur - token_begin;
if (parse_enum_n(token_begin, num_chars, crypto_feature_names, &feature)) {
cfg->crypto_features |= (1 << feature);
} else {
cfg->crypto_features = KVZ_CRYPTO_OFF;
return 0;
}
token_begin = cur + 1;
}
if (*cur == '\0') {
break;
} else {
++cur;
}
}
}
// Disallow turning on the encryption when it's not compiled in.
bool encryption_compiled_in = false;
#ifdef KVZ_SEL_ENCRYPTION
encryption_compiled_in = true;
#endif
if (!encryption_compiled_in && cfg->crypto_features) {
fprintf(stderr, "--crypto cannot be enabled because it's not compiled in.\n");
cfg->crypto_features = KVZ_CRYPTO_OFF;
return 0;
}
return 1;
}
else if OPT("key"){
int size_key = 16;
FREE_POINTER(cfg->optional_key);
cfg->optional_key = (uint8_t *)malloc(sizeof(uint8_t)*size_key);
return parse_array(value, cfg->optional_key, size_key, 0, 255);
}
else if OPT("me-early-termination"){
int8_t mode = 0;
int result = parse_enum(value, me_early_termination_names, &mode);
cfg->me_early_termination = mode;
return result;
}
else if OPT("intra-rdo-et")
cfg->intra_rdo_et = (bool)atobool(value);
else if OPT("lossless")
cfg->lossless = (bool)atobool(value);
else if OPT("tmvp") {
cfg->tmvp_enable = atobool(value);
if (cfg->tiles_width_count > 1 || cfg->tiles_height_count > 1) {
fprintf(stderr, "Cannot enable TMVP because tiles are used.\n");
cfg->tmvp_enable = false;
}
}
else if OPT("rdoq-skip"){
cfg->rdoq_skip = atobool(value);
}
else if OPT("input-format") {
static enum kvz_input_format const formats[] = { KVZ_FORMAT_P400, KVZ_FORMAT_P420 };
static const char * const format_names[] = { "P400", "P420", NULL };
int8_t format = 0;
if (!parse_enum(value, format_names, &format)) {
fprintf(stderr, "input-format not recognized.\n");
return 0;
}
cfg->input_format = formats[format];
}
else if OPT("input-bitdepth") {
cfg->input_bitdepth = atoi(value);
if (cfg->input_bitdepth < 8 || cfg->input_bitdepth > 16) {
fprintf(stderr, "input-bitdepth not between 8 and 16.\n");
return 0;
}
if (cfg->input_bitdepth > 8 && KVZ_BIT_DEPTH == 8) {
// Because the image is read straight into the reference buffers,
// reading >8 bit samples doesn't work when sizeof(kvz_pixel)==1.
fprintf(stderr, "input-bitdepth can't be set to larger than 8 because"
" Kvazaar is compiled with KVZ_BIT_DEPTH=8.\n");
return 0;
}
}
else if OPT("implicit-rdpcm")
cfg->implicit_rdpcm = (bool)atobool(value);
else if OPT("roi") {
// The ROI description is as follows:
// First number is width, second number is height,
// then follows width * height number of dqp values.
FILE* f = fopen(value, "rb");
if (!f) {
fprintf(stderr, "Could not open ROI file.\n");
return 0;
}
int width = 0;
int height = 0;
if (!fscanf(f, "%d", &width) || !fscanf(f, "%d", &height)) {
fprintf(stderr, "Failed to read ROI size.\n");
fclose(f);
return 0;
}
if (width <= 0 || height <= 0) {
fprintf(stderr, "Invalid ROI size: %dx%d.\n", width, height);
fclose(f);
return 0;
}
if (width > 10000 || height > 10000) {
fprintf(stderr, "ROI dimensions exceed arbitrary value of 10000.\n");
fclose(f);
return 0;
}
const unsigned size = width * height;
int8_t *dqp_array = calloc((size_t)size, sizeof(cfg->roi.dqps[0]));
if (!dqp_array) {
fprintf(stderr, "Failed to allocate memory for ROI table.\n");
fclose(f);
return 0;
}
FREE_POINTER(cfg->roi.dqps);
cfg->roi.dqps = dqp_array;
cfg->roi.width = width;
cfg->roi.height = height;
for (int i = 0; i < size; ++i) {
int number; // Need a pointer to int for fscanf
if (fscanf(f, "%d", &number) != 1) {
fprintf(stderr, "Reading ROI file failed.\n");
fclose(f);
return 0;
}
dqp_array[i] = CLIP(-51, 51, number);
}
fclose(f);
}
else if OPT("set-qp-in-cu") {
cfg->set_qp_in_cu = (bool)atobool(value);
}
else if OPT("erp-aqp") {
cfg->erp_aqp = (bool)atobool(value);
}
else if (OPT("level") || OPT("force-level")) {
if OPT("force-level") {
cfg->force_level = true;
} else {
cfg->force_level = false;
}
unsigned int num_first, num_second, level;
int matched_amount = sscanf(value, "%u.%u", &num_first, &num_second);
if (matched_amount == 2) {
// of form x.y
level = num_first * 10 + num_second;
} else if (matched_amount == 1) {
// no dot
if (num_first < 10) {
// of form x
level = num_first * 10;
} else {
// of form xx
level = num_first;
}
} else {
fprintf(stderr, "Invalid level value: \"%s\"\n", value);
return 0;
}
if (level < 10 || level > 62) {
fprintf(stderr, "Level value of %s is out of bounds\n", value);
return 0;
}
cfg->level = level;
}
else if (OPT("high-tier")) {
cfg->high_tier = true;
}
else if (OPT("me-steps")) {
char * tailptr = NULL;
long steps = strtol(value, &tailptr, 0);
if (*tailptr != '\0') {
fprintf(stderr, "Invalid me-steps value: \"%s\"", value);
return 0;
}
if (steps < -1 || steps > UINT32_MAX) {
fprintf(stderr, "me-steps value is out of bounds: \"%s\"", value);
return 0;
}
cfg->me_max_steps = (uint32_t)steps;
}
else if (OPT("fast-residual-cost"))
cfg->fast_residual_cost_limit = atoi(value);
else if (OPT("vaq")) {
cfg->vaq = (int)atoi(value);
}
else if (OPT("max-merge")) {
int max_merge = atoi(value);
if (max_merge < 1 || max_merge > 5) {
fprintf(stderr, "max-merge needs to be between 1 and 5\n");
return 0;
}
cfg->max_merge = (uint8_t)max_merge;
}
else if OPT("early-skip") {
cfg->early_skip = (bool)atobool(value);
}
else if OPT("ml-pu-depth-intra") {
cfg->ml_pu_depth_intra = (bool)atobool(value);
}
else if OPT("partial-coding") {
uint32_t firstCTU_x;
uint32_t firstCTU_y;
uint32_t fullWidth;
uint32_t fullHeight;
if (4 != sscanf(value, "%u!%u!%u!%u", &firstCTU_x,
&firstCTU_y, &fullWidth, &fullHeight)) {
fprintf(stderr, "invalid partial-coding options. Expected \"%%u!%%u!%%u!%%u\", but got \"%s\"\n", value);
return 0;
}
cfg->partial_coding.startCTU_x = firstCTU_x;
cfg->partial_coding.startCTU_y = firstCTU_y;
cfg->partial_coding.fullWidth = fullWidth;
cfg->partial_coding.fullHeight = fullHeight;
}
else if OPT("zero-coeff-rdo") {
cfg->zero_coeff_rdo = (bool)atobool(value);
}
else if OPT("rc-algorithm") {
int8_t rc_algorithm = 0;
if (!parse_enum(value, rc_algorithm_names, &rc_algorithm)) {
fprintf(stderr, "Invalid rate control algorithm %s. Valid values include %s, %s, and %s\n", value,
rc_algorithm_names[0],
rc_algorithm_names[1],
rc_algorithm_names[2]);
return 0;
}
cfg->rc_algorithm = rc_algorithm;
}
else if OPT("intra-bits") {
cfg->intra_bit_allocation = atobool(value);
}
else if OPT("clip-neighbour") {
cfg->clip_neighbour = atobool(value);
}
else if OPT("input-file-format") {
int8_t file_format = 0;
if (!parse_enum(value, file_format_names, &file_format)) {
fprintf(stderr, "Invalid input file format %s. Valid values include %s, %s, and %s\n", value,
file_format_names[0],
file_format_names[1],
file_format_names[2]);
return 0;
}
cfg->file_format = file_format;
}
else if OPT("stats-file-prefix") {
cfg->stats_file_prefix = strdup(value);
}
else {
return 0;
}
#undef OPT
return 1;
}
void kvz_config_process_lp_gop(kvz_config *cfg)
{
struct {
unsigned g;
unsigned d;
unsigned t;
} gop;
gop.g = cfg->gop_len;
gop.d = cfg->gop_lp_definition.d;
gop.t = cfg->gop_lp_definition.t;
// Initialize modulos for testing depth.
// The picture belong to the lowest depth in which (poc % modulo) == 0.
unsigned depth_modulos[8] = { 0 };
for (int d = 0; d < gop.d; ++d) {
depth_modulos[gop.d - 1 - d] = 1 << d;
}
depth_modulos[0] = gop.g;
cfg->gop_lowdelay = 1;
cfg->gop_len = gop.g;
for (int g = 1; g <= gop.g; ++g) {
kvz_gop_config *gop_pic = &cfg->gop[g - 1];
// Find gop depth for picture.
int gop_layer = 1;
while (gop_layer < gop.d && (g % depth_modulos[gop_layer - 1])) {
++gop_layer;
}
gop_pic->poc_offset = g;
gop_pic->layer = gop_layer;
gop_pic->qp_offset = gop_layer;
gop_pic->ref_pos_count = 0;
gop_pic->ref_neg_count = cfg->ref_frames;
gop_pic->is_ref = 0;
// Set first ref to point to previous frame, and the rest to previous
// key-frames.
// If gop.t > 1, have (poc % gop.t) == 0 point gop.t frames away,
// instead of the previous frame. Set the frames in between to
// point to the nearest frame with a lower gop-depth.
if (gop.t > 1) {
if (gop_pic->poc_offset % gop.t == 0) {
gop_pic->ref_neg[0] = gop.t;
} else {
int r = gop_pic->poc_offset - 1;
while (r > 0) {
if (cfg->gop[r].layer < gop_pic->layer) break;
--r;
}
// Var r is now 0 or index of the pic with layer < depth.
if (cfg->gop[r].layer < gop_pic->layer) {
gop_pic->ref_neg[0] = gop_pic->poc_offset - cfg->gop[r].poc_offset;
cfg->gop[r].is_ref = 1;
} else {
// No ref was found, just refer to the previous key-frame.
gop_pic->ref_neg[0] = gop_pic->poc_offset % gop.g;
}
}
} else {
gop_pic->ref_neg[0] = 1;
if (gop_pic->poc_offset >= 2) {
cfg->gop[gop_pic->poc_offset - 2].is_ref = 1;
}
}
int keyframe = gop_pic->poc_offset;
for (int i = 1; i < gop_pic->ref_neg_count; ++i) {
while (keyframe == gop_pic->ref_neg[i - 1]) {
keyframe += gop.g;
}
gop_pic->ref_neg[i] = keyframe;
}
gop_pic->qp_factor = 0.4624; // from HM
}
for (int g = 0; g < gop.g; ++g) {
kvz_gop_config *gop_pic = &cfg->gop[g];
if (!gop_pic->is_ref) {
gop_pic->qp_factor = 0.68 * 1.31; // derived from HM
}
}
// Key-frame is always a reference.
cfg->gop[gop.g - 1].is_ref = 1;
cfg->gop[gop.g - 1].qp_factor = 0.578; // from HM
}
// forward declaration
static int validate_hevc_level(kvz_config *const cfg);
/**
* \brief Check that configuration is sensible.
*
* \param cfg config to check
* \return 1 if the config is ok, otherwise 1
*/
int kvz_config_validate(const kvz_config *const cfg)
{
int error = 0;
if (cfg->vaq < 0) {
fprintf(stderr, "vaq strength must be positive\n");
error = 1;
}
if (cfg->width <= 0) {
fprintf(stderr, "Input error: width must be positive\n");
error = 1;
}
if (cfg->height <= 0) {
fprintf(stderr, "Input error: height must be positive\n");
error = 1;
}
if (cfg->width % 2 != 0) {
fprintf(stderr, "Input error: width must be a multiple of two\n");
error = 1;
}
if (cfg->height % 2 != 0) {
fprintf(stderr, "Input error: height must be a multiple of two\n");
error = 1;
}
if (cfg->width > 0 && cfg->height > 0) {
// We must be able to store the total number of luma and chroma pixels
// in an int32_t. For 4:4:4 chroma mode, the number of pixels is
// 3 * width * height. Width and height are rounded up to a multiple of
// LCU size.
const uint32_t max_lcus = INT_MAX / (3 * LCU_WIDTH * LCU_WIDTH);
const uint64_t num_lcus = CEILDIV((uint64_t)cfg->width, LCU_WIDTH) *
CEILDIV((uint64_t)cfg->height, LCU_WIDTH);
if (num_lcus > max_lcus) {
fprintf(stderr, "Input error: resolution %dx%d too large (max %u CTUs)\n",
cfg->width, cfg->height, max_lcus);
error = 1;
}
}
if (cfg->framerate < 0.0) {
fprintf(stderr, "Input error: --input-fps must be positive\n");
error = 1;
}
if (cfg->framerate_num < 0) {
fprintf(stderr, "Input error: --input-fps must >=0\n");
error = 1;
}
if (cfg->framerate_denom <= 0) {
fprintf(stderr, "Input error: --input-fps denominator must be >0\n");
error = 1;
}
if (cfg->gop_len &&
cfg->intra_period > 1 &&
!cfg->gop_lowdelay &&
cfg->intra_period % cfg->gop_len != 0)
{
fprintf(stderr,
"Input error: intra period (%d) not a multiple of B-gop length (%d)\n",
cfg->intra_period,
cfg->gop_len);
error = 1;
}
if (cfg->ref_frames < 1 || cfg->ref_frames >= MAX_REF_PIC_COUNT) {
fprintf(stderr, "Input error: --ref out of range [1..%d]\n", MAX_REF_PIC_COUNT - 1);
error = 1;
}
if (cfg->deblock_beta < -6 || cfg->deblock_beta > 6) {
fprintf(stderr, "Input error: deblock beta parameter out of range [-6..6]\n");
error = 1;
}
if (cfg->deblock_tc < -6 || cfg->deblock_tc > 6) {
fprintf(stderr, "Input error: deblock tc parameter out of range [-6..6]\n");
error = 1;
}
if (cfg->rdo < 0 || cfg->rdo > 3) {
fprintf(stderr, "Input error: --rd parameter out of range [0..3]\n");
error = 1;
}
if (cfg->tr_depth_intra < 0 || cfg->tr_depth_intra > 4) {
// range is 0 .. CtbLog2SizeY - Log2MinTrafoSize
fprintf(stderr, "Input error: --tr-depth-intra is out of range [0..4]\n");
error = 1;
}
if (cfg->fme_level != 0 && cfg->fme_level > 4) {
fprintf(stderr, "Input error: invalid --subme parameter (must be in range 0-4)\n");
error = 1;
}
if (cfg->vui.chroma_loc < 0 || cfg->vui.chroma_loc > 5) {
fprintf(stderr, "Input error: --chromaloc parameter out of range [0..5]\n");
error = 1;
}
if (cfg->owf < -1) {
fprintf(stderr, "Input error: --owf must be nonnegative or -1\n");
error = 1;
}
if (cfg->qp != CLIP_TO_QP(cfg->qp)) {
fprintf(stderr, "Input error: --qp parameter out of range [0..51]\n");
error = 1;
}
if (abs(cfg->intra_qp_offset) > 51) {
fprintf(stderr, "Input error: --intra-qp-offset out of range [-51..51]\n");
error = 1;
}
if (cfg->target_bitrate < 0) {
fprintf(stderr, "Input error: --bitrate must be nonnegative\n");
error = 1;
}
for( size_t i = 0; i < KVZ_MAX_GOP_LAYERS; i++ )
{
if( cfg->pu_depth_inter.min[i] < 0 || cfg->pu_depth_inter.max[i] < 0 ) continue;
if( !WITHIN( cfg->pu_depth_inter.min[i], PU_DEPTH_INTER_MIN, PU_DEPTH_INTER_MAX ) ||
!WITHIN( cfg->pu_depth_inter.max[i], PU_DEPTH_INTER_MIN, PU_DEPTH_INTER_MAX ) )
{
fprintf( stderr, "Input error: illegal value for --pu-depth-inter (%d-%d)\n",
cfg->pu_depth_inter.min[i], cfg->pu_depth_inter.max[i] );
error = 1;
}
else if( cfg->pu_depth_inter.min[i] > cfg->pu_depth_inter.max[i] )
{
fprintf( stderr, "Input error: Inter PU depth min (%d) > max (%d)\n",
cfg->pu_depth_inter.min[i], cfg->pu_depth_inter.max[i] );
error = 1;
}
if( cfg->pu_depth_intra.min[i] < 0 || cfg->pu_depth_intra.max[i] < 0 ) continue;
if( !WITHIN( cfg->pu_depth_intra.min[i], PU_DEPTH_INTRA_MIN, PU_DEPTH_INTRA_MAX ) ||
!WITHIN( cfg->pu_depth_intra.max[i], PU_DEPTH_INTRA_MIN, PU_DEPTH_INTRA_MAX ) )
{
fprintf( stderr, "Input error: illegal value for --pu-depth-intra (%d-%d)\n",
cfg->pu_depth_intra.min[i], cfg->pu_depth_intra.max[i] );
error = 1;
}
else if( cfg->pu_depth_intra.min[i] > cfg->pu_depth_intra.max[i] )
{
fprintf( stderr, "Input error: Intra PU depth min (%d) > max (%d)\n",
cfg->pu_depth_intra.min[i], cfg->pu_depth_intra.max[i] );
error = 1;
}
}
// Tile separation should be at round position in terms of LCU, should be monotonic, and should not start by 0
if (cfg->tiles_width_split) {
int i;
int32_t prev_tile_split = 0;
for (i=0; i < cfg->tiles_width_count - 1; ++i) {
if (cfg->tiles_width_split[i] <= prev_tile_split) {
fprintf(stderr, "Input error: tile separations in width should be strictly monotonic (%d <= %d)\n", cfg->tiles_width_split[i], prev_tile_split);
error = 1;
break;
}
if ((cfg->tiles_width_split[i] % LCU_WIDTH) != 0) {
fprintf(stderr, "Input error: tile separation in width %d (at %d) is not at a multiple of LCU_WIDTH (%d)\n", i, cfg->tiles_width_split[i], LCU_WIDTH);
error = 1;
break;
}
prev_tile_split = cfg->tiles_width_split[i];
}
if (cfg->tiles_width_split[cfg->tiles_width_count - 2] >= cfg->width) {
fprintf(stderr, "Input error: last x tile separation in width (%d) should smaller than image width (%d)\n", cfg->tiles_width_split[cfg->tiles_width_count - 2], cfg->width);
error = 1;
}
}
if (cfg->tiles_height_split) {
int i;
int32_t prev_tile_split = 0;
for (i=0; i < cfg->tiles_height_count - 1; ++i) {
if (cfg->tiles_height_split[i] <= prev_tile_split) {
fprintf(stderr, "Input error: tile separations in height should be strictly monotonic (%d <= %d)\n", cfg->tiles_height_split[i], prev_tile_split);
error = 1;
break;
}
if ((cfg->tiles_height_split[i] % LCU_WIDTH) != 0) {
fprintf(stderr, "Input error: tile separation in height %d (at %d) is not at a multiple of LCU_WIDTH (%d)\n", i, cfg->tiles_height_split[i], LCU_WIDTH);
error = 1;
break;
}
prev_tile_split = cfg->tiles_height_split[i];
}
if (cfg->tiles_height_split[cfg->tiles_height_count - 2] >= cfg->height) {
fprintf(stderr, "Input error: last tile separation in height (%d) should smaller than image height (%d)\n", cfg->tiles_height_split[cfg->tiles_height_count - 2], cfg->height);
error = 1;
}
}
if (cfg->implicit_rdpcm && !cfg->lossless) {
fprintf(stderr, "Input error: --implicit-rdpcm is not suppoted without --lossless\n");
error = 1;
}
if ((cfg->slices & KVZ_SLICES_WPP) && !cfg->wpp) {
fprintf(stderr, "Input error: --slices=wpp does not work without --wpp.\n");
error = 1;
}
if ((cfg->scaling_list == KVZ_SCALING_LIST_CUSTOM) && !cfg->cqmfile) {
fprintf(stderr, "Input error: --scaling-list=custom does not work without --cqmfile=.\n");
error = 1;
}
if (validate_hevc_level((kvz_config *const) cfg)) {
// a level error found and it's not okay
error = 1;
}
if(cfg->target_bitrate > 0 && cfg->rc_algorithm == KVZ_NO_RC) {
fprintf(stderr, "Bitrate set but rc-algorithm is turned off.\n");
error = 1;
}
if(cfg->target_bitrate == 0 && cfg->rc_algorithm != KVZ_NO_RC) {
fprintf(stderr, "Rate control algorithm set but bitrate not set.\n");
error = 1;
}
return !error;
}
static int validate_hevc_level(kvz_config *const cfg) {
static const struct { uint32_t lsr; uint32_t lps; uint32_t main_bitrate; } LEVEL_CONSTRAINTS[13] = {
{ 552960, 36864, 128 }, // 1
{ 3686400, 122880, 1500 }, // 2
{ 7372800, 245760, 3000 }, // 2.1
{ 16588800, 552960, 6000 }, // 3
{ 33177600, 983040, 10000 }, // 3.1
{ 66846720, 2228224, 12000 }, // 4
{ 133693440, 2228224, 20000 }, // 4.1
{ 267386880, 8912896, 25000 }, // 5
{ 534773760, 8912896, 40000 }, // 5.1
{ 1069547520, 8912896, 60000 }, // 5.2
{ 1069547520, 35651584, 60000 }, // 6
{ 2139095040, 35651584, 120000 }, // 6.1
{ 4278190080, 35651584, 240000 }, // 6.2
};
// bit rates for the high-tiers of the levels from 4 to 6.2
static const uint32_t HIGH_TIER_BITRATES[8] = {
30000, 50000, 100000, 160000, 240000, 240000, 480000, 800000
};
int level_error = 0;
const char* level_err_prefix;
if (cfg->force_level) {
level_err_prefix = "Level warning";
} else {
level_err_prefix = "Level error";
}
uint8_t lvl_idx;
// for nicer error print
float lvl = ((float)cfg->level) / 10.0f;
// check if the level is valid and get it's lsr and lps values
switch (cfg->level) {
case 10:
lvl_idx = 0;
break;
case 20:
lvl_idx = 1;
break;
case 21:
lvl_idx = 2;
break;
case 30:
lvl_idx = 3;
break;
case 31:
lvl_idx = 4;
break;
case 40:
lvl_idx = 5;
break;
case 41:
lvl_idx = 6;
break;
case 50:
lvl_idx = 7;
break;
case 51:
lvl_idx = 8;
break;
case 52:
lvl_idx = 9;
break;
case 60:
lvl_idx = 10;
break;
case 61:
lvl_idx = 11;
break;
case 62:
lvl_idx = 12;
break;
default:
fprintf(stderr, "Input error: %g is an invalid level value\n", lvl);
return 1;
}
if (cfg->high_tier && cfg->level < 40) {
fprintf(stderr, "Input error: high tier requires at least level 4\n");
return 1;
}
// max luma sample rate
uint32_t max_lsr = LEVEL_CONSTRAINTS[lvl_idx].lsr;
// max luma picture size
uint32_t max_lps = LEVEL_CONSTRAINTS[lvl_idx].lps;
if (cfg->high_tier) {
cfg->max_bitrate = HIGH_TIER_BITRATES[lvl_idx - 5] * 1000;
} else {
cfg->max_bitrate = LEVEL_CONSTRAINTS[lvl_idx].main_bitrate * 1000;
}
if (cfg->target_bitrate > cfg->max_bitrate) {
fprintf(stderr, "%s: target bitrate exceeds %i, which is the maximum %s tier level %g bitrate\n",
level_err_prefix, cfg->max_bitrate, cfg->high_tier?"high":"main", lvl);
level_error = 1;
}
// check the conformance to the level limits
// luma samples
uint64_t cfg_samples = cfg->width * cfg->height;
// luma sample rate
double framerate = ((double)cfg->framerate_num) / ((double)cfg->framerate_denom);
uint64_t cfg_sample_rate = cfg_samples * (uint64_t) framerate;
// square of the maximum allowed dimension
uint32_t max_dimension_squared = 8 * max_lps;
// check maximum dimensions
if (cfg->width * cfg->width > max_dimension_squared) {
uint32_t max_dim = sqrtf(max_dimension_squared);
fprintf(stderr, "%s: picture width of %i is too large for this level (%g), maximum dimension is %i\n",
level_err_prefix, cfg->width, lvl, max_dim);
level_error = 1;
}
if (cfg->height * cfg->height > max_dimension_squared) {
uint32_t max_dim = sqrtf(max_dimension_squared);
fprintf(stderr, "%s: picture height of %i is too large for this level (%g), maximum dimension is %i\n",
level_err_prefix, cfg->height, lvl, max_dim);
level_error = 1;
}
// check luma picture size
if (cfg_samples > max_lps) {
fprintf(stderr, "%s: picture resolution of %ix%i is too large for this level (%g) (it has %llu samples, maximum is %u samples)\n",
level_err_prefix, cfg->width, cfg->height, lvl, (unsigned long long) cfg_samples, max_lps);
level_error = 1;
}
// check luma sample rate
if (cfg_sample_rate > max_lsr) {
fprintf(stderr, "%s: framerate of %g is too big for this level (%g) and picture resolution (it has the sample rate of %llu, maximum is %u\n",
level_err_prefix, framerate, lvl, (unsigned long long) cfg_sample_rate, max_lsr);
level_error = 1;
}
if (cfg->force_level) {
// we wanted to print warnings, not get errors
return 0;
} else {
return level_error;
}
}