#ifndef REG_SAD_POW2_WIDTHS_SSE41_H_ #define REG_SAD_POW2_WIDTHS_SSE41_H_ #include #include "kvazaar.h" static uint32_t reg_sad_w4(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { __m128i sse_inc = _mm_setzero_si128(); int32_t y; const int32_t height_xmm_bytes = height & ~3; const int32_t height_residuals = height & 3; for (y = 0; y < height_xmm_bytes; y += 4) { __m128i a = _mm_cvtsi32_si128(*(uint32_t *)(data1 + y * stride1)); __m128i b = _mm_cvtsi32_si128(*(uint32_t *)(data2 + y * stride2)); a = _mm_insert_epi32(a, *(uint32_t *)(data1 + (y + 1) * stride1), 1); b = _mm_insert_epi32(b, *(uint32_t *)(data2 + (y + 1) * stride2), 1); a = _mm_insert_epi32(a, *(uint32_t *)(data1 + (y + 2) * stride1), 2); b = _mm_insert_epi32(b, *(uint32_t *)(data2 + (y + 2) * stride2), 2); a = _mm_insert_epi32(a, *(uint32_t *)(data1 + (y + 3) * stride1), 3); b = _mm_insert_epi32(b, *(uint32_t *)(data2 + (y + 3) * stride2), 3); __m128i curr_sads = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } if (height_residuals) { for (; y < height; y++) { __m128i a = _mm_cvtsi32_si128(*(uint32_t *)(data1 + y * stride1)); __m128i b = _mm_cvtsi32_si128(*(uint32_t *)(data2 + y * stride2)); __m128i curr_sads = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t reg_sad_w8(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { __m128i sse_inc = _mm_setzero_si128(); uint64_t result = 0; int32_t y; const int32_t height_xmm_bytes = height & ~1; const int32_t height_parity = height & 1; for (y = 0; y < height_xmm_bytes; y += 2) { __m128d a_d = _mm_setzero_pd(); __m128d b_d = _mm_setzero_pd(); a_d = _mm_loadl_pd(a_d, (const double *)(data1 + (y + 0) * stride1)); b_d = _mm_loadl_pd(b_d, (const double *)(data2 + (y + 0) * stride2)); a_d = _mm_loadh_pd(a_d, (const double *)(data1 + (y + 1) * stride1)); b_d = _mm_loadh_pd(b_d, (const double *)(data2 + (y + 1) * stride2)); __m128i a = _mm_castpd_si128(a_d); __m128i b = _mm_castpd_si128(b_d); __m128i curr_sads = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } if (height_parity) { __m64 a = *(__m64 *)(data1 + y * stride1); __m64 b = *(__m64 *)(data2 + y * stride2); __m64 sads = _mm_sad_pu8(a, b); result = (uint64_t)sads; } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); result += _mm_cvtsi128_si32(sad); return result; } static uint32_t reg_sad_w12(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { __m128i sse_inc = _mm_setzero_si128(); int32_t y; for (y = 0; y < height; y++) { __m128i a = _mm_loadu_si128((__m128i const*) &data1[y * stride1]); __m128i b = _mm_loadu_si128((__m128i const*) &data2[y * stride2]); __m128i b_masked = _mm_blend_epi16(a, b, 0x3f); __m128i curr_sads = _mm_sad_epu8 (a, b_masked); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t reg_sad_w16(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t height, const uint32_t stride1, const uint32_t stride2) { __m128i sse_inc = _mm_setzero_si128(); int32_t y; for (y = 0; y < height; y++) { __m128i a = _mm_loadu_si128((__m128i const*) &data1[y * stride1]); __m128i b = _mm_loadu_si128((__m128i const*) &data2[y * stride2]); __m128i curr_sads = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi64(sse_inc, curr_sads); } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } static uint32_t reg_sad_arbitrary(const kvz_pixel * const data1, const kvz_pixel * const data2, const int32_t width, const int32_t height, const uint32_t stride1, const uint32_t stride2) { int32_t y, x; __m128i sse_inc = _mm_setzero_si128(); // Bytes in block in 128-bit blocks per each scanline, and remainder const int32_t largeblock_bytes = width & ~15; const int32_t residual_bytes = width & 15; const __m128i rds = _mm_set1_epi8 (residual_bytes); const __m128i ns = _mm_setr_epi8 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); const __m128i rdmask = _mm_cmpgt_epi8(rds, ns); for (y = 0; y < height; ++y) { for (x = 0; x < largeblock_bytes; x += 16) { __m128i a = _mm_loadu_si128((__m128i const*) &data1[y * stride1 + x]); __m128i b = _mm_loadu_si128((__m128i const*) &data2[y * stride2 + x]); __m128i curr_sads = _mm_sad_epu8(a, b); sse_inc = _mm_add_epi32(sse_inc, curr_sads); } if (residual_bytes) { __m128i a = _mm_loadu_si128((__m128i const*) &data1[y * stride1 + x]); __m128i b = _mm_loadu_si128((__m128i const*) &data2[y * stride2 + x]); __m128i b_masked = _mm_blendv_epi8(a, b, rdmask); __m128i curr_sads = _mm_sad_epu8(a, b_masked); sse_inc = _mm_add_epi32(sse_inc, curr_sads); } } __m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2)); __m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2); return _mm_cvtsi128_si32(sad); } #endif