/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "encoder.h" #include #include #include "cfg.h" #include "strategyselector.h" static int encoder_control_init_gop_layer_weights(encoder_control_t * const); static int size_of_wpp_ends(int threads) { // Based on the shape of the area where all threads can't yet run in parallel. return 4 * threads * threads - 2 * threads; } static int select_owf_auto(const kvz_config *const cfg) { if (cfg->intra_period == 1) { if (cfg->wpp) { // If wpp is on, select owf such that less than 15% of the // frame is covered by the are threads can not work at the same time. const int lcu_width = CEILDIV(cfg->width, LCU_WIDTH); const int lcu_height = CEILDIV(cfg->height, LCU_WIDTH); // Find the largest number of threads per frame that satifies the // the condition: wpp start/stop inefficiency takes up less than 15% // of frame area. int threads_per_frame = 1; const int wpp_treshold = lcu_width * lcu_height * 15 / 100; while ((threads_per_frame + 1) * 2 < lcu_width && threads_per_frame + 1 < lcu_height && size_of_wpp_ends(threads_per_frame + 1) < wpp_treshold) { ++threads_per_frame; } const int threads = MAX(cfg->threads, 1); const int frames = CEILDIV(threads, threads_per_frame); // Convert from number of parallel frames to number of additional frames. return CLIP(0, threads - 1, frames - 1); } else { // If wpp is not on, select owf such that there is enough // tiles for twice the number of threads. int tiles_per_frame = cfg->tiles_width_count * cfg->tiles_height_count; int threads = (cfg->threads > 1 ? cfg->threads : 1); int frames = CEILDIV(threads * 4, tiles_per_frame); // Limit number of frames to 1.25x the number of threads for the case // where there is only 1 tile per frame. frames = CLIP(1, threads * 4 / 3, frames); return frames - 1; } } else { // Try and estimate a good number of parallel frames for inter. const int lcu_width = CEILDIV(cfg->width, LCU_WIDTH); const int lcu_height = CEILDIV(cfg->height, LCU_WIDTH); int threads_per_frame = MIN(lcu_width / 2, lcu_height); int threads = cfg->threads; // If all threads fit into one frame, at least two parallel frames should // be used to reduce the effect of WPP spin-up and wind-down. int frames = 1; while (threads > 0 && threads_per_frame > 0) { frames += 1; threads -= threads_per_frame; threads_per_frame -= 2; } if (cfg->gop_len && cfg->gop_lowdelay && cfg->gop_lp_definition.t > 1) { // Temporal skipping makes every other frame very fast to encode so // more parallel frames should be used. frames *= 2; } return CLIP(0, cfg->threads * 2 - 1, frames - 1); } } static unsigned cfg_num_threads(void) { unsigned cpus = kvz_g_hardware_flags.physical_cpu_count; unsigned fake_cpus = kvz_g_hardware_flags.logical_cpu_count - cpus; // Default to 4 if we don't know the number of CPUs. if (cpus == 0) return 4; // 1.5 times the number of physical cores seems to be a good compromise // when hyperthreading is available on Haswell. return cpus + fake_cpus / 2; } /** * \brief Allocate and initialize an encoder control structure. * * \param cfg encoder configuration * \return initialized encoder control or NULL on failure */ encoder_control_t* kvz_encoder_control_init(const kvz_config *const cfg) { encoder_control_t *encoder = NULL; if (!cfg) { fprintf(stderr, "Config object must not be null!\n"); goto init_failed; } // Make sure that the parameters make sense. if (!kvz_config_validate(cfg)) { goto init_failed; } encoder = calloc(1, sizeof(encoder_control_t)); if (!encoder) { fprintf(stderr, "Failed to allocate encoder control.\n"); goto init_failed; } // Take a copy of the config. memcpy(&encoder->cfg, cfg, sizeof(encoder->cfg)); // Set fields that are not copied to NULL. encoder->cfg.cqmfile = NULL; encoder->cfg.tiles_width_split = NULL; encoder->cfg.tiles_height_split = NULL; encoder->cfg.slice_addresses_in_ts = NULL; if (encoder->cfg.threads == -1) { encoder->cfg.threads = cfg_num_threads(); } if (encoder->cfg.gop_len > 0) { if (encoder->cfg.gop_lowdelay) { kvz_config_process_lp_gop(&encoder->cfg); } } // Need to set owf before initializing threadqueue. if (encoder->cfg.owf < 0) { encoder->cfg.owf = select_owf_auto(&encoder->cfg); fprintf(stderr, "--owf=auto value set to %d.\n", encoder->cfg.owf); } if (encoder->cfg.source_scan_type != KVZ_INTERLACING_NONE) { // If using interlaced coding with OWF, the OWF has to be an even number // to ensure that the pair of fields will be output for the same picture. if (encoder->cfg.owf % 2 == 1) { encoder->cfg.owf += 1; } } encoder->threadqueue = MALLOC(threadqueue_queue_t, 1); if (!encoder->threadqueue || !kvz_threadqueue_init(encoder->threadqueue, encoder->cfg.threads, encoder->cfg.owf > 0)) { fprintf(stderr, "Could not initialize threadqueue.\n"); goto init_failed; } encoder->bitdepth = KVZ_BIT_DEPTH; encoder->chroma_format = KVZ_FORMAT2CSP(encoder->cfg.input_format); // Interlacing encoder->in.source_scan_type = (int8_t)encoder->cfg.source_scan_type; encoder->vui.field_seq_flag = encoder->cfg.source_scan_type != 0; encoder->vui.frame_field_info_present_flag = encoder->cfg.source_scan_type != 0; // Initialize the scaling list kvz_scalinglist_init(&encoder->scaling_list); // CQM if (cfg->cqmfile) { FILE* cqmfile = fopen(cfg->cqmfile, "rb"); if (cqmfile) { kvz_scalinglist_parse(&encoder->scaling_list, cqmfile); fclose(cqmfile); } else { fprintf(stderr, "Could not open CQM file.\n"); goto init_failed; } } kvz_scalinglist_process(&encoder->scaling_list, encoder->bitdepth); kvz_encoder_control_input_init(encoder, encoder->cfg.width, encoder->cfg.height); if (encoder->cfg.framerate_num != 0) { double framerate = encoder->cfg.framerate_num / (double)encoder->cfg.framerate_denom; encoder->target_avg_bppic = encoder->cfg.target_bitrate / framerate; } else { encoder->target_avg_bppic = encoder->cfg.target_bitrate / encoder->cfg.framerate; } encoder->target_avg_bpp = encoder->target_avg_bppic / encoder->in.pixels_per_pic; if (!encoder_control_init_gop_layer_weights(encoder)) { goto init_failed; } // Copy delta QP array for ROI coding. if (cfg->roi.dqps) { const size_t roi_size = encoder->cfg.roi.width * encoder->cfg.roi.height; encoder->cfg.roi.dqps = calloc(roi_size, sizeof(cfg->roi.dqps[0])); memcpy(encoder->cfg.roi.dqps, cfg->roi.dqps, roi_size * sizeof(*cfg->roi.dqps)); } encoder->lcu_dqp_enabled = cfg->target_bitrate > 0 || cfg->roi.dqps; //Tiles encoder->tiles_enable = encoder->cfg.tiles_width_count > 1 || encoder->cfg.tiles_height_count > 1; { const int num_ctbs = encoder->in.width_in_lcu * encoder->in.height_in_lcu; //Temporary pointers to allow encoder fields to be const int32_t *tiles_col_width, *tiles_row_height, *tiles_ctb_addr_rs_to_ts, *tiles_ctb_addr_ts_to_rs, *tiles_tile_id, *tiles_col_bd, *tiles_row_bd; if (encoder->cfg.tiles_width_count > encoder->in.width_in_lcu) { fprintf(stderr, "Too many tiles (width)!\n"); goto init_failed; } else if (encoder->cfg.tiles_height_count > encoder->in.height_in_lcu) { fprintf(stderr, "Too many tiles (height)!\n"); goto init_failed; } //Will be (perhaps) changed later encoder->tiles_uniform_spacing_flag = 1; encoder->tiles_col_width = tiles_col_width = MALLOC(int32_t, encoder->cfg.tiles_width_count); encoder->tiles_row_height = tiles_row_height = MALLOC(int32_t, encoder->cfg.tiles_height_count); encoder->tiles_col_bd = tiles_col_bd = MALLOC(int32_t, encoder->cfg.tiles_width_count + 1); encoder->tiles_row_bd = tiles_row_bd = MALLOC(int32_t, encoder->cfg.tiles_height_count + 1); encoder->tiles_ctb_addr_rs_to_ts = tiles_ctb_addr_rs_to_ts = MALLOC(int32_t, num_ctbs); encoder->tiles_ctb_addr_ts_to_rs = tiles_ctb_addr_ts_to_rs = MALLOC(int32_t, num_ctbs); encoder->tiles_tile_id = tiles_tile_id = MALLOC(int32_t, num_ctbs); if (!tiles_col_width || !tiles_row_height || !tiles_row_bd || !tiles_col_bd || !tiles_ctb_addr_rs_to_ts || !tiles_ctb_addr_ts_to_rs || !tiles_tile_id) { goto init_failed; } //(6-3) and (6-4) in ITU-T Rec. H.265 (04/2013) if (!cfg->tiles_width_split) { for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) { tiles_col_width[i] = (i+1) * encoder->in.width_in_lcu / encoder->cfg.tiles_width_count - i * encoder->in.width_in_lcu / encoder->cfg.tiles_width_count; } } else { int32_t last_pos_in_px = 0; tiles_col_width[encoder->cfg.tiles_width_count - 1] = encoder->in.width_in_lcu; for (int i = 0; i < encoder->cfg.tiles_width_count - 1; ++i) { int32_t column_width_in_lcu = (cfg->tiles_width_split[i] - last_pos_in_px) / LCU_WIDTH; last_pos_in_px = cfg->tiles_width_split[i]; tiles_col_width[i] = column_width_in_lcu; tiles_col_width[encoder->cfg.tiles_width_count - 1] -= column_width_in_lcu; } encoder->tiles_uniform_spacing_flag = 0; } if (!cfg->tiles_height_split) { for (int i = 0; i < encoder->cfg.tiles_height_count; ++i) { tiles_row_height[i] = ((i+1) * encoder->in.height_in_lcu) / encoder->cfg.tiles_height_count - i * encoder->in.height_in_lcu / encoder->cfg.tiles_height_count; } } else { int32_t last_pos_in_px = 0; tiles_row_height[encoder->cfg.tiles_height_count - 1] = encoder->in.height_in_lcu; for (int i = 0; i < encoder->cfg.tiles_height_count - 1; ++i) { int32_t row_height_in_lcu = (cfg->tiles_height_split[i] - last_pos_in_px) / LCU_WIDTH; last_pos_in_px = cfg->tiles_height_split[i]; tiles_row_height[i] = row_height_in_lcu; tiles_row_height[encoder->cfg.tiles_height_count - 1] -= row_height_in_lcu; } encoder->tiles_uniform_spacing_flag = 0; } //(6-5) in ITU-T Rec. H.265 (04/2013) tiles_col_bd[0] = 0; for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) { tiles_col_bd[i+1] = tiles_col_bd[i] + tiles_col_width[i]; } //(6-6) in ITU-T Rec. H.265 (04/2013) tiles_row_bd[0] = 0; for (int i = 0; i < encoder->cfg.tiles_height_count; ++i) { tiles_row_bd[i+1] = tiles_row_bd[i] + tiles_row_height[i]; } //(6-7) in ITU-T Rec. H.265 (04/2013) //j == ctbAddrRs for (int j = 0; j < num_ctbs; ++j) { int tileX = 0, tileY = 0; int tbX = j % encoder->in.width_in_lcu; int tbY = j / encoder->in.width_in_lcu; for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) { if (tbX >= tiles_col_bd[i]) tileX = i; } for (int i = 0; i < encoder->cfg.tiles_height_count; ++i) { if (tbY >= tiles_row_bd[i]) tileY = i; } tiles_ctb_addr_rs_to_ts[j] = 0; for (int i = 0; i < tileX; ++i) { tiles_ctb_addr_rs_to_ts[j] += tiles_row_height[tileY] * tiles_col_width[i]; } for (int i = 0; i < tileY; ++i) { tiles_ctb_addr_rs_to_ts[j] += encoder->in.width_in_lcu * tiles_row_height[i]; } tiles_ctb_addr_rs_to_ts[j] += (tbY - tiles_row_bd[tileY]) * tiles_col_width[tileX] + tbX - tiles_col_bd[tileX]; } //(6-8) in ITU-T Rec. H.265 (04/2013) //Make reverse map from tile scan to raster scan for (int j = 0; j < num_ctbs; ++j) { tiles_ctb_addr_ts_to_rs[tiles_ctb_addr_rs_to_ts[j]] = j; } //(6-9) in ITU-T Rec. H.265 (04/2013) int tileIdx = 0; for (int j = 0; j < encoder->cfg.tiles_height_count; ++j) { for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) { for (int y = tiles_row_bd[j]; y < tiles_row_bd[j+1]; ++y) { for (int x = tiles_col_bd[i]; x < tiles_col_bd[i+1]; ++x) { tiles_tile_id[tiles_ctb_addr_rs_to_ts[y * encoder->in.width_in_lcu + x]] = tileIdx; } } ++tileIdx; } } if (encoder->cfg.slices & KVZ_SLICES_WPP) { // Each WPP row will be put into a dependent slice. encoder->pps.dependent_slice_segments_enabled_flag = 1; } //Slices if (encoder->cfg.slices & KVZ_SLICES_TILES) { // Configure a single independent slice per tile. int *slice_addresses_in_ts; encoder->slice_count = encoder->cfg.tiles_width_count * encoder->cfg.tiles_height_count; encoder->slice_addresses_in_ts = slice_addresses_in_ts = MALLOC(int, encoder->slice_count); int slice_id = 0; for (int tile_row = 0; tile_row < encoder->cfg.tiles_height_count; ++tile_row) { for (int tile_col = 0; tile_col < encoder->cfg.tiles_width_count; ++tile_col) { int x = tiles_col_bd[tile_col]; int y = tiles_row_bd[tile_row]; int rs = y * encoder->in.width_in_lcu + x; int ts = tiles_ctb_addr_rs_to_ts[rs]; slice_addresses_in_ts[slice_id] = ts; slice_id += 1; } } } else { int *slice_addresses_in_ts; encoder->slice_count = encoder->cfg.slice_count; if (encoder->slice_count == 0) { encoder->slice_count = 1; encoder->slice_addresses_in_ts = slice_addresses_in_ts = MALLOC(int, encoder->slice_count); if (!slice_addresses_in_ts) goto init_failed; slice_addresses_in_ts[0] = 0; } else { encoder->slice_addresses_in_ts = slice_addresses_in_ts = MALLOC(int, encoder->slice_count); if (!slice_addresses_in_ts) goto init_failed; if (!cfg->slice_addresses_in_ts) { slice_addresses_in_ts[0] = 0; for (int i = 1; i < encoder->slice_count; ++i) { slice_addresses_in_ts[i] = encoder->in.width_in_lcu * encoder->in.height_in_lcu * i / encoder->slice_count; } } else { for (int i = 0; i < encoder->slice_count; ++i) { slice_addresses_in_ts[i] = cfg->slice_addresses_in_ts[i]; } } } } #ifdef _DEBUG_PRINT_THREADING_INFO printf("Tiles columns width:"); for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) { printf(" %d", encoder->tiles_col_width[i]); } printf("\n"); printf("Tiles row height:"); for (int i = 0; i < encoder->cfg.tiles_height_count; ++i) { printf(" %d", encoder->tiles_row_height[i]); } printf("\n"); //Print tile index map for (int y = 0; y < encoder->in.height_in_lcu; ++y) { for (int x = 0; x < encoder->in.width_in_lcu; ++x) { const int lcu_id_rs = y * encoder->in.width_in_lcu + x; const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs]; const char slice_start = kvz_lcu_at_slice_start(encoder, lcu_id_ts) ? '|' : ' '; const char slice_end = kvz_lcu_at_slice_end(encoder, lcu_id_ts) ? '|' : ' '; printf("%c%03d%c", slice_start, encoder->tiles_tile_id[lcu_id_ts], slice_end); } printf("\n"); } printf("\n"); if (encoder->cfg.wpp) { printf("Wavefront Parallel Processing: enabled\n"); } else { printf("Wavefront Parallel Processing: disabled\n"); } printf("\n"); #endif //KVZ_DEBUG } assert(WITHIN(encoder->cfg.pu_depth_inter.min, PU_DEPTH_INTER_MIN, PU_DEPTH_INTER_MAX)); assert(WITHIN(encoder->cfg.pu_depth_inter.max, PU_DEPTH_INTER_MIN, PU_DEPTH_INTER_MAX)); assert(WITHIN(encoder->cfg.pu_depth_intra.min, PU_DEPTH_INTRA_MIN, PU_DEPTH_INTRA_MAX)); assert(WITHIN(encoder->cfg.pu_depth_intra.max, PU_DEPTH_INTRA_MIN, PU_DEPTH_INTRA_MAX)); // Disable in-loop filters, sign hiding and transform skip when using // lossless coding. if (encoder->cfg.lossless) { encoder->cfg.deblock_enable = false; encoder->cfg.sao_enable = false; encoder->cfg.signhide_enable = false; encoder->cfg.trskip_enable = false; } // If fractional framerate is set, use that instead of the floating point framerate. if (encoder->cfg.framerate_num != 0) { encoder->vui.timing_info_present_flag = 1; encoder->vui.num_units_in_tick = encoder->cfg.framerate_denom; encoder->vui.time_scale = encoder->cfg.framerate_num; if (encoder->cfg.source_scan_type != KVZ_INTERLACING_NONE) { // when field_seq_flag=1, the time_scale and num_units_in_tick refer to // field rate rather than frame rate. encoder->vui.time_scale *= 2; } } if (encoder->cfg.vps_period >= 0) { encoder->cfg.vps_period = encoder->cfg.vps_period * encoder->cfg.intra_period; } else { encoder->cfg.vps_period = -1; } return encoder; init_failed: kvz_encoder_control_free(encoder); return NULL; } /** * \brief Free an encoder control structure. */ void kvz_encoder_control_free(encoder_control_t *const encoder) { if (!encoder) return; //Slices FREE_POINTER(encoder->slice_addresses_in_ts); //Tiles FREE_POINTER(encoder->tiles_col_width); FREE_POINTER(encoder->tiles_row_height); FREE_POINTER(encoder->tiles_col_bd); FREE_POINTER(encoder->tiles_row_bd); FREE_POINTER(encoder->tiles_ctb_addr_rs_to_ts); FREE_POINTER(encoder->tiles_ctb_addr_ts_to_rs); FREE_POINTER(encoder->tiles_tile_id); FREE_POINTER(encoder->cfg.roi.dqps); kvz_scalinglist_destroy(&encoder->scaling_list); if (encoder->threadqueue) { kvz_threadqueue_finalize(encoder->threadqueue); } FREE_POINTER(encoder->threadqueue); free(encoder); } void kvz_encoder_control_input_init(encoder_control_t * const encoder, const int32_t width, int32_t height) { // Halve for interlaced content if (encoder->in.source_scan_type != 0) height /= 2; encoder->in.width = width; encoder->in.height = height; encoder->in.real_width = width; encoder->in.real_height = height; // If input dimensions are not divisible by the smallest block size, add // pixels to the dimensions, so that they are. These extra pixels will be // compressed along with the real ones but they will be cropped out before // rendering. if (encoder->in.width % CU_MIN_SIZE_PIXELS) { encoder->in.width += CU_MIN_SIZE_PIXELS - (width % CU_MIN_SIZE_PIXELS); } if (encoder->in.height % CU_MIN_SIZE_PIXELS) { encoder->in.height += CU_MIN_SIZE_PIXELS - (height % CU_MIN_SIZE_PIXELS); } encoder->in.height_in_lcu = encoder->in.height / LCU_WIDTH; encoder->in.width_in_lcu = encoder->in.width / LCU_WIDTH; // Add one extra LCU when image not divisible by LCU_WIDTH if (encoder->in.height_in_lcu * LCU_WIDTH < height) { encoder->in.height_in_lcu++; } if (encoder->in.width_in_lcu * LCU_WIDTH < width) { encoder->in.width_in_lcu++; } encoder->in.pixels_per_pic = encoder->in.width * encoder->in.height; #ifdef KVZ_DEBUG if (width != encoder->in.width || height != encoder->in.height) { printf("Picture buffer has been extended to be a multiple of the smallest block size:\r\n"); printf(" Width = %d (%d), Height = %d (%d)\r\n", width, encoder->in.width, height, encoder->in.height); } #endif } /** * \brief Initialize GOP layer weights. * \return 1 on success, 0 on failure. * * Selects appropriate weights for layers according to the target bpp. * Only GOP structures with exactly four layers are supported. */ static int encoder_control_init_gop_layer_weights(encoder_control_t * const encoder) { kvz_gop_config const * const gop = encoder->cfg.gop; const int8_t gop_len = encoder->cfg.gop_len; int num_layers = 0; for (int i = 0; i < gop_len; ++i) { num_layers = MAX(gop[i].layer, num_layers); } switch (num_layers) { case 0: case 1: break; // Use the first layers of the 4-layer weights. case 2: case 3: case 4: if (encoder->cfg.gop_lowdelay) { // These weights are based on http://doi.org/10.1109/TIP.2014.2336550 // They are meant for lp-g4d3r4t1 gop, but work ok for others. if (encoder->target_avg_bpp <= 0.05) { encoder->gop_layer_weights[0] = 14; encoder->gop_layer_weights[1] = 3; encoder->gop_layer_weights[2] = 2; encoder->gop_layer_weights[3] = 1; } else if (encoder->target_avg_bpp <= 0.1) { encoder->gop_layer_weights[0] = 12; encoder->gop_layer_weights[1] = 3; encoder->gop_layer_weights[2] = 2; encoder->gop_layer_weights[3] = 1; } else if (encoder->target_avg_bpp <= 0.2) { encoder->gop_layer_weights[0] = 10; encoder->gop_layer_weights[1] = 3; encoder->gop_layer_weights[2] = 2; encoder->gop_layer_weights[3] = 1; } else { encoder->gop_layer_weights[0] = 6; encoder->gop_layer_weights[1] = 3; encoder->gop_layer_weights[2] = 2; encoder->gop_layer_weights[3] = 1; } } else { // These weights are from http://doi.org/10.1109/TIP.2014.2336550 if (encoder->target_avg_bpp <= 0.05) { encoder->gop_layer_weights[0] = 30; encoder->gop_layer_weights[1] = 8; encoder->gop_layer_weights[2] = 4; encoder->gop_layer_weights[3] = 1; } else if (encoder->target_avg_bpp <= 0.1) { encoder->gop_layer_weights[0] = 25; encoder->gop_layer_weights[1] = 7; encoder->gop_layer_weights[2] = 4; encoder->gop_layer_weights[3] = 1; } else if (encoder->target_avg_bpp <= 0.2) { encoder->gop_layer_weights[0] = 20; encoder->gop_layer_weights[1] = 6; encoder->gop_layer_weights[2] = 4; encoder->gop_layer_weights[3] = 1; } else { encoder->gop_layer_weights[0] = 15; encoder->gop_layer_weights[1] = 5; encoder->gop_layer_weights[2] = 4; encoder->gop_layer_weights[3] = 1; } } break; default: fprintf(stderr, "Unsupported number of GOP layers (%d)\n", num_layers); return 0; } // Normalize weights so that the sum of weights in a GOP is one. double sum_weights = 0; for (int i = 0; i < gop_len; ++i) { sum_weights += encoder->gop_layer_weights[gop[i].layer - 1]; } for (int i = 0; i < num_layers; ++i) { encoder->gop_layer_weights[i] /= sum_weights; } return 1; }