/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*
*/
#ifdef _WIN32
/* The following two defines must be located before the inclusion of any system header files. */
#define WINVER 0x0500
#define _WIN32_WINNT 0x0500
#include "global.h" // IWYU pragma: keep
#include /* _O_BINARY */
#include /* _setmode() */
#endif
#include
#include
#include
#include
#include
#include // IWYU pragma: keep for CLOCKS_PER_SEC
#include "checkpoint.h"
#include "cli.h"
#include "encoder.h"
#include "kvazaar.h"
#include "kvazaar_internal.h"
#include "threads.h"
#include "yuv_io.h"
/**
* \brief Open a file for reading.
*
* If the file is "-", stdin is used.
*
* \param filename name of the file to open or "-"
* \return the opened file or NULL if opening fails
*/
static FILE* open_input_file(const char* filename)
{
if (!strcmp(filename, "-")) return stdin;
return fopen(filename, "rb");
}
/**
* \brief Open a file for writing.
*
* If the file is "-", stdout is used.
*
* \param filename name of the file to open or "-"
* \return the opened file or NULL if opening fails
*/
static FILE* open_output_file(const char* filename)
{
if (!strcmp(filename, "-")) return stdout;
return fopen(filename, "wb");
}
static unsigned get_padding(unsigned width_or_height){
if (width_or_height % CU_MIN_SIZE_PIXELS){
return CU_MIN_SIZE_PIXELS - (width_or_height % CU_MIN_SIZE_PIXELS);
}else{
return 0;
}
}
/**
* \brief Value that is printed instead of PSNR when SSE is zero.
*/
static const double MAX_PSNR = 999.99;
static const double MAX_SQUARED_ERROR = (double)PIXEL_MAX * (double)PIXEL_MAX;
/**
* \brief Calculates image PSNR value
*
* \param src source picture
* \param rec reconstructed picture
* \prama psnr returns the PSNR
*/
static void compute_psnr(const kvz_picture *const src,
const kvz_picture *const rec,
double psnr[3])
{
assert(src->width == rec->width);
assert(src->height == rec->height);
int32_t pixels = src->width * src->height;
int colors = rec->chroma_format == KVZ_CSP_400 ? 1 : 3;
double sse[3] = { 0.0 };
for (int32_t c = 0; c < colors; ++c) {
int32_t num_pixels = pixels;
if (c != COLOR_Y) {
num_pixels >>= 2;
}
for (int32_t i = 0; i < num_pixels; ++i) {
const int32_t error = src->data[c][i] - rec->data[c][i];
sse[c] += error * error;
}
// Avoid division by zero
if (sse[c] == 0.0) {
psnr[c] = MAX_PSNR;
} else {
psnr[c] = 10.0 * log10(num_pixels * MAX_SQUARED_ERROR / sse[c]);
}
}
}
typedef struct {
// Semaphores for synchronization.
kvz_sem_t* available_input_slots;
kvz_sem_t* filled_input_slots;
// Parameters passed from main thread to input thread.
FILE* input;
const kvz_api *api;
const cmdline_opts_t *opts;
const encoder_control_t *encoder;
const uint8_t padding_x;
const uint8_t padding_y;
// Picture and thread status passed from input thread to main thread.
kvz_picture *img_in;
int retval;
} input_handler_args;
#define RETVAL_RUNNING 0
#define RETVAL_FAILURE 1
#define RETVAL_EOF 2
/**
* \brief Handles input reading in a thread
*
* \param in_args pointer to argument struct
*/
static void* input_read_thread(void* in_args)
{
// Reading a frame works as follows:
// - read full frame
// if progressive: set read frame as output
// if interlaced:
// - allocate two fields and fill them according to field order
// - deallocate the initial full frame
input_handler_args* args = (input_handler_args*)in_args;
kvz_picture *frame_in = NULL;
int retval = RETVAL_RUNNING;
int frames_read = 0;
for (;;) {
// Each iteration of this loop puts either a single frame or a field into
// args->img_in for main thread to process.
bool input_empty = !(args->opts->frames == 0 // number of frames to read is unknown
|| frames_read < args->opts->frames); // not all frames have been read
if (feof(args->input) || input_empty) {
retval = RETVAL_EOF;
goto done;
}
enum kvz_chroma_format csp = KVZ_FORMAT2CSP(args->opts->config->input_format);
frame_in = args->api->picture_alloc_csp(csp,
args->opts->config->width + args->padding_x,
args->opts->config->height + args->padding_y);
if (!frame_in) {
fprintf(stderr, "Failed to allocate image.\n");
retval = RETVAL_FAILURE;
goto done;
}
// Set PTS to make sure we pass it on correctly.
frame_in->pts = frames_read;
bool read_success = yuv_io_read(args->input,
args->opts->config->width,
args->opts->config->height,
args->encoder->cfg.input_bitdepth,
args->encoder->bitdepth,
frame_in);
if (!read_success) {
// reading failed
if (feof(args->input)) {
// When looping input, re-open the file and re-read data.
if (args->opts->loop_input && args->input != stdin) {
fclose(args->input);
args->input = fopen(args->opts->input, "rb");
if (args->input == NULL)
{
fprintf(stderr, "Could not re-open input file, shutting down!\n");
retval = RETVAL_FAILURE;
goto done;
}
bool read_success = yuv_io_read(args->input,
args->opts->config->width,
args->opts->config->height,
args->encoder->cfg.input_bitdepth,
args->encoder->bitdepth,
frame_in);
if (!read_success) {
fprintf(stderr, "Could not re-open input file, shutting down!\n");
retval = RETVAL_FAILURE;
goto done;
}
} else {
retval = RETVAL_EOF;
goto done;
}
} else {
fprintf(stderr, "Failed to read a frame %d\n", frames_read);
retval = RETVAL_FAILURE;
goto done;
}
}
frames_read++;
if (args->encoder->cfg.source_scan_type != 0) {
// Set source scan type for frame, so that it will be turned into fields.
frame_in->interlacing = args->encoder->cfg.source_scan_type;
}
// Wait until main thread is ready to receive the next frame.
kvz_sem_wait(args->available_input_slots);
args->img_in = frame_in;
args->retval = retval;
// Unlock main_thread_mutex to notify main thread that the new img_in
// and retval have been placed to args.
kvz_sem_post(args->filled_input_slots);
frame_in = NULL;
}
done:
// Wait until main thread is ready to receive the next frame.
kvz_sem_wait(args->available_input_slots);
args->img_in = NULL;
args->retval = retval;
// Unlock main_thread_mutex to notify main thread that the new img_in
// and retval have been placed to args.
kvz_sem_post(args->filled_input_slots);
// Do some cleaning up.
args->api->picture_free(frame_in);
pthread_exit(NULL);
return NULL;
}
void output_recon_pictures(const kvz_api *const api,
FILE *recout,
kvz_picture *buffer[KVZ_MAX_GOP_LENGTH],
int *buffer_size,
uint64_t *next_pts,
unsigned width,
unsigned height)
{
bool picture_written;
do {
picture_written = false;
for (int i = 0; i < *buffer_size; i++) {
kvz_picture *pic = buffer[i];
if (pic->pts == *next_pts) {
// Output the picture and remove it.
if (!yuv_io_write(recout, pic, width, height)) {
fprintf(stderr, "Failed to write reconstructed picture!\n");
}
api->picture_free(pic);
picture_written = true;
(*next_pts)++;
// Move rest of the pictures one position backward.
for (i++; i < *buffer_size; i++) {
buffer[i - 1] = buffer[i];
buffer[i] = NULL;
}
(*buffer_size)--;
}
}
} while (picture_written);
}
/**
* \brief Program main function.
* \param argc Argument count from commandline
* \param argv Argument list
* \return Program exit state
*/
int main(int argc, char *argv[])
{
int retval = EXIT_SUCCESS;
cmdline_opts_t *opts = NULL; //!< Command line options
kvz_encoder* enc = NULL;
FILE *input = NULL; //!< input file (YUV)
FILE *output = NULL; //!< output file (HEVC NAL stream)
FILE *recout = NULL; //!< reconstructed YUV output, --debug
clock_t start_time = clock();
clock_t encoding_start_cpu_time;
KVZ_CLOCK_T encoding_start_real_time;
clock_t encoding_end_cpu_time;
KVZ_CLOCK_T encoding_end_real_time;
// PTS of the reconstructed picture that should be output next.
// Only used with --debug.
uint64_t next_recon_pts = 0;
// Buffer for storing reconstructed pictures that are not to be output
// yet (i.e. in wrong order because GOP is used).
// Only used with --debug.
kvz_picture *recon_buffer[KVZ_MAX_GOP_LENGTH] = { NULL };
int recon_buffer_size = 0;
// Semaphores for synchronizing the input reader thread and the main
// thread.
//
// available_input_slots tells whether the main thread is currently using
// input_handler_args.img_in. (0 = in use, 1 = not in use)
//
// filled_input_slots tells whether there is a new input picture (or NULL
// if the input has ended) in input_handler_args.img_in placed by the
// input reader thread. (0 = no new image, 1 = one new image)
//
kvz_sem_t *available_input_slots = NULL;
kvz_sem_t *filled_input_slots = NULL;
#ifdef _WIN32
// Stderr needs to be text mode to convert \n to \r\n in Windows.
setmode( _fileno( stderr ), _O_TEXT );
#endif
CHECKPOINTS_INIT();
const kvz_api * const api = kvz_api_get(8);
opts = cmdline_opts_parse(api, argc, argv);
// If problem with command line options, print banner and shutdown.
if (!opts) {
print_usage();
goto exit_failure;
}
if (opts->version) {
print_version();
goto done;
}
if (opts->help) {
print_help();
goto done;
}
input = open_input_file(opts->input);
if (input == NULL) {
fprintf(stderr, "Could not open input file, shutting down!\n");
goto exit_failure;
}
output = open_output_file(opts->output);
if (output == NULL) {
fprintf(stderr, "Could not open output file, shutting down!\n");
goto exit_failure;
}
#ifdef _WIN32
// Set stdin and stdout to binary for pipes.
if (input == stdin) {
_setmode(_fileno(stdin), _O_BINARY);
}
if (output == stdout) {
_setmode(_fileno(stdout), _O_BINARY);
}
#endif
if (opts->debug != NULL) {
recout = open_output_file(opts->debug);
if (recout == NULL) {
fprintf(stderr, "Could not open reconstruction file (%s), shutting down!\n", opts->debug);
goto exit_failure;
}
}
enc = api->encoder_open(opts->config);
if (!enc) {
fprintf(stderr, "Failed to open encoder.\n");
goto exit_failure;
}
const encoder_control_t *encoder = enc->control;
fprintf(stderr, "Input: %s, output: %s\n", opts->input, opts->output);
fprintf(stderr, " Video size: %dx%d (input=%dx%d)\n",
encoder->in.width, encoder->in.height,
encoder->in.real_width, encoder->in.real_height);
if (opts->seek > 0 && !yuv_io_seek(input, opts->seek, opts->config->width, opts->config->height)) {
fprintf(stderr, "Failed to seek %d frames.\n", opts->seek);
goto exit_failure;
}
//Now, do the real stuff
{
KVZ_GET_TIME(&encoding_start_real_time);
encoding_start_cpu_time = clock();
uint64_t bitstream_length = 0;
uint32_t frames_done = 0;
double psnr_sum[3] = { 0.0, 0.0, 0.0 };
// how many bits have been written this second? used for checking if framerate exceeds level's limits
uint64_t bits_this_second = 0;
// the amount of frames have been encoded in this second of video. can be non-integer value if framerate is non-integer value
unsigned frames_this_second = 0;
const float framerate = ((float)encoder->cfg.framerate_num) / ((float)encoder->cfg.framerate_denom);
uint8_t padding_x = get_padding(opts->config->width);
uint8_t padding_y = get_padding(opts->config->height);
pthread_t input_thread;
available_input_slots = calloc(1, sizeof(kvz_sem_t));
filled_input_slots = calloc(1, sizeof(kvz_sem_t));
kvz_sem_init(available_input_slots, 0);
kvz_sem_init(filled_input_slots, 0);
// Give arguments via struct to the input thread
input_handler_args in_args = {
.available_input_slots = available_input_slots,
.filled_input_slots = filled_input_slots,
.input = input,
.api = api,
.opts = opts,
.encoder = encoder,
.padding_x = padding_x,
.padding_y = padding_y,
.img_in = NULL,
.retval = RETVAL_RUNNING,
};
in_args.available_input_slots = available_input_slots;
in_args.filled_input_slots = filled_input_slots;
if (pthread_create(&input_thread, NULL, input_read_thread, (void*)&in_args) != 0) {
fprintf(stderr, "pthread_create failed!\n");
assert(0);
return 0;
}
kvz_picture *cur_in_img;
for (;;) {
// Skip mutex locking if the input thread does not exist.
if (in_args.retval == RETVAL_RUNNING) {
// Increase available_input_slots so that the input thread can
// write the new img_in and retval to in_args.
kvz_sem_post(available_input_slots);
// Wait until the input thread has updated in_args and then
// decrease filled_input_slots.
kvz_sem_wait(filled_input_slots);
cur_in_img = in_args.img_in;
in_args.img_in = NULL;
} else {
cur_in_img = NULL;
}
if (in_args.retval == EXIT_FAILURE) {
goto exit_failure;
}
kvz_data_chunk* chunks_out = NULL;
kvz_picture *img_rec = NULL;
kvz_picture *img_src = NULL;
uint32_t len_out = 0;
kvz_frame_info info_out;
if (!api->encoder_encode(enc,
cur_in_img,
&chunks_out,
&len_out,
&img_rec,
&img_src,
&info_out)) {
fprintf(stderr, "Failed to encode image.\n");
api->picture_free(cur_in_img);
goto exit_failure;
}
if (chunks_out == NULL && cur_in_img == NULL) {
// We are done since there is no more input and output left.
break;
}
if (chunks_out != NULL) {
uint64_t written = 0;
// Write data into the output file.
for (kvz_data_chunk *chunk = chunks_out;
chunk != NULL;
chunk = chunk->next) {
assert(written + chunk->len <= len_out);
if (fwrite(chunk->data, sizeof(uint8_t), chunk->len, output) != chunk->len) {
fprintf(stderr, "Failed to write data to file.\n");
api->picture_free(cur_in_img);
api->chunk_free(chunks_out);
goto exit_failure;
}
written += chunk->len;
}
fflush(output);
bitstream_length += len_out;
// the level's bitrate check
frames_this_second += 1;
if ((float)frames_this_second >= framerate) {
// if framerate <= 1 then we go here always
// how much of the bits of the last frame belonged to the next second
uint64_t leftover_bits = (uint64_t)((double)len_out * ((double)frames_this_second - framerate));
// the latest frame is counted for the amount that it contributed to this current second
bits_this_second += len_out - leftover_bits;
if (bits_this_second > encoder->cfg.max_bitrate) {
fprintf(stderr, "Level warning: This %s's bitrate (%llu bits/s) reached the maximum bitrate (%u bits/s) of %s tier level %g.",
framerate >= 1.0f ? "second" : "frame",
(unsigned long long) bits_this_second,
encoder->cfg.max_bitrate,
encoder->cfg.high_tier ? "high" : "main",
(float)encoder->cfg.level / 10.0f );
}
if (framerate > 1.0f) {
// leftovers for the next second
bits_this_second = leftover_bits;
} else {
// one or more next seconds are from this frame and their bitrate is the same or less as this frame's
bits_this_second = 0;
}
frames_this_second = 0;
} else {
bits_this_second += len_out;
}
// Compute and print stats.
double frame_psnr[3] = { 0.0, 0.0, 0.0 };
if (encoder->cfg.calc_psnr && encoder->cfg.source_scan_type == KVZ_INTERLACING_NONE) {
// Do not compute PSNR for interlaced frames, because img_rec does not contain
// the deinterlaced frame yet.
compute_psnr(img_src, img_rec, frame_psnr);
}
if (recout) {
// Since chunks_out was not NULL, img_rec should have been set.
assert(img_rec);
// Move img_rec to the recon buffer.
assert(recon_buffer_size < KVZ_MAX_GOP_LENGTH);
recon_buffer[recon_buffer_size++] = img_rec;
img_rec = NULL;
// Try to output some reconstructed pictures.
output_recon_pictures(api,
recout,
recon_buffer,
&recon_buffer_size,
&next_recon_pts,
opts->config->width,
opts->config->height);
}
frames_done += 1;
psnr_sum[0] += frame_psnr[0];
psnr_sum[1] += frame_psnr[1];
psnr_sum[2] += frame_psnr[2];
print_frame_info(&info_out, frame_psnr, len_out, encoder->cfg.calc_psnr);
}
api->picture_free(cur_in_img);
api->chunk_free(chunks_out);
api->picture_free(img_rec);
api->picture_free(img_src);
}
KVZ_GET_TIME(&encoding_end_real_time);
encoding_end_cpu_time = clock();
// Coding finished
// All reconstructed pictures should have been output.
assert(recon_buffer_size == 0);
// Print statistics of the coding
fprintf(stderr, " Processed %d frames, %10llu bits",
frames_done,
(long long unsigned int)bitstream_length * 8);
if (encoder->cfg.calc_psnr && frames_done > 0) {
fprintf(stderr, " AVG PSNR Y %2.4f U %2.4f V %2.4f",
psnr_sum[0] / frames_done,
psnr_sum[1] / frames_done,
psnr_sum[2] / frames_done);
}
fprintf(stderr, "\n");
fprintf(stderr, " Total CPU time: %.3f s.\n", ((float)(clock() - start_time)) / CLOCKS_PER_SEC);
{
double encoding_time = ( (double)(encoding_end_cpu_time - encoding_start_cpu_time) ) / (double) CLOCKS_PER_SEC;
double wall_time = KVZ_CLOCK_T_AS_DOUBLE(encoding_end_real_time) - KVZ_CLOCK_T_AS_DOUBLE(encoding_start_real_time);
fprintf(stderr, " Encoding time: %.3f s.\n", encoding_time);
fprintf(stderr, " Encoding wall time: %.3f s.\n", wall_time);
double encoding_cpu = encoding_time / wall_time * 100.f;
#ifdef _WIN32
if (encoding_cpu > 100) encoding_cpu = 100;
#endif
fprintf(stderr, " Encoding CPU usage: %.2f%%\n", encoding_cpu);
fprintf(stderr, " FPS: %.2f\n", ((double)frames_done)/wall_time);
double bitrate = (bitstream_length * 8 * (double)(encoder->cfg.framerate_num / encoder->cfg.framerate_denom) / 1024 / frames_done / 1024);
fprintf(stderr, " Bitrate: %.3f mbps\n", bitrate);
fprintf(stderr, " AVG QP: %.1f\n", (double)(return_sum_of_qps() /frames_done));
}
pthread_join(input_thread, NULL);
}
goto done;
exit_failure:
retval = EXIT_FAILURE;
done:
// destroy semaphores
if (available_input_slots) kvz_sem_destroy(available_input_slots);
if (filled_input_slots) kvz_sem_destroy(filled_input_slots);
FREE_POINTER(available_input_slots);
FREE_POINTER(filled_input_slots);
// deallocate structures
if (enc) api->encoder_close(enc);
if (opts) cmdline_opts_free(api, opts);
// close files
if (input) fclose(input);
if (output) fclose(output);
if (recout) fclose(recout);
CHECKPOINTS_FINALIZE();
return retval;
}