/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "filter.h" #include #include "cu.h" #include "encoder.h" #include "kvazaar.h" #include "transform.h" #include "videoframe.h" ////////////////////////////////////////////////////////////////////////// // INITIALIZATIONS const uint16_t kvz_g_tc_table_8x8[66] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 8, 9, 10, 10, 11, 13, 14, 15, 17, 19, 21, 24, 25, 29, 33, 36, 41, 45, 51, 57, 64, 71, 80, 89, 100, 112, 125, 141, 157, 177, 198, 222, 250, 280, 314, 352, 395 }; const uint8_t kvz_g_beta_table_8x8[64] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88 }; const int8_t kvz_g_luma_filter[4][8] = { { 0, 0, 0, 64, 0, 0, 0, 0 }, { -1, 4, -10, 58, 17, -5, 1, 0 }, { -1, 4, -11, 40, 40, -11, 4, -1 }, { 0, 1, -5, 17, 58, -10, 4, -1 } }; const int8_t kvz_g_chroma_filter[8][4] = { { 0, 64, 0, 0 }, { -2, 58, 10, -2 }, { -4, 54, 16, -2 }, { -6, 46, 28, -4 }, { -4, 36, 36, -4 }, { -4, 28, 46, -6 }, { -2, 16, 54, -4 }, { -2, 10, 58, -2 } }; ////////////////////////////////////////////////////////////////////////// // FUNCTIONS /** * \brief Perform in strong luma filtering in place. * \param line line of 8 pixels, with center at index 4 * \param tc tc treshold * \return Reach of the filter starting from center. */ static INLINE int kvz_filter_deblock_luma_strong( kvz_pixel *line, int32_t tc) { const kvz_pixel m0 = line[0]; const kvz_pixel m1 = line[1]; const kvz_pixel m2 = line[2]; const kvz_pixel m3 = line[3]; const kvz_pixel m4 = line[4]; const kvz_pixel m5 = line[5]; const kvz_pixel m6 = line[6]; const kvz_pixel m7 = line[7]; const uint8_t tcW[3] = { 3, 2, 1 }; //Wheights for tc line[1] = CLIP(m1 - tcW[2]*tc, m1 + tcW[2]*tc, (2*m0 + 3*m1 + m2 + m3 + m4 + 4) >> 3); line[2] = CLIP(m2 - tcW[1]*tc, m2 + tcW[1]*tc, ( m1 + m2 + m3 + m4 + 2) >> 2); line[3] = CLIP(m3 - tcW[0]*tc, m3 + tcW[0]*tc, ( m1 + 2*m2 + 2*m3 + 2*m4 + m5 + 4) >> 3); line[4] = CLIP(m4 - tcW[0]*tc, m4 + tcW[0]*tc, ( m2 + 2*m3 + 2*m4 + 2*m5 + m6 + 4) >> 3); line[5] = CLIP(m5 - tcW[1]*tc, m5 + tcW[1]*tc, ( m3 + m4 + m5 + m6 + 2) >> 2); line[6] = CLIP(m6 - tcW[2]*tc, m6 + tcW[2]*tc, ( m3 + m4 + m5 + 3*m6 + 2*m7 + 4) >> 3); return 3; } /** * \brief Perform in weak luma filtering in place. * \param encoder Encoder * \param line Line of 8 pixels, with center at index 4 * \param tc The tc treshold * \param p_2nd Whether to filter the 2nd line of P * \param q_2nd Whether to filter the 2nd line of Q */ static INLINE int kvz_filter_deblock_luma_weak( const encoder_control_t * const encoder, kvz_pixel *line, int32_t tc, bool p_2nd, bool q_2nd) { const kvz_pixel m1 = line[1]; const kvz_pixel m2 = line[2]; const kvz_pixel m3 = line[3]; const kvz_pixel m4 = line[4]; const kvz_pixel m5 = line[5]; const kvz_pixel m6 = line[6]; int32_t delta = (9 * (m4 - m3) - 3 * (m5 - m2) + 8) >> 4; if (abs(delta) >= tc * 10) { return 0; } else { int32_t tc2 = tc >> 1; delta = CLIP(-tc, tc, delta); line[3] = CLIP(0, (1 << encoder->bitdepth) - 1, (m3 + delta)); line[4] = CLIP(0, (1 << encoder->bitdepth) - 1, (m4 - delta)); if (p_2nd) { int32_t delta1 = CLIP(-tc2, tc2, (((m1 + m3 + 1) >> 1) - m2 + delta) >> 1); line[2] = CLIP(0, (1 << encoder->bitdepth) - 1, m2 + delta1); } if (q_2nd) { int32_t delta2 = CLIP(-tc2, tc2, (((m6 + m4 + 1) >> 1) - m5 - delta) >> 1); line[5] = CLIP(0, (1 << encoder->bitdepth) - 1, m5 + delta2); } if (p_2nd || q_2nd) { return 2; } else { return 1; } } } /** * \brief Performe strong/weak filtering for chroma */ static INLINE void kvz_filter_deblock_chroma(const encoder_control_t * const encoder, kvz_pixel *src, int32_t offset, int32_t tc, int8_t part_P_nofilter, int8_t part_Q_nofilter, bool sw, bool large_boundary, bool is_chroma_hor_CTB_boundary) { int32_t delta; int16_t m0 = src[-offset * 4]; int16_t m1 = src[-offset * 3]; int16_t m2 = src[-offset * 2]; int16_t m3 = src[-offset]; int16_t m4 = src[0]; int16_t m5 = src[offset]; int16_t m6 = src[offset * 2]; int16_t m7 = src[offset * 3]; if (sw) { if (is_chroma_hor_CTB_boundary) { src[-offset * 1] = CLIP(m3 - tc, m3 + tc, (3 * m2 + 2 * m3 + m4 + m5 + m6 + 4) >> 3); src[0] = CLIP(m4 - tc, m4 + tc, (2 * m2 + m3 + 2 * m4 + m5 + m6 + m7 + 4) >> 3); } else { src[-offset * 3] = CLIP(m1 - tc, m1 + tc, (3 * m0 + 2 * m1 + m2 + m3 + m4 + 4) >> 3); src[-offset * 2] = CLIP(m2 - tc, m2 + tc, (2 * m0 + m1 + 2 * m2 + m3 + m4 + m5 + 4) >> 3); src[-offset * 1] = CLIP(m3 - tc, m3 + tc, (m0 + m1 + m2 + 2 * m3 + m4 + m5 + m6 + 4) >> 3); src[0] = CLIP(m4 - tc, m4 + tc, (m1 + m2 + m3 + 2 * m4 + m5 + m6 + m7 + 4) >> 3); } src[offset * 1] = CLIP(m5 - tc, m5 + tc, (m2 + m3 + m4 + 2 * m5 + m6 + 2 * m7 + 4) >> 3); src[offset * 2] = CLIP(m6 - tc, m6 + tc, (m3 + m4 + m5 + 2 * m6 + 3 * m7 + 4) >> 3); } else { delta = CLIP(-tc, tc, (((m4 - m3) * 4) + m2 - m5 + 4) >> 3); src[-offset] = CLIP(0, (1 << encoder->bitdepth) - 1, m3 + delta); src[0] = CLIP(0, (1 << encoder->bitdepth) - 1, m4 - delta); } if (part_P_nofilter) { if (large_boundary) { src[-offset * 3] = m1; src[-offset * 2] = m2; } src[-offset * 1] = m3; } if (part_Q_nofilter) { if (large_boundary) { src[offset * 1] = m5; src[offset * 2] = m6; } src[0] = m4; } } /** * \brief Check whether an edge is a TU boundary. * * \param state encoder state * \param x x-coordinate of the scu in pixels * \param y y-coordinate of the scu in pixels * \param dir direction of the edge to check * \return true, if the edge is a TU boundary, otherwise false */ static bool is_tu_boundary(const encoder_state_t *const state, int32_t x, int32_t y, edge_dir dir) { const cu_info_t *const scu = kvz_cu_array_at_const(state->tile->frame->cu_array, x, y); const int tu_width = LCU_WIDTH >> scu->tr_depth; if (dir == EDGE_HOR) { return (y & (tu_width - 1)) == 0; } else { return (x & (tu_width - 1)) == 0; } } /** * \brief Check whether an edge is a PU boundary. * * \param state encoder state * \param x x-coordinate of the scu in pixels * \param y y-coordinate of the scu in pixels * \param dir direction of the edge to check * \return true, if the edge is a TU boundary, otherwise false */ static bool is_pu_boundary(const encoder_state_t *const state, int32_t x, int32_t y, edge_dir dir) { const cu_info_t *const scu = kvz_cu_array_at_const(state->tile->frame->cu_array, x, y); // Get the containing CU. const int32_t cu_width = LCU_WIDTH >> scu->depth; const int32_t x_cu = x & ~(cu_width - 1); const int32_t y_cu = y & ~(cu_width - 1); const cu_info_t *const cu = kvz_cu_array_at_const(state->tile->frame->cu_array, x_cu, y_cu); const int num_pu = kvz_part_mode_num_parts[cu->part_size]; for (int i = 0; i < num_pu; i++) { if (dir == EDGE_HOR) { int y_pu = PU_GET_Y(cu->part_size, cu_width, y_cu, i); if (y_pu == y) return true; } else { int x_pu = PU_GET_X(cu->part_size, cu_width, x_cu, i); if (x_pu == x) return true; } } return false; } /** * \brief Check whether an edge is aligned on a 8x8 grid. * * \param x x-coordinate of the edge * \param y y-coordinate of the edge * \param dir direction of the edge * \return true, if the edge is aligned on a 8x8 grid, otherwise false */ static bool is_on_8x8_grid(int x, int y, edge_dir dir) { if (dir == EDGE_HOR) { return (y & 7) == 0 && (x & 2) == 0; } else { return (x & 7) == 0 && (y & 2) == 0; } } static int8_t get_qp_y_pred(const encoder_state_t* state, int x, int y, edge_dir dir) { if (state->encoder_control->max_qp_delta_depth < 0) { return state->qp; } int32_t qp_p; if (dir == EDGE_HOR && y > 0) { qp_p = kvz_cu_array_at_const(state->tile->frame->cu_array, x, y - 1)->qp; } else if (dir == EDGE_VER && x > 0) { qp_p = kvz_cu_array_at_const(state->tile->frame->cu_array, x - 1, y)->qp; } else { // TODO: This seems to be dead code. Investigate. qp_p = state->encoder_control->cfg.set_qp_in_cu ? 26 : state->frame->QP; } const int32_t qp_q = kvz_cu_array_at_const(state->tile->frame->cu_array, x, y)->qp; return (qp_p + qp_q + 1) >> 1; } /** * \brief Gather pixels needed for deblocking */ static INLINE void gather_deblock_pixels( const kvz_pixel *src, int step, int stride, int reach, kvz_pixel *dst) { for (int i = -reach; i < +reach; ++i) { dst[i + 4] = src[i * step + stride]; } } /** * \brief Scatter pixels */ static INLINE void scatter_deblock_pixels( const kvz_pixel *src, int step, int stride, int reach, kvz_pixel *dst) { for (int i = -reach; i < +reach; ++i) { dst[i * step + stride] = src[i + 4]; } } /** * \brief Perform large block strong luma filtering in place. * \param line line of 8 pixels, with center at index 4 * \param lineL extended pixels with P pixels in [0,3] and Q pixels in [4,7] * \param tc tc treshold * \param filter_length_P filter length in the P block * \param filter_length_Q filter length in the Q block * \return Reach of the filter starting from center. */ static INLINE int kvz_filter_deblock_large_block(kvz_pixel *line, kvz_pixel *lineL, const int32_t tc, const uint8_t filter_length_P, const uint8_t filter_length_Q) { int ref_P = 0; int ref_Q = 0; int ref_middle = 0; const int coeffs7[7] = { 59, 50, 41, 32, 23, 14, 5 }; const int coeffs5[5] = { 58, 45, 32, 19, 6 }; const int coeffs3[3] = { 53, 32, 11 }; const int *coeffs_P = NULL; const int *coeffs_Q = NULL; //Form P/Q arrays that contain all of the samples to make things simpler later const kvz_pixel lineP[8] = { line[3], line[2], line[1], line[0], lineL[3], lineL[2], lineL[1], lineL[0] }; const kvz_pixel lineQ[8] = { line[4], line[5], line[6], line[7], lineL[4], lineL[5], lineL[6], lineL[7] }; //Separate destination arrays with only six output pixels going in line and rest to lineL to simplify things later kvz_pixel* dstP[7] = { line + 3, line + 2, line + 1, lineL + 3, lineL + 2, lineL + 1, lineL + 0 }; kvz_pixel* dstQ[7] = { line + 4, line + 5, line + 6, lineL + 4, lineL + 5, lineL + 6, lineL + 7 }; //Get correct filter coeffs and Q/P end samples switch (filter_length_P) { case 7: ref_P = (lineP[6] + lineP[7] + 1) >> 1; coeffs_P = coeffs7; break; case 5: ref_P = (lineP[4] + lineP[5] + 1) >> 1; coeffs_P = coeffs5; break; case 3: ref_P = (lineP[2] + lineP[3] + 1) >> 1; coeffs_P = coeffs3; break; } switch (filter_length_Q) { case 7: ref_Q = (lineQ[6] + lineQ[7] + 1) >> 1; coeffs_Q = coeffs7; break; case 5: ref_Q = (lineQ[4] + lineQ[5] + 1) >> 1; coeffs_Q = coeffs5; break; case 3: ref_Q = (lineQ[2] + lineQ[3] + 1) >> 1; coeffs_Q = coeffs3; break; } //Get middle samples if (filter_length_P == filter_length_Q) { if (filter_length_P == 7) { ref_middle = (lineP[6] + lineP[5] + lineP[4] + lineP[3] + lineP[2] + lineP[1] + 2 * (lineP[0] + lineQ[0]) + lineQ[1] + lineQ[2] + lineQ[3] + lineQ[4] + lineQ[5] + lineQ[6] + 8) >> 4; } else { //filter_length_P == 5 ref_middle = (lineP[4] + lineP[3] + 2 * (lineP[2] + lineP[1] + lineP[0] + lineQ[0] + lineQ[1] + lineQ[2]) + lineQ[3] + lineQ[4] + 8) >> 4; } } else { const uint8_t lenS = MIN(filter_length_P, filter_length_Q); const uint8_t lenL = MAX(filter_length_P, filter_length_Q); const kvz_pixel *refS = filter_length_P < filter_length_Q ? lineP : lineQ; const kvz_pixel *refL = filter_length_P < filter_length_Q ? lineQ : lineP; if (lenL == 7 && lenS == 5) { ref_middle = (lineP[5] + lineP[4] + lineP[3] + lineP[2] + 2 * (lineP[1] + lineP[0] + lineQ[0] + lineQ[1]) + lineQ[2] + lineQ[3] + lineQ[4] + lineQ[5] + 8) >> 4; } else if (lenL == 7 && lenS == 3) { ref_middle = (3 * refS[0] + 2 * refL[0] + 3 * refS[1] + refL[1] + 2 * refS[2] + refL[2] + refL[3] + refL[4] + refL[5] + refL[6] + 8) >> 4; } else { //lenL == 5 && lenS == 3 ref_middle = (lineP[3] + lineP[2] + lineP[1] + lineP[0] + lineQ[0] + lineQ[1] + lineQ[2] + lineQ[3] + 4) >> 3; } } //Filter pixels in the line const uint8_t tc7[7] = { 6, 5, 4, 3, 2, 1, 1 }; const uint8_t tc3[3] = { 6, 4, 2 }; const uint8_t *tc_coeff_P = (filter_length_P == 3) ? tc3 : tc7; const uint8_t *tc_coeff_Q = (filter_length_Q == 3) ? tc3 : tc7; for (size_t i = 0; i < filter_length_P; i++) { int range = (tc * tc_coeff_P[i]) >> 1; *dstP[i] = CLIP(lineP[i] - range, lineP[i] + range, (ref_middle * coeffs_P[i] + ref_P * (64 - coeffs_P[i]) + 32) >> 6); } for (size_t i = 0; i < filter_length_Q; i++) { int range = (tc * tc_coeff_Q[i]) >> 1; *dstQ[i] = CLIP(lineQ[i] - range, lineQ[i] + range, (ref_middle * coeffs_Q[i] + ref_Q * (64 - coeffs_Q[i]) + 32) >> 6); } return 3; } /** * \brief Determine if strong or weak filtering should be used */ static INLINE bool use_strong_filtering(const kvz_pixel * const b0, const kvz_pixel * const b3, const kvz_pixel * const b0L, const kvz_pixel * const b3L, const int_fast32_t dp0, const int_fast32_t dq0, const int_fast32_t dp3, const int_fast32_t dq3, const int32_t tc, const int32_t beta, const bool is_side_P_large, const bool is_side_Q_large, const uint8_t max_filter_length_P, const uint8_t max_filter_length_Q, const bool is_chroma_CTB_boundary) { int_fast32_t sp0 = is_chroma_CTB_boundary ? abs(b0[2] - b0[3]) : abs(b0[0] - b0[3]); int_fast32_t sp3 = is_chroma_CTB_boundary ? abs(b3[2] - b3[3]) : abs(b3[0] - b3[3]); if (is_side_P_large || is_side_Q_large) { //Large block decision int_fast32_t sq0 = abs(b0[4] - b0[7]); int_fast32_t sq3 = abs(b3[4] - b3[7]); kvz_pixel tmp0, tmp3; if (is_side_P_large) { if (max_filter_length_P == 7) { tmp0 = b0L[0]; tmp3 = b3L[0]; sp0 = sp0 + abs(b0L[3] - b0L[2] - b0L[1] + tmp0); sp3 = sp3 + abs(b3L[3] - b3L[2] - b3L[1] + tmp3); } else { tmp0 = b0L[2]; tmp3 = b3L[2]; } sp0 = (sp0 + abs(b0[0] - tmp0) + 1) >> 1; sp3 = (sp3 + abs(b3[0] - tmp3) + 1) >> 1; } if (is_side_Q_large) { if (max_filter_length_Q == 7) { tmp0 = b0L[7]; tmp3 = b3L[7]; sq0 = sq0 + abs(b0L[4] - b0L[5] - b0L[6] + tmp0); sq3 = sq3 + abs(b3L[4] - b3L[5] - b3L[6] + tmp3); } else { tmp0 = b0L[5]; tmp3 = b3L[5]; } sq0 = (sq0 + abs(tmp0 - b0[7]) + 1) >> 1; sq3 = (sq3 + abs(tmp3 - b3[7]) + 1) >> 1; } return 2 * (dp0 + dq0) < beta >> 4 && 2 * (dp3 + dq3) < beta >> 4 && abs(b0[3] - b0[4]) < (5 * tc + 1) >> 1 && abs(b3[3] - b3[4]) < (5 * tc + 1) >> 1 && sp0 + sq0 < (beta * 3 >> 5) && sp3 + sq3 < (beta * 3 >> 5); } else { //Normal decision return 2 * (dp0 + dq0) < beta >> 2 && 2 * (dp3 + dq3) < beta >> 2 && abs(b0[3] - b0[4]) < (5 * tc + 1) >> 1 && abs(b3[3] - b3[4]) < (5 * tc + 1) >> 1 && sp0 + abs(b0[4] - b0[7]) < beta >> 3 && sp3 + abs(b3[4] - b3[7]) < beta >> 3; } } static INLINE void get_max_filter_length(uint8_t *filt_len_P, uint8_t *filt_len_Q, const encoder_state_t * const state, const uint32_t x, const uint32_t y, const edge_dir dir, const bool transform_edge, const int tu_size_P_side, const int tu_size_Q_side, const int pu_pos, const int pu_size, const bool merge_flag, const color_t comp) { //const int tu_size_P_side = 0; //const int tu_size_Q_side = 0; //const int size = 0; const int x_mul = dir == EDGE_HOR ? 0 : 1; const int y_mul = dir == EDGE_HOR ? 1 : 0; const int pos = dir == EDGE_HOR ? y : x; const int len = EDGE_HOR ? state->tile->frame->height : state->tile->frame->width; //const bool transform_edge = is_tu_boundary(state, x, y, dir); bool transform_edge_4x4[2] = { false, false }; bool transform_edge_8x8[2] = { false, false }; if (pos >= 4) transform_edge_4x4[0] = is_tu_boundary(state, x - x_mul * 4, y - y_mul * 4, dir); if (pos >= 8) transform_edge_8x8[0] = is_tu_boundary(state, x - x_mul * 8, y - y_mul * 8, dir); if (pos + 4 < len) transform_edge_4x4[1] = is_tu_boundary(state, x + x_mul * 4, y + y_mul * 4, dir); if (pos + 8 < len) transform_edge_8x8[1] = is_tu_boundary(state, x + x_mul * 8, y + y_mul * 8, dir); if (comp == COLOR_Y) { if (tu_size_P_side <= 4 || tu_size_Q_side <= 4){ *filt_len_P = 1; *filt_len_Q = 1; } else { *filt_len_P = tu_size_P_side >= 32 ? 7 : 3; *filt_len_Q = tu_size_Q_side >= 32 ? 7 : 3; } if ((merge_flag && false) || false) //TODO: Add merge_mode == SUBPU_ATMVP and cu.affine { if (transform_edge) { *filt_len_Q = MIN(*filt_len_Q, 5); if (pu_pos > 0) { *filt_len_P = MIN(*filt_len_P, 5); } } else if (pu_pos > 0 && (transform_edge_4x4[0] || (pu_pos + 4) >= pu_size || transform_edge_4x4[1])) { //adjacent to transform edge (4x4 grid) *filt_len_P = 1; *filt_len_Q = 1; } else if (pu_pos > 0 && (pu_pos == 8 || transform_edge_8x8[0] || (pu_pos + 8) >= pu_size || transform_edge_8x8[1])) { //adjacent to transform edge (8x8 grid) *filt_len_P = 2; *filt_len_Q = 2; } else { *filt_len_P = 3; *filt_len_Q = 3; } } } else { *filt_len_P = (tu_size_P_side >= 8 && tu_size_Q_side >= 8) ? 3 : 1; *filt_len_Q = (tu_size_P_side >= 8 && tu_size_Q_side >= 8) ? 3 : 1; } } /** * \brief Apply the deblocking filter to luma pixels on a single edge. * * The caller should check that the edge is a TU boundary or a PU boundary. * \verbatim .-- filter this edge if dir == EDGE_HOR v +--------+ |o <-- pixel at (x, y) | | |<-- filter this edge if dir == EDGE_VER | | +--------+ \endverbatim * * \param state encoder state * \param x x-coordinate in pixels (see above) * \param y y-coordinate in pixels (see above) * \param length length of the edge in pixels * \param dir direction of the edge to filter * \param tu_boundary whether the edge is a TU boundary */ static void filter_deblock_edge_luma(encoder_state_t * const state, int32_t x, int32_t y, int32_t length, edge_dir dir, bool tu_boundary) { videoframe_t * const frame = state->tile->frame; const encoder_control_t * const encoder = state->encoder_control; { int32_t stride = frame->rec->stride; int32_t beta_offset_div2 = encoder->cfg.deblock_beta; int32_t tc_offset_div2 = encoder->cfg.deblock_tc; // TODO: support 10+bits kvz_pixel *orig_src = &frame->rec->y[x + y*stride]; kvz_pixel *src = orig_src; const int32_t qp = get_qp_y_pred(state, x, y, dir); const int MAX_QP = 63; //TODO: Make DEFAULT_INTRA_TC_OFFSET(=2) a define? const int8_t lumaBitdepth = encoder->bitdepth; int8_t strength = 0; int32_t bitdepth_scale = 1 << (lumaBitdepth - 8); int32_t b_index = CLIP(0, MAX_QP, qp + (beta_offset_div2 << 1)); int32_t beta = kvz_g_beta_table_8x8[b_index] * bitdepth_scale; int32_t side_threshold = (beta + (beta >>1 )) >> 3; int32_t tc_index; int32_t tc; //Deblock adapted to halve pixel mvd. TODO: Tie into actual number of fractional mv bits const int16_t mvdThreashold = 2; //(1 << (MV_INTERNAL_FRACTIONAL_BITS - 1)) uint32_t num_4px_parts = length / 4; // Transpose the image by swapping x and y strides when doing horizontal // edges. const int32_t x_stride = (dir == EDGE_VER) ? 1 : stride; const int32_t y_stride = (dir == EDGE_VER) ? stride : 1; // TODO: add CU based QP calculation // For each 4-pixel part in the edge for (uint32_t block_idx = 0; block_idx < num_4px_parts; ++block_idx) { // CUs on both sides of the edge cu_info_t *cu_p; cu_info_t *cu_q; int32_t y_coord = y; int32_t x_coord = x; { if (dir == EDGE_VER) { y_coord = y + 4 * block_idx; cu_p = kvz_cu_array_at(frame->cu_array, x - 1, y_coord); cu_q = kvz_cu_array_at(frame->cu_array, x, y_coord); } else { x_coord = x + 4 * block_idx; cu_p = kvz_cu_array_at(frame->cu_array, x_coord, y - 1); cu_q = kvz_cu_array_at(frame->cu_array, x_coord, y ); } bool nonzero_coeffs = cbf_is_set(cu_q->cbf, cu_q->tr_depth, COLOR_Y) || cbf_is_set(cu_p->cbf, cu_p->tr_depth, COLOR_Y); // Filter strength strength = 0; if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) { strength = 2; } else if (tu_boundary && nonzero_coeffs) { // Non-zero residual/coeffs and transform boundary // Neither CU is intra so tr_depth <= MAX_DEPTH. strength = 1; } else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 && ((abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][0] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][0]) >= mvdThreashold) || (abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][1] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][1]) >= mvdThreashold))) { // Absolute motion vector diff between blocks >= 0.5 (Integer pixel) strength = 1; } else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 && cu_q->inter.mv_ref[cu_q->inter.mv_dir - 1] != cu_p->inter.mv_ref[cu_p->inter.mv_dir - 1]) { strength = 1; } // B-slice related checks if(!strength && state->frame->slicetype == KVZ_SLICE_B) { // Zero all undefined motion vectors for easier usage if(!(cu_q->inter.mv_dir & 1)) { cu_q->inter.mv[0][0] = 0; cu_q->inter.mv[0][1] = 0; } if(!(cu_q->inter.mv_dir & 2)) { cu_q->inter.mv[1][0] = 0; cu_q->inter.mv[1][1] = 0; } if(!(cu_p->inter.mv_dir & 1)) { cu_p->inter.mv[0][0] = 0; cu_p->inter.mv[0][1] = 0; } if(!(cu_p->inter.mv_dir & 2)) { cu_p->inter.mv[1][0] = 0; cu_p->inter.mv[1][1] = 0; } const int refP0 = (cu_p->inter.mv_dir & 1) ? state->frame->ref_LX[0][cu_p->inter.mv_ref[0]] : -1; const int refP1 = (cu_p->inter.mv_dir & 2) ? state->frame->ref_LX[1][cu_p->inter.mv_ref[1]] : -1; const int refQ0 = (cu_q->inter.mv_dir & 1) ? state->frame->ref_LX[0][cu_q->inter.mv_ref[0]] : -1; const int refQ1 = (cu_q->inter.mv_dir & 2) ? state->frame->ref_LX[1][cu_q->inter.mv_ref[1]] : -1; const mv_t* mvQ0 = cu_q->inter.mv[0]; const mv_t* mvQ1 = cu_q->inter.mv[1]; const mv_t* mvP0 = cu_p->inter.mv[0]; const mv_t* mvP1 = cu_p->inter.mv[1]; if(( refP0 == refQ0 && refP1 == refQ1 ) || ( refP0 == refQ1 && refP1==refQ0 )) { // Different L0 & L1 if ( refP0 != refP1 ) { if ( refP0 == refQ0 ) { strength = ((abs(mvQ0[0] - mvP0[0]) >= mvdThreashold) || (abs(mvQ0[1] - mvP0[1]) >= mvdThreashold) || (abs(mvQ1[0] - mvP1[0]) >= mvdThreashold) || (abs(mvQ1[1] - mvP1[1]) >= mvdThreashold)) ? 1 : 0; } else { strength = ((abs(mvQ1[0] - mvP0[0]) >= mvdThreashold) || (abs(mvQ1[1] - mvP0[1]) >= mvdThreashold) || (abs(mvQ0[0] - mvP1[0]) >= mvdThreashold) || (abs(mvQ0[1] - mvP1[1]) >= mvdThreashold)) ? 1 : 0; } // Same L0 & L1 } else { strength = ((abs(mvQ0[0] - mvP0[0]) >= mvdThreashold) || (abs(mvQ0[1] - mvP0[1]) >= mvdThreashold) || (abs(mvQ1[0] - mvP1[0]) >= mvdThreashold) || (abs(mvQ1[1] - mvP1[1]) >= mvdThreashold)) && ((abs(mvQ1[0] - mvP0[0]) >= mvdThreashold) || (abs(mvQ1[1] - mvP0[1]) >= mvdThreashold) || (abs(mvQ0[0] - mvP1[0]) >= mvdThreashold) || (abs(mvQ0[1] - mvP1[1]) >= mvdThreashold)) ? 1 : 0; } } else { strength = 1; } } tc_index = CLIP(0, MAX_QP + 2, (int32_t)(qp + 2*(strength - 1) + (tc_offset_div2 << 1))); tc = lumaBitdepth < 10 ? ((kvz_g_tc_table_8x8[tc_index] + (1 << (9 - lumaBitdepth))) >> (10 - lumaBitdepth)) : ((kvz_g_tc_table_8x8[tc_index] << (lumaBitdepth - 10))); } if (strength == 0) continue; bool is_side_P_large = false; bool is_side_Q_large = false; uint8_t max_filter_length_P = 0; uint8_t max_filter_length_Q = 0; const int cu_size = LCU_WIDTH >> cu_q->depth; const int pu_part_idx = (y + PU_GET_H(cu_q->part_size, cu_size, 0) <= y_coord ? 1 + (kvz_part_mode_num_parts[cu_q->part_size] >> 2) : 0) + (x + PU_GET_W(cu_q->part_size, cu_size, 0) <= x_coord ? 1 : 0); const int pu_size = dir == EDGE_HOR ? PU_GET_H(cu_q->part_size, cu_size, pu_part_idx) : PU_GET_W(cu_q->part_size, cu_size, pu_part_idx); const int pu_pos = dir == EDGE_HOR ? y_coord - PU_GET_Y(cu_q->part_size, cu_size, 0, pu_part_idx) : x_coord - PU_GET_X(cu_q->part_size, cu_size, 0, pu_part_idx); get_max_filter_length(&max_filter_length_P, &max_filter_length_Q, state, x_coord, y_coord, dir, tu_boundary, LCU_WIDTH >> cu_p->tr_depth, LCU_WIDTH >> cu_q->tr_depth, pu_pos, pu_size, cu_q->merged, COLOR_Y); if (max_filter_length_P > 3) { is_side_P_large = dir == EDGE_HOR && y % LCU_WIDTH == 0 ? false : true; //TODO: Add affine/ATMVP related stuff /*if (max_filter_length_P > 5 && cu_p->affine) { max_filter_length_P = MIN(max_filter_length_P, 5); }*/ } if (max_filter_length_Q > 3) { is_side_Q_large = true; } // +-- edge_src // v // line0 p7 p6 p5 p4 p3 p2 p1 p0 q0 q1 q2 q3 q4 q5 q6 q7 kvz_pixel *edge_src = &src[block_idx * 4 * y_stride]; // Gather the lines of pixels required for the filter on/off decision. //TODO: May need to limit reach in small blocks? kvz_pixel b[4][8]; gather_deblock_pixels(edge_src, x_stride, 0 * y_stride, 4, &b[0][0]); gather_deblock_pixels(edge_src, x_stride, 3 * y_stride, 4, &b[3][0]); int_fast32_t dp0 = abs(b[0][1] - 2 * b[0][2] + b[0][3]); int_fast32_t dq0 = abs(b[0][4] - 2 * b[0][5] + b[0][6]); int_fast32_t dp3 = abs(b[3][1] - 2 * b[3][2] + b[3][3]); int_fast32_t dq3 = abs(b[3][4] - 2 * b[3][5] + b[3][6]); int_fast32_t dp = dp0 + dp3; int_fast32_t dq = dq0 + dq3; bool sw = false; if (is_side_P_large || is_side_Q_large) { int_fast32_t dp0L = dp0; int_fast32_t dq0L = dq0; int_fast32_t dp3L = dp3; int_fast32_t dq3L = dq3; //bL: //line0 p7 p6 p5 p4 q4 q5 q6 q7 kvz_pixel bL[4][8]; if (is_side_P_large) { gather_deblock_pixels(edge_src - 6 * x_stride, x_stride, 0 * y_stride, 2, &bL[0][0] - 2); gather_deblock_pixels(edge_src - 6 * x_stride, x_stride, 3 * y_stride, 2, &bL[3][0] - 2); dp0L = (dp0L + abs(bL[0][2] - 2 * bL[0][3] + b[0][0]) + 1) >> 1; dp3L = (dp3L + abs(bL[3][2] - 2 * bL[3][3] + b[3][0]) + 1) >> 1; } if (is_side_Q_large) { gather_deblock_pixels(edge_src + 6 * x_stride, x_stride, 0 * y_stride, 2, &bL[0][2]); gather_deblock_pixels(edge_src + 6 * x_stride, x_stride, 3 * y_stride, 2, &bL[3][2]); dq0L = (dq0L + abs(b[0][7] - 2 * bL[0][4] + bL[0][5]) + 1) >> 1; dq3L = (dq3L + abs(b[3][7] - 2 * bL[3][4] + bL[3][5]) + 1) >> 1; } int_fast32_t dpL = dp0L + dp3L; int_fast32_t dqL = dq0L + dq3L; if (dpL + dqL < beta) { sw = use_strong_filtering(&b[0][0], &b[3][0], &bL[0][0], &bL[3][0], dp0L, dq0L, dp3L, dq3L, tc, beta, is_side_P_large, is_side_Q_large, max_filter_length_P, max_filter_length_Q, false); if (sw) { gather_deblock_pixels(edge_src, x_stride, 1 * y_stride, 4, &b[1][0]); gather_deblock_pixels(edge_src, x_stride, 2 * y_stride, 4, &b[2][0]); if (is_side_P_large) { gather_deblock_pixels(edge_src - 6 * x_stride, x_stride, 1 * y_stride, 2, &bL[1][0] - 2); gather_deblock_pixels(edge_src - 6 * x_stride, x_stride, 2 * y_stride, 2, &bL[2][0] - 2); } if (is_side_Q_large) { gather_deblock_pixels(edge_src + 6 * x_stride, x_stride, 1 * y_stride, 2, &bL[1][2]); gather_deblock_pixels(edge_src + 6 * x_stride, x_stride, 2 * y_stride, 2, &bL[2][2]); } for (int i = 0; i < 4; ++i) { int filter_reach; filter_reach = kvz_filter_deblock_large_block(&b[i][0], &bL[i][0], tc, is_side_P_large ? max_filter_length_P : 3, is_side_Q_large ? max_filter_length_Q : 3); scatter_deblock_pixels(&b[i][0], x_stride, i * y_stride, filter_reach, edge_src); if (is_side_P_large) { const int diff_reach = (max_filter_length_P - filter_reach) >> 1; const int dst_offset = (filter_reach + diff_reach) * x_stride; scatter_deblock_pixels(&bL[i][0] - diff_reach, x_stride, i * y_stride, diff_reach, edge_src - dst_offset); } if (is_side_Q_large) { const int diff_reach = (max_filter_length_Q - filter_reach) >> 1; const int dst_offset = (filter_reach + diff_reach) * x_stride; scatter_deblock_pixels(&bL[i][0] + diff_reach, x_stride, i * y_stride, diff_reach, edge_src + dst_offset); } } } } } if (!sw) { if (dp + dq < beta) { if (max_filter_length_P > 2 && max_filter_length_Q > 2) { // Strong filtering flag checking. sw = use_strong_filtering(b[0], b[3], NULL, NULL, dp0, dq0, dp3, dq3, tc, beta, false, false, 7, 7, false); } // Read lines 1 and 2. Weak filtering doesn't use the outermost pixels // but let's give them anyway to simplify control flow. gather_deblock_pixels(edge_src, x_stride, 1 * y_stride, 4, &b[1][0]); gather_deblock_pixels(edge_src, x_stride, 2 * y_stride, 4, &b[2][0]); for (int i = 0; i < 4; ++i) { int filter_reach; if (sw) { filter_reach = kvz_filter_deblock_luma_strong(&b[i][0], tc); } else { bool p_2nd = false; bool q_2nd = false; if (max_filter_length_P > 1 && max_filter_length_Q > 1) { p_2nd = dp < side_threshold; q_2nd = dq < side_threshold; } filter_reach = kvz_filter_deblock_luma_weak(encoder, &b[i][0], tc, p_2nd, q_2nd); } scatter_deblock_pixels(&b[i][0], x_stride, i * y_stride, filter_reach, edge_src); } } } } } } /** * \brief Apply the deblocking filter to chroma pixels on a single edge. * * The caller should check that the edge is a TU boundary or a PU boundary. * \verbatim .-- filter this edge if dir == EDGE_HOR v +--------+ |o <-- pixel at (x, y) | | |<-- filter this edge if dir == EDGE_VER | | +--------+ \endverbatim * * \param state encoder state * \param x x-coordinate in chroma pixels (see above) * \param y y-coordinate in chroma pixels (see above) * \param length length of the edge in chroma pixels * \param dir direction of the edge to filter * \param tu_boundary whether the edge is a TU boundary */ static void filter_deblock_edge_chroma(encoder_state_t * const state, int32_t x, int32_t y, int32_t length, edge_dir dir, bool tu_boundary) { const encoder_control_t * const encoder = state->encoder_control; const videoframe_t * const frame = state->tile->frame; // For each subpart { int32_t stride = frame->rec->stride >> 1; int32_t tc_offset_div2 = encoder->cfg.deblock_tc; int32_t beta_offset_div2 = encoder->cfg.deblock_beta; // TODO: support 10+bits kvz_pixel *src[] = { &frame->rec->u[x + y*stride], &frame->rec->v[x + y*stride], }; const uint8_t MAX_QP = 63; const int32_t luma_qp = get_qp_y_pred(state, x << 1, y << 1, dir); int32_t QP = kvz_get_scaled_qp(1, luma_qp, 0, state->encoder_control->qp_map[0]);//kvz_g_chroma_scale[luma_qp]; //TODO: Add BDOffset? int32_t bitdepth_scale = 1 << (encoder->bitdepth - 8); //TU size should be in chroma samples (?) const int chroma_shift = dir == EDGE_HOR ? (encoder->chroma_format == KVZ_CSP_420 ? 1 : 0) : (encoder->chroma_format != KVZ_CSP_444 ? 1 : 0); //TODO: Replace two (2) with min CU log2 size when its updated to the correct value const int min_chroma_width_log2 = 2-(encoder->chroma_format == KVZ_CSP_420 ? 1 : 0); const int min_chroma_height_log2 = 2 -(encoder->chroma_format != KVZ_CSP_444 ? 1 : 0); const int min_chroma_size_log2 = dir == EDGE_HOR ? min_chroma_height_log2 : min_chroma_width_log2; const int min_chroma_length = 1 << min_chroma_size_log2; const uint32_t num_parts = (length >> min_chroma_size_log2); const int32_t offset = (dir == EDGE_HOR) ? stride : 1; const int32_t step = (dir == EDGE_HOR) ? 1 : stride; //printf("%d %d %d %d\n", x << 1, y << 1, num_parts, dir); for (uint32_t blk_idx = 0; blk_idx < num_parts; ++blk_idx) { // CUs on both sides of the edge cu_info_t *cu_p; cu_info_t *cu_q; int32_t x_coord = x << 1; int32_t y_coord = y << 1; if (dir == EDGE_VER) { y_coord = (y + min_chroma_length * blk_idx) << 1; cu_p = kvz_cu_array_at(frame->cu_array, x_coord - 1, y_coord); cu_q = kvz_cu_array_at(frame->cu_array, x_coord , y_coord); } else { x_coord = (x + min_chroma_length * blk_idx) << 1; cu_p = kvz_cu_array_at(frame->cu_array, x_coord, y_coord - 1); cu_q = kvz_cu_array_at(frame->cu_array, x_coord, y_coord ); } const int cu_size = LCU_WIDTH >> cu_q->depth; const int pu_part_idx = ((y << 1) + PU_GET_H(cu_q->part_size, cu_size, 0) <= y_coord ? 1 + (kvz_part_mode_num_parts[cu_q->part_size] >> 2) : 0) + ((x << 1) + PU_GET_W(cu_q->part_size, cu_size, 0) <= x_coord ? 1 : 0); const int pu_size = dir == EDGE_HOR ? PU_GET_H(cu_q->part_size, cu_size, pu_part_idx) : PU_GET_W(cu_q->part_size, cu_size, pu_part_idx); const int pu_pos = dir == EDGE_HOR ? y_coord - PU_GET_Y(cu_q->part_size, cu_size, 0, pu_part_idx) : x_coord - PU_GET_X(cu_q->part_size, cu_size, 0, pu_part_idx); uint8_t max_filter_length_P = 0; uint8_t max_filter_length_Q = 0; const int tu_p_size = LCU_WIDTH >> (cu_p->tr_depth + (chroma_shift)); const int tu_q_size = LCU_WIDTH >> (cu_q->tr_depth + (chroma_shift)); get_max_filter_length(&max_filter_length_P, &max_filter_length_Q, state, x_coord, y_coord, dir, tu_boundary, tu_p_size, tu_q_size, pu_pos, pu_size, cu_q->merged, COLOR_U); const bool large_boundary = (max_filter_length_P >= 3 && max_filter_length_Q >= 3); const bool is_chroma_hor_CTB_boundary = (dir == EDGE_HOR && y_coord % LCU_WIDTH == 0); uint8_t c_strength[2] = { 0, 0 }; if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) { c_strength[0] = 2; c_strength[1] = 2; } else if (tu_boundary){ //TODO: Add ciip/IBC related stuff bool nonzero_coeffs_U = cbf_is_set(cu_q->cbf, cu_q->tr_depth, COLOR_U) || cbf_is_set(cu_p->cbf, cu_p->tr_depth, COLOR_U); bool nonzero_coeffs_V = cbf_is_set(cu_q->cbf, cu_q->tr_depth, COLOR_V) || cbf_is_set(cu_p->cbf, cu_p->tr_depth, COLOR_V); c_strength[0] = nonzero_coeffs_U ? 1 : 0; c_strength[1] = nonzero_coeffs_V ? 1 : 0; } for (int component = 0; component < 2; component++) { if (c_strength[component] == 2 || (large_boundary && c_strength[component] == 1)){ int32_t TC_index = CLIP(0, MAX_QP + 2, (int32_t)(QP + 2 * (c_strength[component] - 1) + (tc_offset_div2 << 1))); int32_t Tc = encoder->bitdepth < 10 ? ((kvz_g_tc_table_8x8[TC_index] + (1 << (9 - encoder->bitdepth))) >> (10 - encoder->bitdepth)) : (kvz_g_tc_table_8x8[TC_index] << (encoder->bitdepth - 10)); bool use_long_filter = false; // +-- edge_src // v // line0 p3 p2 p1 p0 q0 q1 q2 q3 kvz_pixel *edge_src = &src[component][blk_idx * min_chroma_length * step]; if (large_boundary) { const int beta_index = CLIP(0, MAX_QP, QP + (beta_offset_div2 << 1)); const int beta = kvz_g_beta_table_8x8[beta_index] * bitdepth_scale; const uint8_t sss = chroma_shift == 1 ? 1 : 3; // Gather the lines of pixels required for the filter on/off decision. //TODO: May need to limit reach in small blocks? kvz_pixel b[2][8]; gather_deblock_pixels(edge_src, offset, 0 * step, 4, &b[0][0]); gather_deblock_pixels(edge_src, offset, sss * step, 4, &b[1][0]); const uint8_t p_ind = is_chroma_hor_CTB_boundary ? 2 : 1; int_fast32_t dp0 = abs(b[0][p_ind] - 2 * b[0][2] + b[0][3]); int_fast32_t dq0 = abs(b[0][4] - 2 * b[0][5] + b[0][6]); int_fast32_t dp3 = abs(b[1][p_ind] - 2 * b[1][2] + b[1][3]); int_fast32_t dq3 = abs(b[1][4] - 2 * b[1][5] + b[1][6]); int_fast32_t dp = dp0 + dp3; int_fast32_t dq = dq0 + dq3; if (dp + dq < beta) { use_long_filter = true; const bool sw = use_strong_filtering(b[0], b[1], NULL, NULL, dp0, dq0, dp3, dq3, Tc, beta, false, false, 7, 7, is_chroma_hor_CTB_boundary); for (int i = 0; i < min_chroma_length; i++) { kvz_filter_deblock_chroma(encoder, edge_src + step * i, offset, Tc, 0, 0, sw, large_boundary, is_chroma_hor_CTB_boundary); } } } if (!use_long_filter) { for (int i = 0; i < min_chroma_length; i++) { kvz_filter_deblock_chroma(encoder, edge_src + step * i, offset, Tc, 0, 0, false, large_boundary, is_chroma_hor_CTB_boundary); } } } } } } } /** * \brief Filter edge of a single PU or TU * * \param state encoder state * \param x block x-position in pixels * \param y block y-position in pixels * \param width block width in pixels * \param height block height in pixels * \param dir direction of the edges to filter * \param tu_boundary whether the edge is a TU boundary */ static void filter_deblock_unit(encoder_state_t * const state, int x, int y, int width, int height, edge_dir dir, bool tu_boundary, bool previous_ctu) { // no filtering on borders (where filter would use pixels outside the picture) if (x == 0 && dir == EDGE_VER) return; if (y == 0 && dir == EDGE_HOR) return; // Length of luma and chroma edges. int32_t length; int32_t length_c; if (dir == EDGE_HOR) { const videoframe_t* const frame = state->tile->frame; const int32_t x_right = x + width; const bool rightmost_8px_of_lcu = x_right % LCU_WIDTH == 0 || x_right % LCU_WIDTH == LCU_WIDTH - width; const bool rightmost_8px_of_frame = x_right == frame->width || x_right + width == frame->width; if (rightmost_8px_of_lcu && !rightmost_8px_of_frame && !previous_ctu) { // The last 8 pixels will be deblocked when processing the next LCU. length = width - 4; length_c = (width >> 1) - 2; if (length == 0) return; } else { length = width; length_c = width >> 1; } } else { length = height; length_c = height >> 1; } filter_deblock_edge_luma(state, x, y, length, dir, tu_boundary); // Chroma pixel coordinates. const int32_t x_c = x >> 1; const int32_t y_c = y >> 1; if (state->encoder_control->chroma_format != KVZ_CSP_400 && (is_on_8x8_grid(x_c, y_c, dir && (x_c + 4) % 32) || (x == state->tile->frame->width - 8 && dir == 1 && y_c % 8 == 0))) { filter_deblock_edge_chroma(state, x_c, y_c, length, dir, tu_boundary); } } /** * \brief Deblock PU and TU boundaries inside an LCU. * * \param state encoder state * \param x_px block x-position in pixels * \param y_px block y-position in pixels * \param dir direction of the edges to filter * * Recursively traverse the CU/TU quadtree. At the lowest level, apply the * deblocking filter to the left edge (when dir == EDGE_VER) or the top edge * (when dir == EDGE_HOR) as needed. Both luma and chroma are filtered. */ static void filter_deblock_lcu_inside(encoder_state_t * const state, int32_t x, int32_t y, edge_dir dir) { const int end_x = MIN(x + LCU_WIDTH, state->tile->frame->width); const int end_y = MIN(y + LCU_WIDTH, state->tile->frame->height); for (int edge_y = y; edge_y < end_y; edge_y += 4) { for (int edge_x = x; edge_x < end_x; edge_x += 4) { bool tu_boundary = is_tu_boundary(state, edge_x, edge_y, dir); if (tu_boundary || is_pu_boundary(state, edge_x, edge_y, dir)) { filter_deblock_unit(state, edge_x, edge_y, 4, 4, dir, tu_boundary, edge_x < x); } } } } /** * \brief Filter rightmost 8 pixels of the horizontal egdes of an LCU. * * \param state encoder state * \param x_px x-coordinate of the *right* edge of the LCU in pixels * \param y_px y-coordinate of the top edge of the LCU in pixels */ static void filter_deblock_lcu_rightmost(encoder_state_t * const state, int32_t x_px, int32_t y_px) { // Luma const int end = MIN(y_px + LCU_WIDTH, state->tile->frame->height); for (int x = x_px - 8; x < x_px; x += 4) { for (int y = y_px; y < end; y += 4) { // The top edge of the whole frame is not filtered. bool tu_boundary = is_tu_boundary(state, x, y, EDGE_HOR); bool pu_boundary = is_pu_boundary(state, x, y, EDGE_HOR); if (y > 0 && (tu_boundary || pu_boundary)) { filter_deblock_edge_luma(state, x, y, 4, EDGE_HOR, tu_boundary); } } } // Chroma if (state->encoder_control->chroma_format != KVZ_CSP_400) { const int x_px_c = x_px >> 1; const int y_px_c = y_px >> 1; const int x_c = x_px_c - 4; const int end_c = MIN(y_px_c + LCU_WIDTH_C, state->tile->frame->height >> 1); for (int y_c = y_px_c; y_c < end_c; y_c += 8) { // The top edge of the whole frame is not filtered. bool tu_boundary = is_tu_boundary(state, x_c << 1, y_c << 1, EDGE_HOR); bool pu_boundary = is_pu_boundary(state, x_c << 1, y_c << 1, EDGE_HOR); if (y_c > 0 && (tu_boundary || pu_boundary)) { filter_deblock_edge_chroma(state, x_c , y_c, 4, EDGE_HOR, tu_boundary); } } } } /** * \brief Deblock a single LCU without using data from right or down. * * Filter the following vertical edges (horizontal filtering): * 1. The left edge of the LCU. * 2. All vertical edges within the LCU. * * Filter the following horizontal edges (vertical filtering): * 1. The rightmost 8 pixels of the top edge of the LCU to the left. * 2. The rightmost 8 pixels of all horizontal edges within the LCU to the * left. * 3. The top edge and all horizontal edges within the LCU, excluding the * rightmost 8 pixels. If the LCU is the rightmost LCU of the frame, the * last 8 pixels are also filtered. * * What is not filtered: * - The rightmost 8 pixels of the top edge and all horizontal edges within * the LCU, unless the LCU is the rightmost LCU of the frame. * - The bottom edge of the LCU. * - The right edge of the LCU. * * \param state encoder state * \param x_px x-coordinate of the left edge of the LCU in pixels * \param y_px y-coordinate of the top edge of the LCU in pixels */ //TODO: Things to check/fix for VVC: // - Strength calculation to include average Luma level (Luma Adaptive Deblocing Filter LADF) (optional) // - Deblocking strength for CIIP and IBC modes (CIIP/IBC not currently used) // - Handle new prediction modes (i.e. PLT) (PLT not currently used) // - Luma deblocking on a 4x4 grid // - Deblocking filter for subblock boundaries // - Allow loop filtering across slice/tile boundaries? void kvz_filter_deblock_lcu(encoder_state_t * const state, int x_px, int y_px) { assert(!state->encoder_control->cfg.lossless); filter_deblock_lcu_inside(state, x_px, y_px, EDGE_VER); if (x_px > 0) { filter_deblock_lcu_rightmost(state, x_px, y_px); } filter_deblock_lcu_inside(state, x_px, y_px, EDGE_HOR); }