/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
#include "filter.h"
#include
#include "cu.h"
#include "encoder.h"
#include "kvazaar.h"
#include "transform.h"
#include "videoframe.h"
//////////////////////////////////////////////////////////////////////////
// INITIALIZATIONS
const uint16_t kvz_g_tc_table_8x8[66] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4,
4, 5, 5, 5, 5, 7, 7, 8, 9, 10, 10, 11, 13, 14, 15, 17, 19, 21, 24, 25, 29, 33,
36, 41, 45, 51, 57, 64, 71, 80, 89, 100, 112, 125, 141, 157, 177, 198, 222, 250, 280, 314, 352, 395
};
const uint8_t kvz_g_beta_table_8x8[64] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24,
26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88
};
const int8_t kvz_g_luma_filter[4][8] =
{
{ 0, 0, 0, 64, 0, 0, 0, 0 },
{ -1, 4, -10, 58, 17, -5, 1, 0 },
{ -1, 4, -11, 40, 40, -11, 4, -1 },
{ 0, 1, -5, 17, 58, -10, 4, -1 }
};
const int8_t kvz_g_chroma_filter[8][4] =
{
{ 0, 64, 0, 0 },
{ -2, 58, 10, -2 },
{ -4, 54, 16, -2 },
{ -6, 46, 28, -4 },
{ -4, 36, 36, -4 },
{ -4, 28, 46, -6 },
{ -2, 16, 54, -4 },
{ -2, 10, 58, -2 }
};
//////////////////////////////////////////////////////////////////////////
// FUNCTIONS
/**
* \brief Perform in strong luma filtering in place.
* \param line line of 8 pixels, with center at index 4
* \param tc tc treshold
* \return Reach of the filter starting from center.
*/
static INLINE int kvz_filter_deblock_luma_strong(
kvz_pixel *line,
int32_t tc)
{
const kvz_pixel m0 = line[0];
const kvz_pixel m1 = line[1];
const kvz_pixel m2 = line[2];
const kvz_pixel m3 = line[3];
const kvz_pixel m4 = line[4];
const kvz_pixel m5 = line[5];
const kvz_pixel m6 = line[6];
const kvz_pixel m7 = line[7];
const uint8_t tcW[3] = { 3, 2, 1 }; //Wheights for tc
line[1] = CLIP(m1 - tcW[2]*tc, m1 + tcW[2]*tc, (2*m0 + 3*m1 + m2 + m3 + m4 + 4) >> 3);
line[2] = CLIP(m2 - tcW[1]*tc, m2 + tcW[1]*tc, ( m1 + m2 + m3 + m4 + 2) >> 2);
line[3] = CLIP(m3 - tcW[0]*tc, m3 + tcW[0]*tc, ( m1 + 2*m2 + 2*m3 + 2*m4 + m5 + 4) >> 3);
line[4] = CLIP(m4 - tcW[0]*tc, m4 + tcW[0]*tc, ( m2 + 2*m3 + 2*m4 + 2*m5 + m6 + 4) >> 3);
line[5] = CLIP(m5 - tcW[1]*tc, m5 + tcW[1]*tc, ( m3 + m4 + m5 + m6 + 2) >> 2);
line[6] = CLIP(m6 - tcW[2]*tc, m6 + tcW[2]*tc, ( m3 + m4 + m5 + 3*m6 + 2*m7 + 4) >> 3);
return 3;
}
/**
* \brief Perform in weak luma filtering in place.
* \param encoder Encoder
* \param line Line of 8 pixels, with center at index 4
* \param tc The tc treshold
* \param p_2nd Whether to filter the 2nd line of P
* \param q_2nd Whether to filter the 2nd line of Q
*/
static INLINE int kvz_filter_deblock_luma_weak(
const encoder_control_t * const encoder,
kvz_pixel *line,
int32_t tc,
bool p_2nd,
bool q_2nd)
{
const kvz_pixel m1 = line[1];
const kvz_pixel m2 = line[2];
const kvz_pixel m3 = line[3];
const kvz_pixel m4 = line[4];
const kvz_pixel m5 = line[5];
const kvz_pixel m6 = line[6];
int32_t delta = (9 * (m4 - m3) - 3 * (m5 - m2) + 8) >> 4;
if (abs(delta) >= tc * 10) {
return 0;
} else {
int32_t tc2 = tc >> 1;
delta = CLIP(-tc, tc, delta);
line[3] = CLIP(0, (1 << encoder->bitdepth) - 1, (m3 + delta));
line[4] = CLIP(0, (1 << encoder->bitdepth) - 1, (m4 - delta));
if (p_2nd) {
int32_t delta1 = CLIP(-tc2, tc2, (((m1 + m3 + 1) >> 1) - m2 + delta) >> 1);
line[2] = CLIP(0, (1 << encoder->bitdepth) - 1, m2 + delta1);
}
if (q_2nd) {
int32_t delta2 = CLIP(-tc2, tc2, (((m6 + m4 + 1) >> 1) - m5 - delta) >> 1);
line[5] = CLIP(0, (1 << encoder->bitdepth) - 1, m5 + delta2);
}
if (p_2nd || q_2nd) {
return 2;
} else {
return 1;
}
}
}
/**
* \brief Performe strong/weak filtering for chroma
*/
static INLINE void kvz_filter_deblock_chroma(const encoder_control_t * const encoder,
kvz_pixel *src,
int32_t offset,
int32_t tc,
int8_t part_P_nofilter,
int8_t part_Q_nofilter,
bool sw,
bool large_boundary,
bool is_chroma_hor_CTB_boundary)
{
int32_t delta;
int16_t m0 = src[-offset * 4];
int16_t m1 = src[-offset * 3];
int16_t m2 = src[-offset * 2];
int16_t m3 = src[-offset];
int16_t m4 = src[0];
int16_t m5 = src[offset];
int16_t m6 = src[offset * 2];
int16_t m7 = src[offset * 3];
if (sw) {
if (is_chroma_hor_CTB_boundary) {
src[-offset * 1] = CLIP(m3 - tc, m3 + tc, (3 * m2 + 2 * m3 + m4 + m5 + m6 + 4) >> 3);
src[0] = CLIP(m4 - tc, m4 + tc, (2 * m2 + m3 + 2 * m4 + m5 + m6 + m7 + 4) >> 3);
} else {
src[-offset * 3] = CLIP(m1 - tc, m1 + tc, (3 * m0 + 2 * m1 + m2 + m3 + m4 + 4) >> 3);
src[-offset * 2] = CLIP(m2 - tc, m2 + tc, (2 * m0 + m1 + 2 * m2 + m3 + m4 + m5 + 4) >> 3);
src[-offset * 1] = CLIP(m3 - tc, m3 + tc, (m0 + m1 + m2 + 2 * m3 + m4 + m5 + m6 + 4) >> 3);
src[0] = CLIP(m4 - tc, m4 + tc, (m1 + m2 + m3 + 2 * m4 + m5 + m6 + m7 + 4) >> 3);
}
src[offset * 1] = CLIP(m5 - tc, m5 + tc, (m2 + m3 + m4 + 2 * m5 + m6 + 2 * m7 + 4) >> 3);
src[offset * 2] = CLIP(m6 - tc, m6 + tc, (m3 + m4 + m5 + 2 * m6 + 3 * m7 + 4) >> 3);
} else {
delta = CLIP(-tc, tc, (((m4 - m3) * 4) + m2 - m5 + 4) >> 3);
src[-offset] = CLIP(0, (1 << encoder->bitdepth) - 1, m3 + delta);
src[0] = CLIP(0, (1 << encoder->bitdepth) - 1, m4 - delta);
}
if (part_P_nofilter) {
if (large_boundary) {
src[-offset * 3] = m1;
src[-offset * 2] = m2;
}
src[-offset * 1] = m3;
}
if (part_Q_nofilter) {
if (large_boundary) {
src[offset * 1] = m5;
src[offset * 2] = m6;
}
src[0] = m4;
}
}
/**
* \brief Check whether an edge is a TU boundary.
*
* \param state encoder state
* \param x x-coordinate of the scu in pixels
* \param y y-coordinate of the scu in pixels
* \param dir direction of the edge to check
* \return true, if the edge is a TU boundary, otherwise false
*/
static bool is_tu_boundary(const encoder_state_t *const state,
int32_t x,
int32_t y,
edge_dir dir)
{
const cu_info_t *const scu =
kvz_cu_array_at_const(state->tile->frame->cu_array, x, y);
const int tu_width = LCU_WIDTH >> scu->tr_depth;
if (dir == EDGE_HOR) {
return (y & (tu_width - 1)) == 0;
} else {
return (x & (tu_width - 1)) == 0;
}
}
/**
* \brief Check whether an edge is a PU boundary.
*
* \param state encoder state
* \param x x-coordinate of the scu in pixels
* \param y y-coordinate of the scu in pixels
* \param dir direction of the edge to check
* \return true, if the edge is a TU boundary, otherwise false
*/
static bool is_pu_boundary(const encoder_state_t *const state,
int32_t x,
int32_t y,
edge_dir dir)
{
const cu_info_t *const scu =
kvz_cu_array_at_const(state->tile->frame->cu_array, x, y);
// Get the containing CU.
const int32_t cu_width = LCU_WIDTH >> scu->depth;
const int32_t x_cu = x & ~(cu_width - 1);
const int32_t y_cu = y & ~(cu_width - 1);
const cu_info_t *const cu =
kvz_cu_array_at_const(state->tile->frame->cu_array, x_cu, y_cu);
const int num_pu = kvz_part_mode_num_parts[cu->part_size];
for (int i = 0; i < num_pu; i++) {
if (dir == EDGE_HOR) {
int y_pu = PU_GET_Y(cu->part_size, cu_width, y_cu, i);
if (y_pu == y) return true;
} else {
int x_pu = PU_GET_X(cu->part_size, cu_width, x_cu, i);
if (x_pu == x) return true;
}
}
return false;
}
/**
* \brief Check whether an edge is aligned on a 8x8 grid.
*
* \param x x-coordinate of the edge
* \param y y-coordinate of the edge
* \param dir direction of the edge
* \return true, if the edge is aligned on a 8x8 grid, otherwise false
*/
static bool is_on_8x8_grid(int x, int y, edge_dir dir)
{
if (dir == EDGE_HOR) {
return (y & 7) == 0 && (x & 2) == 0;
} else {
return (x & 7) == 0 && (y & 2) == 0;
}
}
static int8_t get_qp_y_pred(const encoder_state_t* state, int x, int y, edge_dir dir)
{
if (state->encoder_control->max_qp_delta_depth < 0) {
return state->qp;
}
int32_t qp_p;
if (dir == EDGE_HOR && y > 0) {
qp_p = kvz_cu_array_at_const(state->tile->frame->cu_array, x, y - 1)->qp;
} else if (dir == EDGE_VER && x > 0) {
qp_p = kvz_cu_array_at_const(state->tile->frame->cu_array, x - 1, y)->qp;
} else {
// TODO: This seems to be dead code. Investigate.
qp_p = state->encoder_control->cfg.set_qp_in_cu ? 26 : state->frame->QP;
}
const int32_t qp_q =
kvz_cu_array_at_const(state->tile->frame->cu_array, x, y)->qp;
return (qp_p + qp_q + 1) >> 1;
}
/**
* \brief Gather pixels needed for deblocking
*/
static INLINE void gather_deblock_pixels(
const kvz_pixel *src,
int step,
int stride,
int reach,
kvz_pixel *dst)
{
for (int i = -reach; i < +reach; ++i) {
dst[i + 4] = src[i * step + stride];
}
}
/**
* \brief Scatter pixels
*/
static INLINE void scatter_deblock_pixels(
const kvz_pixel *src,
int step,
int stride,
int reach,
kvz_pixel *dst)
{
for (int i = -reach; i < +reach; ++i) {
dst[i * step + stride] = src[i + 4];
}
}
/**
* \brief Perform large block strong luma filtering in place.
* \param line line of 8 pixels, with center at index 4
* \param lineL extended pixels with P pixels in [0,3] and Q pixels in [4,7]
* \param tc tc treshold
* \param filter_length_P filter length in the P block
* \param filter_length_Q filter length in the Q block
* \return Reach of the filter starting from center.
*/
static INLINE int kvz_filter_deblock_large_block(kvz_pixel *line, kvz_pixel *lineL, const int32_t tc,
const uint8_t filter_length_P, const uint8_t filter_length_Q)
{
int ref_P = 0;
int ref_Q = 0;
int ref_middle = 0;
const int coeffs7[7] = { 59, 50, 41, 32, 23, 14, 5 };
const int coeffs5[5] = { 58, 45, 32, 19, 6 };
const int coeffs3[3] = { 53, 32, 11 };
const int *coeffs_P = NULL;
const int *coeffs_Q = NULL;
//Form P/Q arrays that contain all of the samples to make things simpler later
const kvz_pixel lineP[8] = { line[3], line[2], line[1], line[0],
lineL[3], lineL[2], lineL[1], lineL[0] };
const kvz_pixel lineQ[8] = { line[4], line[5], line[6], line[7],
lineL[4], lineL[5], lineL[6], lineL[7] };
//Separate destination arrays with only six output pixels going in line and rest to lineL to simplify things later
kvz_pixel* dstP[7] = { line + 3, line + 2, line + 1,
lineL + 3, lineL + 2, lineL + 1, lineL + 0 };
kvz_pixel* dstQ[7] = { line + 4, line + 5, line + 6,
lineL + 4, lineL + 5, lineL + 6, lineL + 7 };
//Get correct filter coeffs and Q/P end samples
switch (filter_length_P)
{
case 7:
ref_P = (lineP[6] + lineP[7] + 1) >> 1;
coeffs_P = coeffs7;
break;
case 5:
ref_P = (lineP[4] + lineP[5] + 1) >> 1;
coeffs_P = coeffs5;
break;
case 3:
ref_P = (lineP[2] + lineP[3] + 1) >> 1;
coeffs_P = coeffs3;
break;
}
switch (filter_length_Q)
{
case 7:
ref_Q = (lineQ[6] + lineQ[7] + 1) >> 1;
coeffs_Q = coeffs7;
break;
case 5:
ref_Q = (lineQ[4] + lineQ[5] + 1) >> 1;
coeffs_Q = coeffs5;
break;
case 3:
ref_Q = (lineQ[2] + lineQ[3] + 1) >> 1;
coeffs_Q = coeffs3;
break;
}
//Get middle samples
if (filter_length_P == filter_length_Q) {
if (filter_length_P == 7) {
ref_middle = (lineP[6] + lineP[5] + lineP[4] + lineP[3] + lineP[2] + lineP[1]
+ 2 * (lineP[0] + lineQ[0])
+ lineQ[1] + lineQ[2] + lineQ[3] + lineQ[4] + lineQ[5] + lineQ[6] + 8) >> 4;
}
else { //filter_length_P == 5
ref_middle = (lineP[4] + lineP[3]
+ 2 * (lineP[2] + lineP[1] + lineP[0] + lineQ[0] + lineQ[1] + lineQ[2])
+ lineQ[3] + lineQ[4] + 8) >> 4;
}
}
else {
const uint8_t lenS = MIN(filter_length_P, filter_length_Q);
const uint8_t lenL = MAX(filter_length_P, filter_length_Q);
const kvz_pixel *refS = filter_length_P < filter_length_Q ? lineP : lineQ;
const kvz_pixel *refL = filter_length_P < filter_length_Q ? lineQ : lineP;
if (lenL == 7 && lenS == 5) {
ref_middle = (lineP[5] + lineP[4] + lineP[3] + lineP[2]
+ 2 * (lineP[1] + lineP[0] + lineQ[0] + lineQ[1])
+ lineQ[2] + lineQ[3] + lineQ[4] + lineQ[5] + 8) >> 4;
}
else if (lenL == 7 && lenS == 3) {
ref_middle = (3 * refS[0] + 2 * refL[0] + 3 * refS[1] + refL[1] + 2 * refS[2]
+ refL[2] + refL[3] + refL[4] + refL[5] + refL[6] + 8) >> 4;
}
else { //lenL == 5 && lenS == 3
ref_middle = (lineP[3] + lineP[2] + lineP[1] + lineP[0]
+ lineQ[0] + lineQ[1] + lineQ[2] + lineQ[3] + 4) >> 3;
}
}
//Filter pixels in the line
const uint8_t tc7[7] = { 6, 5, 4, 3, 2, 1, 1 };
const uint8_t tc3[3] = { 6, 4, 2 };
const uint8_t *tc_coeff_P = (filter_length_P == 3) ? tc3 : tc7;
const uint8_t *tc_coeff_Q = (filter_length_Q == 3) ? tc3 : tc7;
for (size_t i = 0; i < filter_length_P; i++)
{
int range = (tc * tc_coeff_P[i]) >> 1;
*dstP[i] = CLIP(lineP[i] - range, lineP[i] + range, (ref_middle * coeffs_P[i] + ref_P * (64 - coeffs_P[i]) + 32) >> 6);
}
for (size_t i = 0; i < filter_length_Q; i++)
{
int range = (tc * tc_coeff_Q[i]) >> 1;
*dstQ[i] = CLIP(lineQ[i] - range, lineQ[i] + range, (ref_middle * coeffs_Q[i] + ref_Q * (64 - coeffs_Q[i]) + 32) >> 6);
}
return 3;
}
/**
* \brief Determine if strong or weak filtering should be used
*/
static INLINE bool use_strong_filtering(const kvz_pixel * const b0, const kvz_pixel * const b3,
const kvz_pixel * const b0L, const kvz_pixel * const b3L,
const int_fast32_t dp0, const int_fast32_t dq0,
const int_fast32_t dp3, const int_fast32_t dq3,
const int32_t tc, const int32_t beta,
const bool is_side_P_large, const bool is_side_Q_large,
const uint8_t max_filter_length_P, const uint8_t max_filter_length_Q,
const bool is_chroma_CTB_boundary)
{
int_fast32_t sp0 = is_chroma_CTB_boundary ? abs(b0[2] - b0[3]) : abs(b0[0] - b0[3]);
int_fast32_t sp3 = is_chroma_CTB_boundary ? abs(b3[2] - b3[3]) : abs(b3[0] - b3[3]);
if (is_side_P_large || is_side_Q_large) { //Large block decision
int_fast32_t sq0 = abs(b0[4] - b0[7]);
int_fast32_t sq3 = abs(b3[4] - b3[7]);
kvz_pixel tmp0, tmp3;
if (is_side_P_large) {
if (max_filter_length_P == 7) {
tmp0 = b0L[0];
tmp3 = b3L[0];
sp0 = sp0 + abs(b0L[3] - b0L[2] - b0L[1] + tmp0);
sp3 = sp3 + abs(b3L[3] - b3L[2] - b3L[1] + tmp3);
} else {
tmp0 = b0L[2];
tmp3 = b3L[2];
}
sp0 = (sp0 + abs(b0[0] - tmp0) + 1) >> 1;
sp3 = (sp3 + abs(b3[0] - tmp3) + 1) >> 1;
}
if (is_side_Q_large) {
if (max_filter_length_Q == 7) {
tmp0 = b0L[7];
tmp3 = b3L[7];
sq0 = sq0 + abs(b0L[4] - b0L[5] - b0L[6] + tmp0);
sq3 = sq3 + abs(b3L[4] - b3L[5] - b3L[6] + tmp3);
} else {
tmp0 = b0L[5];
tmp3 = b3L[5];
}
sq0 = (sq0 + abs(tmp0 - b0[7]) + 1) >> 1;
sq3 = (sq3 + abs(tmp3 - b3[7]) + 1) >> 1;
}
return 2 * (dp0 + dq0) < beta >> 4 &&
2 * (dp3 + dq3) < beta >> 4 &&
abs(b0[3] - b0[4]) < (5 * tc + 1) >> 1 &&
abs(b3[3] - b3[4]) < (5 * tc + 1) >> 1 &&
sp0 + sq0 < (beta * 3 >> 5) &&
sp3 + sq3 < (beta * 3 >> 5);
} else { //Normal decision
return 2 * (dp0 + dq0) < beta >> 2 &&
2 * (dp3 + dq3) < beta >> 2 &&
abs(b0[3] - b0[4]) < (5 * tc + 1) >> 1 &&
abs(b3[3] - b3[4]) < (5 * tc + 1) >> 1 &&
sp0 + abs(b0[4] - b0[7]) < beta >> 3 &&
sp3 + abs(b3[4] - b3[7]) < beta >> 3;
}
}
static INLINE void get_max_filter_length(uint8_t *filt_len_P, uint8_t *filt_len_Q,
const encoder_state_t * const state, const uint32_t x, const uint32_t y,
const edge_dir dir, const bool transform_edge,
const int tu_size_P_side, const int tu_size_Q_side,
const int pu_pos, const int pu_size,
const bool merge_flag, const color_t comp)
{
//const int tu_size_P_side = 0;
//const int tu_size_Q_side = 0;
//const int size = 0;
const int x_mul = dir == EDGE_HOR ? 0 : 1;
const int y_mul = dir == EDGE_HOR ? 1 : 0;
const int pos = dir == EDGE_HOR ? y : x;
const int len = EDGE_HOR ? state->tile->frame->height : state->tile->frame->width;
//const bool transform_edge = is_tu_boundary(state, x, y, dir);
bool transform_edge_4x4[2] = { false, false };
bool transform_edge_8x8[2] = { false, false };
if (pos >= 4) transform_edge_4x4[0] = is_tu_boundary(state, x - x_mul * 4, y - y_mul * 4, dir);
if (pos >= 8) transform_edge_8x8[0] = is_tu_boundary(state, x - x_mul * 8, y - y_mul * 8, dir);
if (pos + 4 < len) transform_edge_4x4[1] = is_tu_boundary(state, x + x_mul * 4, y + y_mul * 4, dir);
if (pos + 8 < len) transform_edge_8x8[1] = is_tu_boundary(state, x + x_mul * 8, y + y_mul * 8, dir);
if (comp == COLOR_Y) {
if (tu_size_P_side <= 4 || tu_size_Q_side <= 4){
*filt_len_P = 1;
*filt_len_Q = 1;
}
else {
*filt_len_P = tu_size_P_side >= 32 ? 7 : 3;
*filt_len_Q = tu_size_Q_side >= 32 ? 7 : 3;
}
if ((merge_flag && false) || false) //TODO: Add merge_mode == SUBPU_ATMVP and cu.affine
{
if (transform_edge) {
*filt_len_Q = MIN(*filt_len_Q, 5);
if (pu_pos > 0) {
*filt_len_P = MIN(*filt_len_P, 5);
}
} else if (pu_pos > 0 && (transform_edge_4x4[0] || (pu_pos + 4) >= pu_size || transform_edge_4x4[1])) { //adjacent to transform edge (4x4 grid)
*filt_len_P = 1;
*filt_len_Q = 1;
} else if (pu_pos > 0 && (pu_pos == 8 || transform_edge_8x8[0] || (pu_pos + 8) >= pu_size || transform_edge_8x8[1])) { //adjacent to transform edge (8x8 grid)
*filt_len_P = 2;
*filt_len_Q = 2;
} else {
*filt_len_P = 3;
*filt_len_Q = 3;
}
}
}
else {
*filt_len_P = (tu_size_P_side >= 8 && tu_size_Q_side >= 8) ? 3 : 1;
*filt_len_Q = (tu_size_P_side >= 8 && tu_size_Q_side >= 8) ? 3 : 1;
}
}
/**
* \brief Apply the deblocking filter to luma pixels on a single edge.
*
* The caller should check that the edge is a TU boundary or a PU boundary.
*
\verbatim
.-- filter this edge if dir == EDGE_HOR
v
+--------+
|o <-- pixel at (x, y)
| |
|<-- filter this edge if dir == EDGE_VER
| |
+--------+
\endverbatim
*
* \param state encoder state
* \param x x-coordinate in pixels (see above)
* \param y y-coordinate in pixels (see above)
* \param length length of the edge in pixels
* \param dir direction of the edge to filter
* \param tu_boundary whether the edge is a TU boundary
*/
static void filter_deblock_edge_luma(encoder_state_t * const state,
int32_t x,
int32_t y,
int32_t length,
edge_dir dir,
bool tu_boundary)
{
videoframe_t * const frame = state->tile->frame;
const encoder_control_t * const encoder = state->encoder_control;
{
int32_t stride = frame->rec->stride;
int32_t beta_offset_div2 = encoder->cfg.deblock_beta;
int32_t tc_offset_div2 = encoder->cfg.deblock_tc;
// TODO: support 10+bits
kvz_pixel *orig_src = &frame->rec->y[x + y*stride];
kvz_pixel *src = orig_src;
const int32_t qp = get_qp_y_pred(state, x, y, dir);
const int MAX_QP = 63; //TODO: Make DEFAULT_INTRA_TC_OFFSET(=2) a define?
const int8_t lumaBitdepth = encoder->bitdepth;
int8_t strength = 0;
int32_t bitdepth_scale = 1 << (lumaBitdepth - 8);
int32_t b_index = CLIP(0, MAX_QP, qp + (beta_offset_div2 << 1));
int32_t beta = kvz_g_beta_table_8x8[b_index] * bitdepth_scale;
int32_t side_threshold = (beta + (beta >>1 )) >> 3;
int32_t tc_index;
int32_t tc;
//Deblock adapted to halve pixel mvd. TODO: Tie into actual number of fractional mv bits
const int16_t mvdThreashold = 2; //(1 << (MV_INTERNAL_FRACTIONAL_BITS - 1))
uint32_t num_4px_parts = length / 4;
// Transpose the image by swapping x and y strides when doing horizontal
// edges.
const int32_t x_stride = (dir == EDGE_VER) ? 1 : stride;
const int32_t y_stride = (dir == EDGE_VER) ? stride : 1;
// TODO: add CU based QP calculation
// For each 4-pixel part in the edge
for (uint32_t block_idx = 0; block_idx < num_4px_parts; ++block_idx) {
// CUs on both sides of the edge
cu_info_t *cu_p;
cu_info_t *cu_q;
int32_t y_coord = y;
int32_t x_coord = x;
{
if (dir == EDGE_VER) {
y_coord = y + 4 * block_idx;
cu_p = kvz_cu_array_at(frame->cu_array, x - 1, y_coord);
cu_q = kvz_cu_array_at(frame->cu_array, x, y_coord);
} else {
x_coord = x + 4 * block_idx;
cu_p = kvz_cu_array_at(frame->cu_array, x_coord, y - 1);
cu_q = kvz_cu_array_at(frame->cu_array, x_coord, y );
}
bool nonzero_coeffs = cbf_is_set(cu_q->cbf, cu_q->tr_depth, COLOR_Y)
|| cbf_is_set(cu_p->cbf, cu_p->tr_depth, COLOR_Y);
// Filter strength
strength = 0;
if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) {
strength = 2;
} else if (tu_boundary && nonzero_coeffs) {
// Non-zero residual/coeffs and transform boundary
// Neither CU is intra so tr_depth <= MAX_DEPTH.
strength = 1;
} else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 &&
((abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][0] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][0]) >= mvdThreashold) ||
(abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][1] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][1]) >= mvdThreashold))) {
// Absolute motion vector diff between blocks >= 0.5 (Integer pixel)
strength = 1;
} else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 &&
cu_q->inter.mv_ref[cu_q->inter.mv_dir - 1] != cu_p->inter.mv_ref[cu_p->inter.mv_dir - 1]) {
strength = 1;
}
// B-slice related checks
if(!strength && state->frame->slicetype == KVZ_SLICE_B) {
// Zero all undefined motion vectors for easier usage
if(!(cu_q->inter.mv_dir & 1)) {
cu_q->inter.mv[0][0] = 0;
cu_q->inter.mv[0][1] = 0;
}
if(!(cu_q->inter.mv_dir & 2)) {
cu_q->inter.mv[1][0] = 0;
cu_q->inter.mv[1][1] = 0;
}
if(!(cu_p->inter.mv_dir & 1)) {
cu_p->inter.mv[0][0] = 0;
cu_p->inter.mv[0][1] = 0;
}
if(!(cu_p->inter.mv_dir & 2)) {
cu_p->inter.mv[1][0] = 0;
cu_p->inter.mv[1][1] = 0;
}
const int refP0 = (cu_p->inter.mv_dir & 1) ? state->frame->ref_LX[0][cu_p->inter.mv_ref[0]] : -1;
const int refP1 = (cu_p->inter.mv_dir & 2) ? state->frame->ref_LX[1][cu_p->inter.mv_ref[1]] : -1;
const int refQ0 = (cu_q->inter.mv_dir & 1) ? state->frame->ref_LX[0][cu_q->inter.mv_ref[0]] : -1;
const int refQ1 = (cu_q->inter.mv_dir & 2) ? state->frame->ref_LX[1][cu_q->inter.mv_ref[1]] : -1;
const mv_t* mvQ0 = cu_q->inter.mv[0];
const mv_t* mvQ1 = cu_q->inter.mv[1];
const mv_t* mvP0 = cu_p->inter.mv[0];
const mv_t* mvP1 = cu_p->inter.mv[1];
if(( refP0 == refQ0 && refP1 == refQ1 ) || ( refP0 == refQ1 && refP1==refQ0 ))
{
// Different L0 & L1
if ( refP0 != refP1 ) {
if ( refP0 == refQ0 ) {
strength = ((abs(mvQ0[0] - mvP0[0]) >= mvdThreashold) ||
(abs(mvQ0[1] - mvP0[1]) >= mvdThreashold) ||
(abs(mvQ1[0] - mvP1[0]) >= mvdThreashold) ||
(abs(mvQ1[1] - mvP1[1]) >= mvdThreashold)) ? 1 : 0;
} else {
strength = ((abs(mvQ1[0] - mvP0[0]) >= mvdThreashold) ||
(abs(mvQ1[1] - mvP0[1]) >= mvdThreashold) ||
(abs(mvQ0[0] - mvP1[0]) >= mvdThreashold) ||
(abs(mvQ0[1] - mvP1[1]) >= mvdThreashold)) ? 1 : 0;
}
// Same L0 & L1
} else {
strength = ((abs(mvQ0[0] - mvP0[0]) >= mvdThreashold) ||
(abs(mvQ0[1] - mvP0[1]) >= mvdThreashold) ||
(abs(mvQ1[0] - mvP1[0]) >= mvdThreashold) ||
(abs(mvQ1[1] - mvP1[1]) >= mvdThreashold)) &&
((abs(mvQ1[0] - mvP0[0]) >= mvdThreashold) ||
(abs(mvQ1[1] - mvP0[1]) >= mvdThreashold) ||
(abs(mvQ0[0] - mvP1[0]) >= mvdThreashold) ||
(abs(mvQ0[1] - mvP1[1]) >= mvdThreashold)) ? 1 : 0;
}
} else {
strength = 1;
}
}
tc_index = CLIP(0, MAX_QP + 2, (int32_t)(qp + 2*(strength - 1) + (tc_offset_div2 << 1)));
tc = lumaBitdepth < 10 ? ((kvz_g_tc_table_8x8[tc_index] + (1 << (9 - lumaBitdepth))) >> (10 - lumaBitdepth))
: ((kvz_g_tc_table_8x8[tc_index] << (lumaBitdepth - 10)));
}
if (strength == 0) continue;
bool is_side_P_large = false;
bool is_side_Q_large = false;
uint8_t max_filter_length_P = 0;
uint8_t max_filter_length_Q = 0;
const int cu_size = LCU_WIDTH >> cu_q->depth;
const int pu_part_idx = (y + PU_GET_H(cu_q->part_size, cu_size, 0) <= y_coord ?
1 + (kvz_part_mode_num_parts[cu_q->part_size] >> 2) : 0)
+ (x + PU_GET_W(cu_q->part_size, cu_size, 0) <= x_coord ? 1 : 0);
const int pu_size = dir == EDGE_HOR ? PU_GET_H(cu_q->part_size, cu_size, pu_part_idx)
: PU_GET_W(cu_q->part_size, cu_size, pu_part_idx);
const int pu_pos = dir == EDGE_HOR ? y_coord - PU_GET_Y(cu_q->part_size, cu_size, 0, pu_part_idx)
: x_coord - PU_GET_X(cu_q->part_size, cu_size, 0, pu_part_idx);
get_max_filter_length(&max_filter_length_P, &max_filter_length_Q, state, x_coord, y_coord,
dir, tu_boundary, LCU_WIDTH >> cu_p->tr_depth, LCU_WIDTH >> cu_q->tr_depth,
pu_pos, pu_size, cu_q->merged, COLOR_Y);
if (max_filter_length_P > 3) {
is_side_P_large = dir == EDGE_HOR && y % LCU_WIDTH == 0 ? false : true;
//TODO: Add affine/ATMVP related stuff
/*if (max_filter_length_P > 5 && cu_p->affine) {
max_filter_length_P = MIN(max_filter_length_P, 5);
}*/
}
if (max_filter_length_Q > 3) {
is_side_Q_large = true;
}
// +-- edge_src
// v
// line0 p7 p6 p5 p4 p3 p2 p1 p0 q0 q1 q2 q3 q4 q5 q6 q7
kvz_pixel *edge_src = &src[block_idx * 4 * y_stride];
// Gather the lines of pixels required for the filter on/off decision.
//TODO: May need to limit reach in small blocks?
kvz_pixel b[4][8];
gather_deblock_pixels(edge_src, x_stride, 0 * y_stride, 4, &b[0][0]);
gather_deblock_pixels(edge_src, x_stride, 3 * y_stride, 4, &b[3][0]);
int_fast32_t dp0 = abs(b[0][1] - 2 * b[0][2] + b[0][3]);
int_fast32_t dq0 = abs(b[0][4] - 2 * b[0][5] + b[0][6]);
int_fast32_t dp3 = abs(b[3][1] - 2 * b[3][2] + b[3][3]);
int_fast32_t dq3 = abs(b[3][4] - 2 * b[3][5] + b[3][6]);
int_fast32_t dp = dp0 + dp3;
int_fast32_t dq = dq0 + dq3;
bool sw = false;
if (is_side_P_large || is_side_Q_large) {
int_fast32_t dp0L = dp0;
int_fast32_t dq0L = dq0;
int_fast32_t dp3L = dp3;
int_fast32_t dq3L = dq3;
//bL:
//line0 p7 p6 p5 p4 q4 q5 q6 q7
kvz_pixel bL[4][8];
if (is_side_P_large) {
gather_deblock_pixels(edge_src - 6 * x_stride, x_stride, 0 * y_stride, 2, &bL[0][0] - 2);
gather_deblock_pixels(edge_src - 6 * x_stride, x_stride, 3 * y_stride, 2, &bL[3][0] - 2);
dp0L = (dp0L + abs(bL[0][2] - 2 * bL[0][3] + b[0][0]) + 1) >> 1;
dp3L = (dp3L + abs(bL[3][2] - 2 * bL[3][3] + b[3][0]) + 1) >> 1;
}
if (is_side_Q_large) {
gather_deblock_pixels(edge_src + 6 * x_stride, x_stride, 0 * y_stride, 2, &bL[0][2]);
gather_deblock_pixels(edge_src + 6 * x_stride, x_stride, 3 * y_stride, 2, &bL[3][2]);
dq0L = (dq0L + abs(b[0][7] - 2 * bL[0][4] + bL[0][5]) + 1) >> 1;
dq3L = (dq3L + abs(b[3][7] - 2 * bL[3][4] + bL[3][5]) + 1) >> 1;
}
int_fast32_t dpL = dp0L + dp3L;
int_fast32_t dqL = dq0L + dq3L;
if (dpL + dqL < beta) {
sw = use_strong_filtering(&b[0][0], &b[3][0], &bL[0][0], &bL[3][0],
dp0L, dq0L, dp3L, dq3L, tc, beta,
is_side_P_large, is_side_Q_large,
max_filter_length_P, max_filter_length_Q, false);
if (sw) {
gather_deblock_pixels(edge_src, x_stride, 1 * y_stride, 4, &b[1][0]);
gather_deblock_pixels(edge_src, x_stride, 2 * y_stride, 4, &b[2][0]);
if (is_side_P_large)
{
gather_deblock_pixels(edge_src - 6 * x_stride, x_stride, 1 * y_stride, 2, &bL[1][0] - 2);
gather_deblock_pixels(edge_src - 6 * x_stride, x_stride, 2 * y_stride, 2, &bL[2][0] - 2);
}
if (is_side_Q_large)
{
gather_deblock_pixels(edge_src + 6 * x_stride, x_stride, 1 * y_stride, 2, &bL[1][2]);
gather_deblock_pixels(edge_src + 6 * x_stride, x_stride, 2 * y_stride, 2, &bL[2][2]);
}
for (int i = 0; i < 4; ++i) {
int filter_reach;
filter_reach = kvz_filter_deblock_large_block(&b[i][0], &bL[i][0], tc,
is_side_P_large ? max_filter_length_P : 3,
is_side_Q_large ? max_filter_length_Q : 3);
scatter_deblock_pixels(&b[i][0], x_stride, i * y_stride, filter_reach, edge_src);
if (is_side_P_large) {
const int diff_reach = (max_filter_length_P - filter_reach) >> 1;
const int dst_offset = (filter_reach + diff_reach) * x_stride;
scatter_deblock_pixels(&bL[i][0] - diff_reach, x_stride, i * y_stride, diff_reach, edge_src - dst_offset);
}
if (is_side_Q_large) {
const int diff_reach = (max_filter_length_Q - filter_reach) >> 1;
const int dst_offset = (filter_reach + diff_reach) * x_stride;
scatter_deblock_pixels(&bL[i][0] + diff_reach, x_stride, i * y_stride, diff_reach, edge_src + dst_offset);
}
}
}
}
}
if (!sw)
{
if (dp + dq < beta) {
if (max_filter_length_P > 2 && max_filter_length_Q > 2) {
// Strong filtering flag checking.
sw = use_strong_filtering(b[0], b[3], NULL, NULL,
dp0, dq0, dp3, dq3, tc, beta,
false, false, 7, 7, false);
}
// Read lines 1 and 2. Weak filtering doesn't use the outermost pixels
// but let's give them anyway to simplify control flow.
gather_deblock_pixels(edge_src, x_stride, 1 * y_stride, 4, &b[1][0]);
gather_deblock_pixels(edge_src, x_stride, 2 * y_stride, 4, &b[2][0]);
for (int i = 0; i < 4; ++i) {
int filter_reach;
if (sw) {
filter_reach = kvz_filter_deblock_luma_strong(&b[i][0], tc);
} else {
bool p_2nd = false;
bool q_2nd = false;
if (max_filter_length_P > 1 && max_filter_length_Q > 1) {
p_2nd = dp < side_threshold;
q_2nd = dq < side_threshold;
}
filter_reach = kvz_filter_deblock_luma_weak(encoder, &b[i][0], tc, p_2nd, q_2nd);
}
scatter_deblock_pixels(&b[i][0], x_stride, i * y_stride, filter_reach, edge_src);
}
}
}
}
}
}
/**
* \brief Apply the deblocking filter to chroma pixels on a single edge.
*
* The caller should check that the edge is a TU boundary or a PU boundary.
*
\verbatim
.-- filter this edge if dir == EDGE_HOR
v
+--------+
|o <-- pixel at (x, y)
| |
|<-- filter this edge if dir == EDGE_VER
| |
+--------+
\endverbatim
*
* \param state encoder state
* \param x x-coordinate in chroma pixels (see above)
* \param y y-coordinate in chroma pixels (see above)
* \param length length of the edge in chroma pixels
* \param dir direction of the edge to filter
* \param tu_boundary whether the edge is a TU boundary
*/
static void filter_deblock_edge_chroma(encoder_state_t * const state,
int32_t x,
int32_t y,
int32_t length,
edge_dir dir,
bool tu_boundary)
{
const encoder_control_t * const encoder = state->encoder_control;
const videoframe_t * const frame = state->tile->frame;
// For each subpart
{
int32_t stride = frame->rec->stride >> 1;
int32_t tc_offset_div2 = encoder->cfg.deblock_tc;
int32_t beta_offset_div2 = encoder->cfg.deblock_beta;
// TODO: support 10+bits
kvz_pixel *src[] = {
&frame->rec->u[x + y*stride],
&frame->rec->v[x + y*stride],
};
const uint8_t MAX_QP = 63;
const int32_t luma_qp = get_qp_y_pred(state, x << 1, y << 1, dir);
int32_t QP = kvz_get_scaled_qp(1, luma_qp, 0, state->encoder_control->qp_map[0]);//kvz_g_chroma_scale[luma_qp]; //TODO: Add BDOffset?
int32_t bitdepth_scale = 1 << (encoder->bitdepth - 8);
//TU size should be in chroma samples (?)
const int chroma_shift = dir == EDGE_HOR ? (encoder->chroma_format == KVZ_CSP_420 ? 1 : 0)
: (encoder->chroma_format != KVZ_CSP_444 ? 1 : 0);
//TODO: Replace two (2) with min CU log2 size when its updated to the correct value
const int min_chroma_width_log2 = 2-(encoder->chroma_format == KVZ_CSP_420 ? 1 : 0);
const int min_chroma_height_log2 = 2 -(encoder->chroma_format != KVZ_CSP_444 ? 1 : 0);
const int min_chroma_size_log2 = dir == EDGE_HOR ? min_chroma_height_log2 : min_chroma_width_log2;
const int min_chroma_length = 1 << min_chroma_size_log2;
const uint32_t num_parts = (length >> min_chroma_size_log2);
const int32_t offset = (dir == EDGE_HOR) ? stride : 1;
const int32_t step = (dir == EDGE_HOR) ? 1 : stride;
//printf("%d %d %d %d\n", x << 1, y << 1, num_parts, dir);
for (uint32_t blk_idx = 0; blk_idx < num_parts; ++blk_idx)
{
// CUs on both sides of the edge
cu_info_t *cu_p;
cu_info_t *cu_q;
int32_t x_coord = x << 1;
int32_t y_coord = y << 1;
if (dir == EDGE_VER) {
y_coord = (y + min_chroma_length * blk_idx) << 1;
cu_p = kvz_cu_array_at(frame->cu_array, x_coord - 1, y_coord);
cu_q = kvz_cu_array_at(frame->cu_array, x_coord , y_coord);
} else {
x_coord = (x + min_chroma_length * blk_idx) << 1;
cu_p = kvz_cu_array_at(frame->cu_array, x_coord, y_coord - 1);
cu_q = kvz_cu_array_at(frame->cu_array, x_coord, y_coord );
}
const int cu_size = LCU_WIDTH >> cu_q->depth;
const int pu_part_idx = ((y << 1) + PU_GET_H(cu_q->part_size, cu_size, 0) <= y_coord ?
1 + (kvz_part_mode_num_parts[cu_q->part_size] >> 2) : 0)
+ ((x << 1) + PU_GET_W(cu_q->part_size, cu_size, 0) <= x_coord ? 1 : 0);
const int pu_size = dir == EDGE_HOR ? PU_GET_H(cu_q->part_size, cu_size, pu_part_idx)
: PU_GET_W(cu_q->part_size, cu_size, pu_part_idx);
const int pu_pos = dir == EDGE_HOR ? y_coord - PU_GET_Y(cu_q->part_size, cu_size, 0, pu_part_idx)
: x_coord - PU_GET_X(cu_q->part_size, cu_size, 0, pu_part_idx);
uint8_t max_filter_length_P = 0;
uint8_t max_filter_length_Q = 0;
const int tu_p_size = LCU_WIDTH >> (cu_p->tr_depth + (chroma_shift));
const int tu_q_size = LCU_WIDTH >> (cu_q->tr_depth + (chroma_shift));
get_max_filter_length(&max_filter_length_P, &max_filter_length_Q, state, x_coord, y_coord,
dir, tu_boundary, tu_p_size, tu_q_size,
pu_pos, pu_size, cu_q->merged, COLOR_U);
const bool large_boundary = (max_filter_length_P >= 3 && max_filter_length_Q >= 3);
const bool is_chroma_hor_CTB_boundary = (dir == EDGE_HOR && y_coord % LCU_WIDTH == 0);
uint8_t c_strength[2] = { 0, 0 };
if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) {
c_strength[0] = 2;
c_strength[1] = 2;
}
else if (tu_boundary){ //TODO: Add ciip/IBC related stuff
bool nonzero_coeffs_U = cbf_is_set(cu_q->cbf, cu_q->tr_depth, COLOR_U)
|| cbf_is_set(cu_p->cbf, cu_p->tr_depth, COLOR_U);
bool nonzero_coeffs_V = cbf_is_set(cu_q->cbf, cu_q->tr_depth, COLOR_V)
|| cbf_is_set(cu_p->cbf, cu_p->tr_depth, COLOR_V);
c_strength[0] = nonzero_coeffs_U ? 1 : 0;
c_strength[1] = nonzero_coeffs_V ? 1 : 0;
}
for (int component = 0; component < 2; component++) {
if (c_strength[component] == 2 || (large_boundary && c_strength[component] == 1)){
int32_t TC_index = CLIP(0, MAX_QP + 2, (int32_t)(QP + 2 * (c_strength[component] - 1) + (tc_offset_div2 << 1)));
int32_t Tc = encoder->bitdepth < 10 ? ((kvz_g_tc_table_8x8[TC_index] + (1 << (9 - encoder->bitdepth))) >> (10 - encoder->bitdepth))
: (kvz_g_tc_table_8x8[TC_index] << (encoder->bitdepth - 10));
bool use_long_filter = false;
// +-- edge_src
// v
// line0 p3 p2 p1 p0 q0 q1 q2 q3
kvz_pixel *edge_src = &src[component][blk_idx * min_chroma_length * step];
if (large_boundary) {
const int beta_index = CLIP(0, MAX_QP, QP + (beta_offset_div2 << 1));
const int beta = kvz_g_beta_table_8x8[beta_index] * bitdepth_scale;
const uint8_t sss = chroma_shift == 1 ? 1 : 3;
// Gather the lines of pixels required for the filter on/off decision.
//TODO: May need to limit reach in small blocks?
kvz_pixel b[2][8];
gather_deblock_pixels(edge_src, offset, 0 * step, 4, &b[0][0]);
gather_deblock_pixels(edge_src, offset, sss * step, 4, &b[1][0]);
const uint8_t p_ind = is_chroma_hor_CTB_boundary ? 2 : 1;
int_fast32_t dp0 = abs(b[0][p_ind] - 2 * b[0][2] + b[0][3]);
int_fast32_t dq0 = abs(b[0][4] - 2 * b[0][5] + b[0][6]);
int_fast32_t dp3 = abs(b[1][p_ind] - 2 * b[1][2] + b[1][3]);
int_fast32_t dq3 = abs(b[1][4] - 2 * b[1][5] + b[1][6]);
int_fast32_t dp = dp0 + dp3;
int_fast32_t dq = dq0 + dq3;
if (dp + dq < beta) {
use_long_filter = true;
const bool sw = use_strong_filtering(b[0], b[1], NULL, NULL,
dp0, dq0, dp3, dq3, Tc, beta,
false, false, 7, 7, is_chroma_hor_CTB_boundary);
for (int i = 0; i < min_chroma_length; i++) {
kvz_filter_deblock_chroma(encoder, edge_src + step * i, offset, Tc, 0, 0,
sw, large_boundary, is_chroma_hor_CTB_boundary);
}
}
}
if (!use_long_filter)
{
for (int i = 0; i < min_chroma_length; i++) {
kvz_filter_deblock_chroma(encoder, edge_src + step * i, offset, Tc, 0, 0,
false, large_boundary, is_chroma_hor_CTB_boundary);
}
}
}
}
}
}
}
/**
* \brief Filter edge of a single PU or TU
*
* \param state encoder state
* \param x block x-position in pixels
* \param y block y-position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param dir direction of the edges to filter
* \param tu_boundary whether the edge is a TU boundary
*/
static void filter_deblock_unit(encoder_state_t * const state,
int x,
int y,
int width,
int height,
edge_dir dir,
bool tu_boundary,
bool previous_ctu)
{
// no filtering on borders (where filter would use pixels outside the picture)
if (x == 0 && dir == EDGE_VER) return;
if (y == 0 && dir == EDGE_HOR) return;
// Length of luma and chroma edges.
int32_t length;
int32_t length_c;
if (dir == EDGE_HOR) {
const videoframe_t* const frame = state->tile->frame;
const int32_t x_right = x + width;
const bool rightmost_8px_of_lcu = x_right % LCU_WIDTH == 0 || x_right % LCU_WIDTH == LCU_WIDTH - width;
const bool rightmost_8px_of_frame = x_right == frame->width || x_right + width == frame->width;
if (rightmost_8px_of_lcu && !rightmost_8px_of_frame && !previous_ctu) {
// The last 8 pixels will be deblocked when processing the next LCU.
length = width - 4;
length_c = (width >> 1) - 2;
if (length == 0) return;
} else {
length = width;
length_c = width >> 1;
}
} else {
length = height;
length_c = height >> 1;
}
filter_deblock_edge_luma(state, x, y, length, dir, tu_boundary);
// Chroma pixel coordinates.
const int32_t x_c = x >> 1;
const int32_t y_c = y >> 1;
if (state->encoder_control->chroma_format != KVZ_CSP_400 && (is_on_8x8_grid(x_c, y_c, dir && (x_c + 4) % 32)
|| (x == state->tile->frame->width - 8 && dir == 1 && y_c % 8 == 0))) {
filter_deblock_edge_chroma(state, x_c, y_c, length, dir, tu_boundary);
}
}
/**
* \brief Deblock PU and TU boundaries inside an LCU.
*
* \param state encoder state
* \param x_px block x-position in pixels
* \param y_px block y-position in pixels
* \param dir direction of the edges to filter
*
* Recursively traverse the CU/TU quadtree. At the lowest level, apply the
* deblocking filter to the left edge (when dir == EDGE_VER) or the top edge
* (when dir == EDGE_HOR) as needed. Both luma and chroma are filtered.
*/
static void filter_deblock_lcu_inside(encoder_state_t * const state,
int32_t x,
int32_t y,
edge_dir dir)
{
const int end_x = MIN(x + LCU_WIDTH, state->tile->frame->width);
const int end_y = MIN(y + LCU_WIDTH, state->tile->frame->height);
for (int edge_y = y; edge_y < end_y; edge_y += 4) {
for (int edge_x = x; edge_x < end_x; edge_x += 4) {
bool tu_boundary = is_tu_boundary(state, edge_x, edge_y, dir);
if (tu_boundary || is_pu_boundary(state, edge_x, edge_y, dir)) {
filter_deblock_unit(state, edge_x, edge_y, 4, 4, dir, tu_boundary, edge_x < x);
}
}
}
}
/**
* \brief Filter rightmost 8 pixels of the horizontal egdes of an LCU.
*
* \param state encoder state
* \param x_px x-coordinate of the *right* edge of the LCU in pixels
* \param y_px y-coordinate of the top edge of the LCU in pixels
*/
static void filter_deblock_lcu_rightmost(encoder_state_t * const state,
int32_t x_px,
int32_t y_px)
{
// Luma
const int end = MIN(y_px + LCU_WIDTH, state->tile->frame->height);
for (int x = x_px - 8; x < x_px; x += 4) {
for (int y = y_px; y < end; y += 4) {
// The top edge of the whole frame is not filtered.
bool tu_boundary = is_tu_boundary(state, x, y, EDGE_HOR);
bool pu_boundary = is_pu_boundary(state, x, y, EDGE_HOR);
if (y > 0 && (tu_boundary || pu_boundary)) {
filter_deblock_edge_luma(state, x, y, 4, EDGE_HOR, tu_boundary);
}
}
}
// Chroma
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
const int x_px_c = x_px >> 1;
const int y_px_c = y_px >> 1;
const int x_c = x_px_c - 4;
const int end_c = MIN(y_px_c + LCU_WIDTH_C, state->tile->frame->height >> 1);
for (int y_c = y_px_c; y_c < end_c; y_c += 8) {
// The top edge of the whole frame is not filtered.
bool tu_boundary = is_tu_boundary(state, x_c << 1, y_c << 1, EDGE_HOR);
bool pu_boundary = is_pu_boundary(state, x_c << 1, y_c << 1, EDGE_HOR);
if (y_c > 0 && (tu_boundary || pu_boundary)) {
filter_deblock_edge_chroma(state, x_c , y_c, 4, EDGE_HOR, tu_boundary);
}
}
}
}
/**
* \brief Deblock a single LCU without using data from right or down.
*
* Filter the following vertical edges (horizontal filtering):
* 1. The left edge of the LCU.
* 2. All vertical edges within the LCU.
*
* Filter the following horizontal edges (vertical filtering):
* 1. The rightmost 8 pixels of the top edge of the LCU to the left.
* 2. The rightmost 8 pixels of all horizontal edges within the LCU to the
* left.
* 3. The top edge and all horizontal edges within the LCU, excluding the
* rightmost 8 pixels. If the LCU is the rightmost LCU of the frame, the
* last 8 pixels are also filtered.
*
* What is not filtered:
* - The rightmost 8 pixels of the top edge and all horizontal edges within
* the LCU, unless the LCU is the rightmost LCU of the frame.
* - The bottom edge of the LCU.
* - The right edge of the LCU.
*
* \param state encoder state
* \param x_px x-coordinate of the left edge of the LCU in pixels
* \param y_px y-coordinate of the top edge of the LCU in pixels
*/
//TODO: Things to check/fix for VVC:
// - Strength calculation to include average Luma level (Luma Adaptive Deblocing Filter LADF) (optional)
// - Deblocking strength for CIIP and IBC modes (CIIP/IBC not currently used)
// - Handle new prediction modes (i.e. PLT) (PLT not currently used)
// - Luma deblocking on a 4x4 grid
// - Deblocking filter for subblock boundaries
// - Allow loop filtering across slice/tile boundaries?
void kvz_filter_deblock_lcu(encoder_state_t * const state, int x_px, int y_px)
{
assert(!state->encoder_control->cfg.lossless);
filter_deblock_lcu_inside(state, x_px, y_px, EDGE_VER);
if (x_px > 0) {
filter_deblock_lcu_rightmost(state, x_px, y_px);
}
filter_deblock_lcu_inside(state, x_px, y_px, EDGE_HOR);
}