/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2014 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Kvazaar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*/
#include "search.h"
#include
#include
#include
#include
#include "config.h"
#include "bitstream.h"
#include "image.h"
#include "strategies/strategies-picture.h"
#include "intra.h"
#include "inter.h"
#include "filter.h"
#include "rdo.h"
#include "transform.h"
#include "encoder.h"
// Temporarily for debugging.
#define SEARCH_MV_FULL_RADIUS 0
#define IN_FRAME(x, y, width, height, block_width, block_height) \
((x) >= 0 && (y) >= 0 \
&& (x) + (block_width) <= (width) \
&& (y) + (block_height) <= (height))
// Extra cost for CU split.
// Compensates for missing or incorrect bit costs. Must be recalculated if
// bits are added or removed from cu-tree search.
#ifndef CU_COST
# define CU_COST 3
#endif
// Disable early cu-split pruning.
#ifndef FULL_CU_SPLIT_SEARCH
# define FULL_CU_SPLIT_SEARCH false
#endif
// Modify weight of luma SSD.
#ifndef LUMA_MULT
# define LUMA_MULT 0.8
#endif
// Modify weight of chroma SSD.
#ifndef CHROMA_MULT
# define CHROMA_MULT 1.5
#endif
// Normalize SAD for comparison against SATD to estimate transform skip
// for 4x4 blocks.
#ifndef TRSKIP_RATIO
# define TRSKIP_RATIO 1.7
#endif
/**
* This is used in the hexagon_search to select 3 points to search.
*
* The start of the hexagonal pattern has been repeated at the end so that
* the indices between 1-6 can be used as the start of a 3-point list of new
* points to search.
*
* 6 o-o 1 / 7
* / \
* 5 o 0 o 2 / 8
* \ /
* 4 o-o 3
*/
const vector2d large_hexbs[10] = {
{ 0, 0 },
{ 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 },
{ 1, -2 }, { 2, 0 }
};
/**
* This is used as the last step of the hexagon search.
*/
const vector2d small_hexbs[5] = {
{ 0, 0 },
{ -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 }
};
/*
* 6 7 8
* 3 4 5
* 0 1 2
*/
const vector2d square[9] = {
{ -1, 1 },
{ 0, 1 }, { 1, 1 }, { -1, 0 }, { 0, 0 }, { 1, 0 }, { -1, -1 },
{ 0, -1 }, { 1, -1 }
};
static uint32_t get_ep_ex_golomb_bitcost(uint32_t symbol, uint32_t count)
{
int32_t num_bins = 0;
while (symbol >= (uint32_t)(1 << count)) {
++num_bins;
symbol -= 1 << count;
++count;
}
num_bins ++;
return num_bins;
}
static uint32_t get_mvd_coding_cost(vector2d *mvd)
{
uint32_t bitcost = 0;
const int32_t mvd_hor = mvd->x;
const int32_t mvd_ver = mvd->y;
const int8_t hor_abs_gr0 = mvd_hor != 0;
const int8_t ver_abs_gr0 = mvd_ver != 0;
const uint32_t mvd_hor_abs = abs(mvd_hor);
const uint32_t mvd_ver_abs = abs(mvd_ver);
// Greater than 0 for x/y
bitcost += 2;
if (hor_abs_gr0) {
if (mvd_hor_abs > 1) {
bitcost += get_ep_ex_golomb_bitcost(mvd_hor_abs-2, 1) - 2; // TODO: tune the costs
}
// Greater than 1 + sign
bitcost += 2;
}
if (ver_abs_gr0) {
if (mvd_ver_abs > 1) {
bitcost += get_ep_ex_golomb_bitcost(mvd_ver_abs-2, 1) - 2; // TODO: tune the costs
}
// Greater than 1 + sign
bitcost += 2;
}
return bitcost;
}
static int calc_mvd_cost(const encoder_state * const encoder_state, int x, int y, int mv_shift,
int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3],
int16_t num_cand,int32_t ref_idx, uint32_t *bitcost)
{
uint32_t temp_bitcost = 0;
uint32_t merge_idx;
int cand1_cost,cand2_cost;
vector2d mvd_temp1, mvd_temp2;
int8_t merged = 0;
int8_t cur_mv_cand = 0;
x <<= mv_shift;
y <<= mv_shift;
// Check every candidate to find a match
for(merge_idx = 0; merge_idx < (uint32_t)num_cand; merge_idx++) {
if (merge_cand[merge_idx][0] == x &&
merge_cand[merge_idx][1] == y &&
merge_cand[merge_idx][2] == ref_idx) {
temp_bitcost += merge_idx;
merged = 1;
break;
}
}
// Check mvd cost only if mv is not merged
if(!merged) {
mvd_temp1.x = x - mv_cand[0][0];
mvd_temp1.y = y - mv_cand[0][1];
cand1_cost = get_mvd_coding_cost(&mvd_temp1);
mvd_temp2.x = x - mv_cand[1][0];
mvd_temp2.y = y - mv_cand[1][1];
cand2_cost = get_mvd_coding_cost(&mvd_temp2);
// Select candidate 1 if it has lower cost
if (cand2_cost < cand1_cost) {
cur_mv_cand = 1;
}
temp_bitcost += cur_mv_cand ? cand2_cost : cand1_cost;
}
*bitcost = temp_bitcost;
return temp_bitcost*(int32_t)(encoder_state->global->cur_lambda_cost_sqrt+0.5);
}
/**
* \brief Do motion search using the HEXBS algorithm.
*
* \param depth log2 depth of the search
* \param pic Picture motion vector is searched for.
* \param ref Picture motion vector is searched from.
* \param orig Top left corner of the searched for block.
* \param mv_in_out Predicted mv in and best out. Quarter pixel precision.
*
* \returns Cost of the motion vector.
*
* Motion vector is searched by first searching iteratively with the large
* hexagon pattern until the best match is at the center of the hexagon.
* As a final step a smaller hexagon is used to check the adjacent pixels.
*
* If a non 0,0 predicted motion vector predictor is given as mv_in_out,
* the 0,0 vector is also tried. This is hoped to help in the case where
* the predicted motion vector is way off. In the future even more additional
* points like 0,0 might be used, such as vectors from top or left.
*/
static unsigned hexagon_search(const encoder_state * const encoder_state, unsigned depth,
const image *pic, const image *ref,
const vector2d *orig, vector2d *mv_in_out,
int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3],
int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out)
{
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
int block_width = CU_WIDTH_FROM_DEPTH(depth);
unsigned best_cost = UINT32_MAX;
uint32_t best_bitcost = 0, bitcost;
unsigned i;
unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs.
int max_lcu_below = -1;
if (encoder_state->encoder_control->owf) {
max_lcu_below = 1;
}
// Search the initial 7 points of the hexagon.
for (i = 0; i < 7; ++i) {
const vector2d *pattern = &large_hexbs[i];
unsigned cost;
{
PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS);
cost = image_calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + pattern->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + pattern->y,
block_width, block_width, max_lcu_below);
cost += calc_mvd_cost(encoder_state, mv.x + pattern->x, mv.y + pattern->y, 2, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, encoder_state->encoder_control->threadqueue, "type=sad,step=large_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", encoder_state->global->frame, encoder_state->tile->id, ref->poc - encoder_state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + pattern->x,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + pattern->x + block_width,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + pattern->y,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + pattern->y + block_width);
}
if (cost < best_cost) {
best_cost = cost;
best_index = i;
best_bitcost = bitcost;
}
}
// Try the 0,0 vector.
if (!(mv.x == 0 && mv.y == 0)) {
unsigned cost;
{
PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS);
cost = image_calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y,
block_width, block_width, max_lcu_below);
cost += calc_mvd_cost(encoder_state, 0, 0, 2, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, encoder_state->encoder_control->threadqueue, "type=sad,step=00vector,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", encoder_state->global->frame, encoder_state->tile->id, ref->poc - encoder_state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + block_width,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + block_width);
}
// If the 0,0 is better, redo the hexagon around that point.
if (cost < best_cost) {
best_cost = cost;
best_bitcost = bitcost;
best_index = 0;
mv.x = 0;
mv.y = 0;
for (i = 1; i < 7; ++i) {
const vector2d *pattern = &large_hexbs[i];
unsigned cost;
{
PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS);
cost = image_calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + pattern->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + pattern->y,
block_width, block_width, max_lcu_below);
cost += calc_mvd_cost(encoder_state, pattern->x, pattern->y, 2, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, encoder_state->encoder_control->threadqueue, "type=sad,step=large_hexbs_around00,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", encoder_state->global->frame, encoder_state->tile->id, ref->poc - encoder_state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + pattern->x,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + pattern->x + block_width,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + pattern->y,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + pattern->y + block_width);
}
if (cost < best_cost) {
best_cost = cost;
best_index = i;
best_bitcost = bitcost;
}
}
}
}
// Iteratively search the 3 new points around the best match, until the best
// match is in the center.
while (best_index != 0) {
unsigned start; // Starting point of the 3 offsets to be searched.
if (best_index == 1) {
start = 6;
} else if (best_index == 8) {
start = 1;
} else {
start = best_index - 1;
}
// Move the center to the best match.
mv.x += large_hexbs[best_index].x;
mv.y += large_hexbs[best_index].y;
best_index = 0;
// Iterate through the next 3 points.
for (i = 0; i < 3; ++i) {
const vector2d *offset = &large_hexbs[start + i];
unsigned cost;
{
PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS);
cost = image_calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y,
block_width, block_width, max_lcu_below);
cost += calc_mvd_cost(encoder_state, mv.x + offset->x, mv.y + offset->y, 2, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, encoder_state->encoder_control->threadqueue, "type=sad,step=large_hexbs_iterative,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", encoder_state->global->frame, encoder_state->tile->id, ref->poc - encoder_state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x + block_width,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y + block_width);
}
if (cost < best_cost) {
best_cost = cost;
best_index = start + i;
best_bitcost = bitcost;
}
++offset;
}
}
// Move the center to the best match.
mv.x += large_hexbs[best_index].x;
mv.y += large_hexbs[best_index].y;
best_index = 0;
// Do the final step of the search with a small pattern.
for (i = 1; i < 5; ++i) {
const vector2d *offset = &small_hexbs[i];
unsigned cost;
{
PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS);
cost = image_calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y,
block_width, block_width, max_lcu_below);
cost += calc_mvd_cost(encoder_state, mv.x + offset->x, mv.y + offset->y, 2, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, encoder_state->encoder_control->threadqueue, "type=sad,step=small_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", encoder_state->global->frame, encoder_state->tile->id, ref->poc - encoder_state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x + block_width,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y + block_width);
}
if (cost > 0 && cost < best_cost) {
best_cost = cost;
best_index = i;
best_bitcost = bitcost;
}
}
// Adjust the movement vector according to the final best match.
mv.x += small_hexbs[best_index].x;
mv.y += small_hexbs[best_index].y;
// Return final movement vector in quarter-pixel precision.
mv_in_out->x = mv.x << 2;
mv_in_out->y = mv.y << 2;
*bitcost_out = best_bitcost;
return best_cost;
}
#if SEARCH_MV_FULL_RADIUS
static unsigned search_mv_full(unsigned depth,
const picture *pic, const picture *ref,
const vector2d *orig, vector2d *mv_in_out,
int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3],
int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out)
{
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
int block_width = CU_WIDTH_FROM_DEPTH(depth);
unsigned best_cost = UINT32_MAX;
int x, y;
uint32_t best_bitcost = 0, bitcost;
vector2d min_mv, max_mv;
/*if (abs(mv.x) > SEARCH_MV_FULL_RADIUS || abs(mv.y) > SEARCH_MV_FULL_RADIUS) {
best_cost = calc_sad(pic, ref, orig->x, orig->y,
orig->x, orig->y,
block_width, block_width);
mv.x = 0;
mv.y = 0;
}*/
min_mv.x = mv.x - SEARCH_MV_FULL_RADIUS;
min_mv.y = mv.y - SEARCH_MV_FULL_RADIUS;
max_mv.x = mv.x + SEARCH_MV_FULL_RADIUS;
max_mv.y = mv.y + SEARCH_MV_FULL_RADIUS;
for (y = min_mv.y; y < max_mv.y; ++y) {
for (x = min_mv.x; x < max_mv.x; ++x) {
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
orig->x + x,
orig->y + y,
block_width, block_width);
cost += calc_mvd_cost(x, y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
if (cost < best_cost) {
best_cost = cost;
best_bitcost = bitcost;
mv.x = x;
mv.y = y;
}
}
}
mv_in_out->x = mv.x << 2;
mv_in_out->y = mv.y << 2;
*bitcost_out = best_bitcost;
return best_cost;
}
#endif
/**
* \brief Do fractional motion estimation
*
* \param depth log2 depth of the search
* \param pic Picture motion vector is searched for.
* \param ref Picture motion vector is searched from.
* \param orig Top left corner of the searched for block.
* \param mv_in_out Predicted mv in and best out. Quarter pixel precision.
*
* \returns Cost of the motion vector.
*
* Algoritm first searches 1/2-pel positions around integer mv and after best match is found,
* refines the search by searching best 1/4-pel postion around best 1/2-pel position.
*/
static unsigned search_frac( const encoder_state * const encoder_state,
unsigned depth,
const image *pic, const image *ref,
const vector2d *orig, vector2d *mv_in_out,
int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3],
int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out) {
//Set mv to halfpel precision
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
int block_width = CU_WIDTH_FROM_DEPTH(depth);
unsigned best_cost = UINT32_MAX;
uint32_t best_bitcost = 0, bitcost;
unsigned i;
unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs.
unsigned cost = 0;
cost_pixel_nxn_func *satd = pixels_get_satd_func(block_width);
vector2d halfpel_offset;
#define FILTER_SIZE 8
#define HALF_FILTER (FILTER_SIZE>>1)
//create buffer for block + extra for filter
int src_stride = block_width+FILTER_SIZE+1;
int16_t src[(LCU_WIDTH+FILTER_SIZE+1) * (LCU_WIDTH+FILTER_SIZE+1)];
int16_t* src_off = &src[HALF_FILTER+HALF_FILTER*(block_width+FILTER_SIZE+1)];
//destination buffer for interpolation
int dst_stride = (block_width+1)*4;
int16_t dst[(LCU_WIDTH+1) * (LCU_WIDTH+1) * 16];
int16_t* dst_off = &dst[dst_stride*4+4];
extend_borders(orig->x, orig->y, mv.x-1, mv.y-1,
encoder_state->tile->lcu_offset_x * LCU_WIDTH,
encoder_state->tile->lcu_offset_y * LCU_WIDTH,
ref->y, ref->width, ref->height, FILTER_SIZE, block_width+1, block_width+1, src);
filter_inter_quarterpel_luma(encoder_state->encoder_control, src_off, src_stride, block_width+1,
block_width+1, dst, dst_stride, 1, 1);
//Set mv to half-pixel precision
mv.x <<= 1;
mv.y <<= 1;
// Search halfpel positions around best integer mv
for (i = 0; i < 9; ++i) {
const vector2d *pattern = &square[i];
pixel tmp_filtered[LCU_WIDTH*LCU_WIDTH];
pixel tmp_pic[LCU_WIDTH*LCU_WIDTH];
int y,x;
for(y = 0; y < block_width; ++y) {
int dst_y = y*4+pattern->y*2;
for(x = 0; x < block_width; ++x) {
int dst_x = x*4+pattern->x*2;
tmp_filtered[y*block_width+x] = (uint8_t)dst_off[dst_y*dst_stride+dst_x];
tmp_pic[y*block_width+x] = (uint8_t)pic->y[orig->x+x + (orig->y+y)*pic->width];
}
}
cost = satd(tmp_pic,tmp_filtered);
cost += calc_mvd_cost(encoder_state, mv.x + pattern->x, mv.y + pattern->y, 1, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
if (cost < best_cost) {
best_cost = cost;
best_index = i;
best_bitcost = bitcost;
}
}
//Set mv to best match
mv.x += square[best_index].x;
mv.y += square[best_index].y;
halfpel_offset.x = square[best_index].x*2;
halfpel_offset.y = square[best_index].y*2;
//Set mv to quarterpel precision
mv.x <<= 1;
mv.y <<= 1;
//Search quarterpel points around best halfpel mv
for (i = 0; i < 9; ++i) {
const vector2d *pattern = &square[i];
pixel tmp_filtered[LCU_WIDTH*LCU_WIDTH];
pixel tmp_pic[LCU_WIDTH*LCU_WIDTH];
int y,x;
for(y = 0; y < block_width; ++y) {
int dst_y = y*4+halfpel_offset.y+pattern->y;
for(x = 0; x < block_width; ++x) {
int dst_x = x*4+halfpel_offset.x+pattern->x;
tmp_filtered[y*block_width+x] = (uint8_t)dst_off[dst_y*dst_stride+dst_x];
tmp_pic[y*block_width+x] = (uint8_t)pic->y[orig->x+x + (orig->y+y)*pic->width];
}
}
cost = satd(tmp_pic,tmp_filtered);
cost += calc_mvd_cost(encoder_state, mv.x + pattern->x, mv.y + pattern->y, 0, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
if (cost < best_cost) {
best_cost = cost;
best_index = i;
best_bitcost = bitcost;
}
}
//Set mv to best final best match
mv.x += square[best_index].x;
mv.y += square[best_index].y;
mv_in_out->x = mv.x;
mv_in_out->y = mv.y;
*bitcost_out = best_bitcost;
return best_cost;
}
/**
* Update lcu to have best modes at this depth.
* \return Cost of best mode.
*/
static int search_cu_inter(const encoder_state * const encoder_state, int x, int y, int depth, lcu_t *lcu)
{
const videoframe * const frame = encoder_state->tile->frame;
uint32_t ref_idx = 0;
int x_local = (x&0x3f), y_local = (y&0x3f);
int x_cu = x>>3;
int y_cu = y>>3;
int cu_pos = LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH;
cu_info *cur_cu = &lcu->cu[cu_pos];
int16_t mv_cand[2][2];
// Search for merge mode candidate
int16_t merge_cand[MRG_MAX_NUM_CANDS][3];
// Get list of candidates
int16_t num_cand = inter_get_merge_cand(x, y, depth, merge_cand, lcu);
// Select better candidate
cur_cu->inter.mv_cand = 0; // Default to candidate 0
cur_cu->inter.cost = UINT_MAX;
for (ref_idx = 0; ref_idx < encoder_state->global->ref->used_size; ref_idx++) {
image *ref_image = encoder_state->global->ref->images[ref_idx];
const cu_info *ref_cu = &encoder_state->global->ref->cu_arrays[ref_idx]->data[x_cu + y_cu * (frame->width_in_lcu << MAX_DEPTH)];
uint32_t temp_bitcost = 0;
uint32_t temp_cost = 0;
vector2d orig, mv, mvd;
int32_t merged = 0;
uint8_t cu_mv_cand = 0;
int8_t merge_idx = 0;
int8_t temp_ref_idx = cur_cu->inter.mv_ref;
orig.x = x_cu * CU_MIN_SIZE_PIXELS;
orig.y = y_cu * CU_MIN_SIZE_PIXELS;
mv.x = 0;
mv.y = 0;
if (ref_cu->type == CU_INTER) {
mv.x = ref_cu->inter.mv[0];
mv.y = ref_cu->inter.mv[1];
}
// Get MV candidates
cur_cu->inter.mv_ref = ref_idx;
inter_get_mv_cand(encoder_state, x, y, depth, mv_cand, cur_cu, lcu);
cur_cu->inter.mv_ref = temp_ref_idx;
#if SEARCH_MV_FULL_RADIUS
temp_cost += search_mv_full(depth, frame, ref_pic, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost);
#else
temp_cost += hexagon_search(encoder_state, depth, frame->source, ref_image, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost);
#endif
if (encoder_state->encoder_control->cfg->fme_level > 0) {
temp_cost = search_frac(encoder_state, depth, frame->source, ref_image, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost);
}
merged = 0;
// Check every candidate to find a match
for(merge_idx = 0; merge_idx < num_cand; merge_idx++) {
if (merge_cand[merge_idx][0] == mv.x &&
merge_cand[merge_idx][1] == mv.y &&
(uint32_t)merge_cand[merge_idx][2] == ref_idx) {
merged = 1;
break;
}
}
// Only check when candidates are different
if (!merged && (mv_cand[0][0] != mv_cand[1][0] || mv_cand[0][1] != mv_cand[1][1])) {
vector2d mvd_temp1, mvd_temp2;
int cand1_cost,cand2_cost;
mvd_temp1.x = mv.x - mv_cand[0][0];
mvd_temp1.y = mv.y - mv_cand[0][1];
cand1_cost = get_mvd_coding_cost(&mvd_temp1);
mvd_temp2.x = mv.x - mv_cand[1][0];
mvd_temp2.y = mv.y - mv_cand[1][1];
cand2_cost = get_mvd_coding_cost(&mvd_temp2);
// Select candidate 1 if it has lower cost
if (cand2_cost < cand1_cost) {
cu_mv_cand = 1;
}
}
mvd.x = mv.x - mv_cand[cu_mv_cand][0];
mvd.y = mv.y - mv_cand[cu_mv_cand][1];
if(temp_cost < cur_cu->inter.cost) {
cur_cu->merged = merged;
cur_cu->merge_idx = merge_idx;
cur_cu->inter.mv_ref = ref_idx;
cur_cu->inter.mv_dir = 1;
cur_cu->inter.mv[0] = (int16_t)mv.x;
cur_cu->inter.mv[1] = (int16_t)mv.y;
cur_cu->inter.mvd[0] = (int16_t)mvd.x;
cur_cu->inter.mvd[1] = (int16_t)mvd.y;
cur_cu->inter.cost = temp_cost;
cur_cu->inter.bitcost = temp_bitcost + ref_idx;
cur_cu->inter.mv_cand = cu_mv_cand;
}
}
return cur_cu->inter.cost;
}
/**
* Copy all non-reference CU data from depth+1 to depth.
*/
static void work_tree_copy_up(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1])
{
// Copy non-reference CUs.
{
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
const int width_cu = LCU_WIDTH >> MAX_DEPTH >> depth;
int x, y;
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
const cu_info *from_cu = &work_tree[depth + 1].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
cu_info *to_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
}
// Copy reconstructed pixels.
{
const int x = SUB_SCU(x_px);
const int y = SUB_SCU(y_px);
const int width_px = LCU_WIDTH >> depth;
const int luma_index = x + y * LCU_WIDTH;
const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2);
const lcu_yuv_t *from = &work_tree[depth + 1].rec;
lcu_yuv_t *to = &work_tree[depth].rec;
const lcu_coeff_t *from_coeff = &work_tree[depth + 1].coeff;
lcu_coeff_t *to_coeff = &work_tree[depth].coeff;
pixels_blit(&from->y[luma_index], &to->y[luma_index],
width_px, width_px, LCU_WIDTH, LCU_WIDTH);
pixels_blit(&from->u[chroma_index], &to->u[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
pixels_blit(&from->v[chroma_index], &to->v[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
// Copy coefficients up. They do not have to be copied down because they
// are not used for the search.
coefficients_blit(&from_coeff->y[luma_index], &to_coeff->y[luma_index],
width_px, width_px, LCU_WIDTH, LCU_WIDTH);
coefficients_blit(&from_coeff->u[chroma_index], &to_coeff->u[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
coefficients_blit(&from_coeff->v[chroma_index], &to_coeff->v[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
}
}
/**
* Copy all non-reference CU data from depth to depth+1..MAX_PU_DEPTH.
*/
static void work_tree_copy_down(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1])
{
// TODO: clean up to remove the copy pasta
const int width_px = LCU_WIDTH >> depth;
int d;
for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) {
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
const int width_cu = width_px >> MAX_DEPTH;
int x, y;
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
const cu_info *from_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
cu_info *to_cu = &work_tree[d].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
}
// Copy reconstructed pixels.
for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) {
const int x = SUB_SCU(x_px);
const int y = SUB_SCU(y_px);
const int luma_index = x + y * LCU_WIDTH;
const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2);
lcu_yuv_t *from = &work_tree[depth].rec;
lcu_yuv_t *to = &work_tree[d].rec;
pixels_blit(&from->y[luma_index], &to->y[luma_index],
width_px, width_px, LCU_WIDTH, LCU_WIDTH);
pixels_blit(&from->u[chroma_index], &to->u[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
pixels_blit(&from->v[chroma_index], &to->v[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
}
}
static void lcu_set_trdepth(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const vector2d lcu_cu = { (x_px & (LCU_WIDTH - 1)) / 8, (y_px & (LCU_WIDTH - 1)) / 8 };
cu_info *const cur_cu = &lcu->cu[lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH + LCU_CU_OFFSET];
int x, y;
// Depth 4 doesn't go inside the loop. Set the top-left CU.
cur_cu->tr_depth = tr_depth;
for (y = 0; y < width_cu; ++y) {
for (x = 0; x < width_cu; ++x) {
cu_info *cu = &cur_cu[x + y * LCU_T_CU_WIDTH];
cu->tr_depth = tr_depth;
}
}
}
static void lcu_set_intra_mode(lcu_t *lcu, int x_px, int y_px, int depth, int pred_mode, int chroma_mode, int part_mode)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
// NxN can only be applied to a single CU at a time.
if (part_mode == SIZE_NxN) {
cu_info *cu = &lcu_cu[x_cu + y_cu * LCU_T_CU_WIDTH];
cu->depth = MAX_DEPTH;
cu->type = CU_INTRA;
cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode = pred_mode;
cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode_chroma = chroma_mode;
cu->part_size = part_mode;
return;
}
// Set mode in every CU covered by part_mode in this depth.
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
cu->depth = depth;
cu->type = CU_INTRA;
cu->intra[0].mode = pred_mode;
cu->intra[1].mode = pred_mode;
cu->intra[2].mode = pred_mode;
cu->intra[3].mode = pred_mode;
cu->intra[0].mode_chroma = chroma_mode;
cu->part_size = part_mode;
cu->coded = 1;
}
}
}
static void lcu_set_inter(lcu_t *lcu, int x_px, int y_px, int depth, cu_info *cur_cu)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
// Set mode in every CU covered by part_mode in this depth.
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
//Check if this could be moved inside the if
cu->coded = 1;
if (cu != cur_cu) {
cu->depth = cur_cu->depth;
cu->type = CU_INTER;
cu->tr_depth = cur_cu->tr_depth;
cu->merged = cur_cu->merged;
cu->skipped = cur_cu->skipped;
memcpy(&cu->inter, &cur_cu->inter, sizeof(cu_info_inter));
}
}
}
}
static void lcu_set_coeff(lcu_t *lcu, int x_px, int y_px, int depth, cu_info *cur_cu)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
int tr_split = cur_cu->tr_depth-cur_cu->depth;
// Set coeff flags in every CU covered by part_mode in this depth.
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
// Use TU top-left CU to propagate coeff flags
uint32_t mask = ~((width_cu>>tr_split)-1);
cu_info *cu_from = &lcu_cu[(x & mask) + (y & mask) * LCU_T_CU_WIDTH];
if (cu != cu_from) {
// Chroma coeff data is not used, luma is needed for deblocking
cu->cbf.y = cu_from->cbf.y;
}
}
}
}
/**
* Calculate RD cost for a Coding Unit.
* \return Cost of block
* \param ref_cu CU used for prediction parameters.
*
* Calculates the RDO cost of a single CU that will not be split further.
* Takes into account SSD of reconstruction and the cost of encoding whatever
* prediction unit data needs to be coded.
*/
static double cu_rd_cost_luma(const encoder_state *const encoder_state,
const int x_px, const int y_px, const int depth,
const cu_info *const pred_cu,
lcu_t *const lcu)
{
const int rdo = encoder_state->encoder_control->rdo;
const int width = LCU_WIDTH >> depth;
const uint8_t pu_index = PU_INDEX(x_px / 4, y_px / 4);
// cur_cu is used for TU parameters.
cu_info *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (x_px / 8) + (y_px / 8) * LCU_T_CU_WIDTH];
double coeff_bits = 0;
double tr_tree_bits = 0;
// Check that lcu is not in
assert(x_px >= 0 && x_px < LCU_WIDTH);
assert(y_px >= 0 && y_px < LCU_WIDTH);
const uint8_t tr_depth = tr_cu->tr_depth - depth;
// Add transform_tree split_transform_flag bit cost.
bool intra_split_flag = pred_cu->type == CU_INTRA && pred_cu->part_size == SIZE_NxN && depth == 3;
if (width <= TR_MAX_WIDTH
&& width > TR_MIN_WIDTH
&& !intra_split_flag)
{
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.trans_subdiv_model[5 - (6 - depth)]);
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, tr_depth > 0);
}
if (tr_depth > 0) {
int offset = width / 2;
double sum = 0;
sum += cu_rd_cost_luma(encoder_state, x_px, y_px, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_luma(encoder_state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_luma(encoder_state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_luma(encoder_state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
return sum + tr_tree_bits * encoder_state->global->cur_lambda_cost;
}
// Add transform_tree cbf_luma bit cost.
if (pred_cu->type == CU_INTRA ||
tr_depth > 0 ||
cbf_is_set(tr_cu->cbf.u, depth) ||
cbf_is_set(tr_cu->cbf.v, depth))
{
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.qt_cbf_model_luma[!tr_depth]);
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.y, depth + pu_index));
}
unsigned ssd = 0;
// SSD between reconstruction and original
for (int y = y_px; y < y_px + width; ++y) {
for (int x = x_px; x < x_px + width; ++x) {
int diff = (int)lcu->rec.y[y * LCU_WIDTH + x] - (int)lcu->ref.y[y * LCU_WIDTH + x];
ssd += diff*diff;
}
}
if (rdo >= 1) {
coefficient coeff_temp[32 * 32];
int8_t luma_scan_mode = get_scan_order(pred_cu->type, pred_cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode, depth);
// Code coeffs using cabac to get a better estimate of real coding costs.
coefficients_blit(&lcu->coeff.y[(y_px*LCU_WIDTH) + x_px], coeff_temp, width, width, LCU_WIDTH, width);
coeff_bits += get_coeff_cost(encoder_state, coeff_temp, width, 0, luma_scan_mode);
}
double bits = tr_tree_bits + coeff_bits;
return (double)ssd * LUMA_MULT + bits * encoder_state->global->cur_lambda_cost;
}
static double cu_rd_cost_chroma(const encoder_state *const encoder_state,
const int x_px, const int y_px, const int depth,
const cu_info *const pred_cu,
lcu_t *const lcu)
{
const vector2d lcu_px = { x_px / 2, y_px / 2 };
const int rdo = encoder_state->encoder_control->rdo;
const int width = (depth <= MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth;
cu_info *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x / 4) + (lcu_px.y / 4)*LCU_T_CU_WIDTH];
double tr_tree_bits = 0;
double coeff_bits = 0;
assert(x_px >= 0 && x_px < LCU_WIDTH);
assert(y_px >= 0 && y_px < LCU_WIDTH);
if (PU_INDEX(x_px / 4, y_px / 4) != 0) {
// For MAX_PU_DEPTH calculate chroma for previous depth for the first
// block and return 0 cost for all others.
return 0;
}
if (depth < MAX_PU_DEPTH) {
const int tr_depth = depth - pred_cu->depth;
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.qt_cbf_model_chroma[tr_depth]);
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.u, depth - 1)) {
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.u, depth));
}
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.v, depth - 1)) {
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.v, depth));
}
}
if (tr_cu->tr_depth > depth) {
int offset = LCU_WIDTH >> (depth + 1);
int sum = 0;
sum += cu_rd_cost_chroma(encoder_state, x_px, y_px, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_chroma(encoder_state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_chroma(encoder_state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_chroma(encoder_state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
return sum + tr_tree_bits * encoder_state->global->cur_lambda_cost;
}
// Chroma SSD
int ssd = 0;
for (int y = lcu_px.y; y < lcu_px.y + width; ++y) {
for (int x = lcu_px.x; x < lcu_px.x + width; ++x) {
int diff = (int)lcu->rec.u[y * LCU_WIDTH_C + x] - (int)lcu->ref.u[y * LCU_WIDTH_C + x];
ssd += diff * diff;
}
}
for (int y = lcu_px.y; y < lcu_px.y + width; ++y) {
for (int x = lcu_px.x; x < lcu_px.x + width; ++x) {
int diff = (int)lcu->rec.v[y * LCU_WIDTH_C + x] - (int)lcu->ref.v[y * LCU_WIDTH_C + x];
ssd += diff * diff;
}
}
if (rdo >= 1) {
coefficient coeff_temp[16 * 16];
int8_t scan_order = get_scan_order(pred_cu->type, pred_cu->intra[0].mode_chroma, depth);
coefficients_blit(&lcu->coeff.u[(lcu_px.y*(LCU_WIDTH_C)) + lcu_px.x],
coeff_temp, width, width, LCU_WIDTH_C, width);
coeff_bits += get_coeff_cost(encoder_state, coeff_temp, width, 2, scan_order);
coefficients_blit(&lcu->coeff.v[(lcu_px.y*(LCU_WIDTH_C)) + lcu_px.x],
coeff_temp, width, width, LCU_WIDTH_C, width);
coeff_bits += get_coeff_cost(encoder_state, coeff_temp, width, 2, scan_order);
}
double bits = tr_tree_bits + coeff_bits;
return (double)ssd * CHROMA_MULT + bits * encoder_state->global->cur_lambda_cost;
}
/**
* \brief Perform search for best intra transform split configuration.
*
* This function does a recursive search for the best intra transform split
* configuration for a given intra prediction mode.
*
* \return RD cost of best transform split configuration. Splits in lcu->cu.
* \param depth Current transform depth.
* \param max_depth Depth to which TR split will be tried.
* \param intra_mode Intra prediction mode.
* \param cost_treshold RD cost at which search can be stopped.
*/
static double search_intra_trdepth(encoder_state * const encoder_state,
int x_px, int y_px, int depth, int max_depth,
int intra_mode, int cost_treshold,
cu_info *const pred_cu,
lcu_t *const lcu)
{
const int width = LCU_WIDTH >> depth;
const int width_c = width > TR_MIN_WIDTH ? width / 2 : width;
const int offset = width / 2;
const vector2d lcu_px = { x_px & 0x3f, y_px & 0x3f };
cu_info *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x >> 3) + (lcu_px.y >> 3)*LCU_T_CU_WIDTH];
const bool reconstruct_chroma = !(x_px & 4 || y_px & 4);
struct {
pixel y[TR_MAX_WIDTH*TR_MAX_WIDTH];
pixel u[TR_MAX_WIDTH*TR_MAX_WIDTH];
pixel v[TR_MAX_WIDTH*TR_MAX_WIDTH];
} nosplit_pixels;
cu_cbf_t nosplit_cbf;
double split_cost = INT32_MAX;
double nosplit_cost = INT32_MAX;
assert(width >= TR_MIN_WIDTH);
if (depth > 0) {
tr_cu->tr_depth = depth;
pred_cu->tr_depth = depth;
nosplit_cost = 0.0;
cbf_clear(&pred_cu->cbf.y, depth + PU_INDEX(x_px / 4, y_px / 4));
intra_recon_lcu_luma(encoder_state, x_px, y_px, depth, intra_mode, pred_cu, lcu);
nosplit_cost += cu_rd_cost_luma(encoder_state, lcu_px.x, lcu_px.y, depth, pred_cu, lcu);
if (reconstruct_chroma) {
cbf_clear(&pred_cu->cbf.u, depth);
cbf_clear(&pred_cu->cbf.v, depth);
intra_recon_lcu_chroma(encoder_state, x_px, y_px, depth, intra_mode, pred_cu, lcu);
nosplit_cost += cu_rd_cost_chroma(encoder_state, lcu_px.x, lcu_px.y, depth, pred_cu, lcu);
}
// Early stop codition for the recursive search.
// If the cost of any 1/4th of the transform is already larger than the
// whole transform, assume that splitting further is a bad idea.
if (nosplit_cost >= cost_treshold) {
return nosplit_cost;
}
nosplit_cbf = pred_cu->cbf;
pixels_blit(lcu->rec.y, nosplit_pixels.y, width, width, LCU_WIDTH, width);
if (reconstruct_chroma) {
pixels_blit(lcu->rec.u, nosplit_pixels.u, width_c, width_c, LCU_WIDTH_C, width_c);
pixels_blit(lcu->rec.v, nosplit_pixels.v, width_c, width_c, LCU_WIDTH_C, width_c);
}
}
// Recurse further if all of the following:
// - Current depth is less than maximum depth of the search (max_depth).
// - Maximum transform hierarchy depth is constrained by clipping
// max_depth.
// - Min transform size hasn't been reached (MAX_PU_DEPTH).
if (depth < max_depth && depth < MAX_PU_DEPTH) {
split_cost = 3 * encoder_state->global->cur_lambda_cost;
split_cost += search_intra_trdepth(encoder_state, x_px, y_px, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu);
if (split_cost < nosplit_cost) {
split_cost += search_intra_trdepth(encoder_state, x_px + offset, y_px, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu);
}
if (split_cost < nosplit_cost) {
split_cost += search_intra_trdepth(encoder_state, x_px, y_px + offset, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu);
}
if (split_cost < nosplit_cost) {
split_cost += search_intra_trdepth(encoder_state, x_px + offset, y_px + offset, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu);
}
double tr_split_bit = 0.0;
double cbf_bits = 0.0;
// Add bits for split_transform_flag = 1, because transform depth search bypasses
// the normal recursion in the cost functions.
if (depth >= 1 && depth <= 3) {
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.trans_subdiv_model[5 - (6 - depth)]);
tr_split_bit += CTX_ENTROPY_FBITS(ctx, 1);
}
// Add cost of cbf chroma bits on transform tree.
// All cbf bits are accumulated to pred_cu.cbf and cbf_is_set returns true
// if cbf is set at any level >= depth, so cbf chroma is assumed to be 0
// if this and any previous transform block has no chroma coefficients.
// When searching the first block we don't actually know the real values,
// so this will code cbf as 0 and not code the cbf at all for descendants.
{
const uint8_t tr_depth = depth - pred_cu->depth;
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.qt_cbf_model_chroma[tr_depth]);
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.u, depth - 1)) {
cbf_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.u, depth));
}
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.v, depth - 1)) {
cbf_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.v, depth));
}
}
double bits = tr_split_bit + cbf_bits;
split_cost += bits * encoder_state->global->cur_lambda_cost;
} else {
assert(width <= TR_MAX_WIDTH);
}
if (depth == 0 || split_cost < nosplit_cost) {
return split_cost;
} else {
lcu_set_trdepth(lcu, x_px, y_px, depth, depth);
pred_cu->cbf = nosplit_cbf;
// We only restore the pixel data and not coefficients or cbf data.
// The only thing we really need are the border pixels.intra_get_dir_luma_predictor
pixels_blit(nosplit_pixels.y, lcu->rec.y, width, width, width, LCU_WIDTH);
if (reconstruct_chroma) {
pixels_blit(nosplit_pixels.u, lcu->rec.u, width_c, width_c, width_c, LCU_WIDTH_C);
pixels_blit(nosplit_pixels.v, lcu->rec.v, width_c, width_c, width_c, LCU_WIDTH_C);
}
return nosplit_cost;
}
}
static double luma_mode_bits(const encoder_state *encoder_state, int8_t luma_mode, const int8_t *intra_preds)
{
double mode_bits;
bool mode_in_preds = false;
for (int i = 0; i < 3; ++i) {
if (luma_mode == intra_preds[i]) {
mode_in_preds = true;
}
}
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.intra_mode_model);
mode_bits = CTX_ENTROPY_FBITS(ctx, mode_in_preds);
if (mode_in_preds) {
mode_bits += ((luma_mode == intra_preds[0]) ? 1 : 2);
} else {
mode_bits += 5;
}
return mode_bits;
}
static double chroma_mode_bits(const encoder_state *encoder_state, int8_t chroma_mode, int8_t luma_mode)
{
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.chroma_pred_model[0]);
double mode_bits;
if (chroma_mode == luma_mode) {
mode_bits = CTX_ENTROPY_FBITS(ctx, 0);
} else {
mode_bits = 2.0 + CTX_ENTROPY_FBITS(ctx, 1);
}
return mode_bits;
}
static int8_t search_intra_chroma(encoder_state * const encoder_state,
int x_px, int y_px, int depth,
int8_t intra_mode,
int8_t modes[5], int8_t num_modes,
lcu_t *const lcu)
{
const bool reconstruct_chroma = !(x_px & 4 || y_px & 4);
if (reconstruct_chroma) {
const vector2d lcu_px = { x_px & 0x3f, y_px & 0x3f };
cu_info *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x >> 3) + (lcu_px.y >> 3)*LCU_T_CU_WIDTH];
struct {
double cost;
int8_t mode;
} chroma, best_chroma;
best_chroma.mode = 0;
best_chroma.cost = MAX_INT;
for (int8_t chroma_mode_i = 0; chroma_mode_i < num_modes; ++chroma_mode_i) {
chroma.mode = modes[chroma_mode_i];
intra_recon_lcu_chroma(encoder_state, x_px, y_px, depth, chroma.mode, NULL, lcu);
chroma.cost = cu_rd_cost_chroma(encoder_state, lcu_px.x, lcu_px.y, depth, tr_cu, lcu);
double mode_bits = chroma_mode_bits(encoder_state, chroma.mode, intra_mode);
chroma.cost += mode_bits * encoder_state->global->cur_lambda_cost;
if (chroma.cost < best_chroma.cost) {
best_chroma = chroma;
}
}
return best_chroma.mode;
}
return 100;
}
static void sort_modes(int8_t *modes, double *costs, int length)
{
int i, j;
for (i = 0; i < length; ++i) {
j = i;
while (j > 0 && costs[j] < costs[j - 1]) {
SWAP(costs[j], costs[j - 1], double);
SWAP(modes[j], modes[j - 1], int8_t);
--j;
}
}
}
static double get_cost(encoder_state * const encoder_state, pixel *pred, pixel *orig_block, cost_pixel_nxn_func *satd_func, cost_pixel_nxn_func *sad_func, int width)
{
double satd_cost = satd_func(pred, orig_block);
if (TRSKIP_RATIO != 0 && width == 4) {
// If the mode looks better with SAD than SATD it might be a good
// candidate for transform skip. How much better SAD has to be is
// controlled by TRSKIP_RATIO.
const cabac_ctx *ctx = &encoder_state->cabac.ctx.transform_skip_model_luma;
double trskip_bits = CTX_ENTROPY_FBITS(ctx, 1) - CTX_ENTROPY_FBITS(ctx, 0);
ctx = &encoder_state->cabac.ctx.transform_skip_model_chroma;
trskip_bits += 2.0 * (CTX_ENTROPY_FBITS(ctx, 1) - CTX_ENTROPY_FBITS(ctx, 0));
double sad_cost = TRSKIP_RATIO * sad_func(pred, orig_block) + encoder_state->global->cur_lambda_cost_sqrt * trskip_bits;
if (sad_cost < satd_cost) {
return sad_cost;
}
}
return satd_cost;
}
static void search_intra_chroma_rough(encoder_state * const encoder_state,
int x_px, int y_px, int depth,
const pixel *orig_u, const pixel *orig_v, int16_t origstride,
const pixel *rec_u, const pixel *rec_v, int16_t recstride,
int8_t luma_mode,
int8_t modes[5], double costs[5])
{
const bool reconstruct_chroma = !(x_px & 4 || y_px & 4);
if (!reconstruct_chroma) return;
const unsigned width = MAX(LCU_WIDTH_C >> depth, TR_MIN_WIDTH);
for (int i = 0; i < 5; ++i) {
costs[i] = 0;
}
cost_pixel_nxn_func *const satd_func = pixels_get_satd_func(width);
//cost_pixel_nxn_func *const sad_func = pixels_get_sad_func(width);
pixel _pred[LCU_WIDTH * LCU_WIDTH + 1 + SIMD_ALIGNMENT];
pixel *pred = ALIGNED_POINTER(_pred, SIMD_ALIGNMENT);
pixel _orig_block[LCU_WIDTH * LCU_WIDTH + 1 + SIMD_ALIGNMENT];
pixel *orig_block = ALIGNED_POINTER(_orig_block, SIMD_ALIGNMENT);
pixels_blit(orig_u, orig_block, width, width, origstride, width);
for (int i = 0; i < 5; ++i) {
if (modes[i] == luma_mode) continue;
intra_get_pred(encoder_state->encoder_control, rec_u, NULL, recstride, pred, width, modes[i], 1);
//costs[i] += get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width);
costs[i] += satd_func(pred, orig_block);
}
pixels_blit(orig_v, orig_block, width, width, origstride, width);
for (int i = 0; i < 5; ++i) {
if (modes[i] == luma_mode) continue;
intra_get_pred(encoder_state->encoder_control, rec_v, NULL, recstride, pred, width, modes[i], 2);
//costs[i] += get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width);
costs[i] += satd_func(pred, orig_block);
}
sort_modes(modes, costs, 5);
}
static int8_t search_intra_rough(encoder_state * const encoder_state,
pixel *orig, int32_t origstride,
pixel *rec, int16_t recstride,
int width, int8_t *intra_preds,
int8_t modes[35], double costs[35])
{
cost_pixel_nxn_func *satd_func = pixels_get_satd_func(width);
cost_pixel_nxn_func *sad_func = pixels_get_sad_func(width);
// Temporary block arrays
pixel _pred[LCU_WIDTH * LCU_WIDTH + 1 + SIMD_ALIGNMENT];
pixel *pred = ALIGNED_POINTER(_pred, SIMD_ALIGNMENT);
pixel _orig_block[LCU_WIDTH * LCU_WIDTH + 1 + SIMD_ALIGNMENT];
pixel *orig_block = ALIGNED_POINTER(_orig_block, SIMD_ALIGNMENT);
pixel rec_filtered_temp[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8) + 1];
pixel *recf = &rec_filtered_temp[recstride + 1];
assert(width == 4 || width == 8 || width == 16 || width == 32);
// Store original block for SAD computation
pixels_blit(orig, orig_block, width, width, origstride, width);
// Generate filtered reference pixels.
{
int16_t x, y;
for (y = -1; y < recstride; y++) {
recf[y*recstride - 1] = rec[y*recstride - 1];
}
for (x = 0; x < recstride; x++) {
recf[x - recstride] = rec[x - recstride];
}
intra_filter(recf, recstride, width, 0);
}
int8_t modes_selected = 0;
unsigned min_cost = UINT_MAX;
unsigned max_cost = 0;
// Initial offset decides how many modes are tried before moving on to the
// recursive search.
int offset;
if (encoder_state->encoder_control->full_intra_search) {
offset = 1;
} else if (width == 4) {
offset = 2;
} else if (width == 8) {
offset = 4;
} else {
offset = 8;
}
// Calculate SAD for evenly spaced modes to select the starting point for
// the recursive search.
for (int mode = 2; mode <= 34; mode += offset) {
intra_get_pred(encoder_state->encoder_control, rec, recf, recstride, pred, width, mode, 0);
costs[modes_selected] = get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width);
modes[modes_selected] = mode;
min_cost = MIN(min_cost, costs[modes_selected]);
max_cost = MAX(max_cost, costs[modes_selected]);
++modes_selected;
}
// Skip recursive search if all modes have the same cost.
if (min_cost != max_cost) {
// Do a recursive search to find the best mode, always centering on the
// current best mode.
while (offset > 1) {
offset >>= 1;
sort_modes(modes, costs, modes_selected);
int8_t mode = modes[0] - offset;
if (mode >= 2) {
intra_get_pred(encoder_state->encoder_control, rec, recf, recstride, pred, width, mode, 0);
costs[modes_selected] = get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width);
modes[modes_selected] = mode;
++modes_selected;
}
mode = modes[0] + offset;
if (mode <= 34) {
intra_get_pred(encoder_state->encoder_control, rec, recf, recstride, pred, width, mode, 0);
costs[modes_selected] = get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width);
modes[modes_selected] = mode;
++modes_selected;
}
}
}
int8_t add_modes[5] = {intra_preds[0], intra_preds[1], intra_preds[2], 0, 1};
// Add DC, planar and missing predicted modes.
for (int8_t pred_i = 0; pred_i < 5; ++pred_i) {
bool has_mode = false;
int8_t mode = add_modes[pred_i];
for (int mode_i = 0; mode_i < modes_selected; ++mode_i) {
if (modes[mode_i] == add_modes[pred_i]) {
has_mode = true;
break;
}
}
if (!has_mode) {
intra_get_pred(encoder_state->encoder_control, rec, recf, recstride, pred, width, mode, 0);
costs[modes_selected] = get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width);
modes[modes_selected] = mode;
++modes_selected;
}
}
// Add prediction mode coding cost as the last thing. We don't want this
// affecting the halving search.
int lambda_cost = (int)(encoder_state->global->cur_lambda_cost_sqrt + 0.5);
for (int mode_i = 0; mode_i < modes_selected; ++mode_i) {
costs[mode_i] += lambda_cost * luma_mode_bits(encoder_state, modes[mode_i], intra_preds);
}
sort_modes(modes, costs, modes_selected);
return modes_selected;
}
static void search_intra_rdo(encoder_state * const encoder_state,
int x_px, int y_px, int depth,
pixel *orig, int32_t origstride,
pixel *rec, int16_t recstride,
int8_t *intra_preds,
int modes_to_check,
int8_t modes[35], double costs[35],
lcu_t *lcu)
{
const int tr_depth = CLIP(1, MAX_PU_DEPTH, depth + encoder_state->encoder_control->tr_depth_intra);
const int width = LCU_WIDTH >> depth;
pixel pred[LCU_WIDTH * LCU_WIDTH + 1];
pixel orig_block[LCU_WIDTH * LCU_WIDTH + 1];
int rdo_mode;
int pred_mode;
pixel rec_filtered_temp[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8) + 1];
pixel *recf = &rec_filtered_temp[recstride + 1];
// Generate filtered reference pixels.
{
int x, y;
for (y = -1; y < recstride; y++) {
recf[y*recstride - 1] = rec[y*recstride - 1];
}
for (x = 0; x < recstride; x++) {
recf[x - recstride] = rec[x - recstride];
}
intra_filter(recf, recstride, width, 0);
}
pixels_blit(orig, orig_block, width, width, origstride, width);
// Check that the predicted modes are in the RDO mode list
for(pred_mode = 0; pred_mode < 3; pred_mode++) {
int mode_found = 0;
for(rdo_mode = 0; rdo_mode < modes_to_check; rdo_mode ++) {
if(intra_preds[pred_mode] == modes[rdo_mode]) {
mode_found = 1;
break;
}
}
// Add this prediction mode to RDO checking
if(!mode_found) {
modes[modes_to_check] = intra_preds[pred_mode];
modes_to_check++;
}
}
for(rdo_mode = 0; rdo_mode < modes_to_check; rdo_mode ++) {
int rdo_bitcost = luma_mode_bits(encoder_state, modes[rdo_mode], intra_preds);
costs[rdo_mode] = rdo_bitcost * (int)(encoder_state->global->cur_lambda_cost + 0.5);
if (0 && tr_depth == depth) {
// The reconstruction is calculated again here, it could be saved from before..
intra_get_pred(encoder_state->encoder_control, rec, recf, recstride, pred, width, modes[rdo_mode], 0);
costs[rdo_mode] += rdo_cost_intra(encoder_state, pred, orig_block, width, modes[rdo_mode], width == 4 ? 1 : 0);
} else {
// Perform transform split search and save mode RD cost for the best one.
cu_info pred_cu;
pred_cu.depth = depth;
pred_cu.type = CU_INTRA;
pred_cu.part_size = ((depth == MAX_PU_DEPTH) ? SIZE_NxN : SIZE_2Nx2N);
pred_cu.intra[0].mode = modes[rdo_mode];
pred_cu.intra[1].mode = modes[rdo_mode];
pred_cu.intra[2].mode = modes[rdo_mode];
pred_cu.intra[3].mode = modes[rdo_mode];
pred_cu.intra[0].mode_chroma = modes[rdo_mode];
memset(&pred_cu.cbf, 0, sizeof(pred_cu.cbf));
// Reset transform split data in lcu.cu for this area.
lcu_set_trdepth(lcu, x_px, y_px, depth, depth);
double mode_cost = search_intra_trdepth(encoder_state, x_px, y_px, depth, tr_depth, modes[rdo_mode], MAX_INT, &pred_cu, lcu);
costs[rdo_mode] += mode_cost;
}
}
sort_modes(modes, costs, modes_to_check);
if (tr_depth != depth) {
cu_info pred_cu;
pred_cu.depth = depth;
pred_cu.type = CU_INTRA;
pred_cu.part_size = ((depth == MAX_PU_DEPTH) ? SIZE_NxN : SIZE_2Nx2N);
pred_cu.intra[0].mode = modes[0];
pred_cu.intra[1].mode = modes[0];
pred_cu.intra[2].mode = modes[0];
pred_cu.intra[3].mode = modes[0];
pred_cu.intra[0].mode_chroma = modes[0];
memset(&pred_cu.cbf, 0, sizeof(pred_cu.cbf));
search_intra_trdepth(encoder_state, x_px, y_px, depth, tr_depth, modes[0], MAX_INT, &pred_cu, lcu);
}
}
/**
* Update lcu to have best modes at this depth.
* \return Cost of best mode.
*/
static double search_cu_intra(encoder_state * const encoder_state,
const int x_px, const int y_px,
const int depth, lcu_t *lcu)
{
const videoframe * const frame = encoder_state->tile->frame;
const vector2d lcu_px = { x_px & 0x3f, y_px & 0x3f };
const vector2d lcu_cu = { lcu_px.x >> 3, lcu_px.y >> 3 };
const int8_t cu_width = (LCU_WIDTH >> (depth));
const int cu_index = LCU_CU_OFFSET + lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH;
cu_info *cur_cu = &lcu->cu[cu_index];
pixel rec_buffer[(LCU_WIDTH * 2 + 1) * (LCU_WIDTH * 2 + 1)];
pixel *cu_in_rec_buffer = &rec_buffer[cu_width * 2 + 8 + 1];
int8_t candidate_modes[3];
cu_info *left_cu = 0;
cu_info *above_cu = 0;
if ((x_px >> 3) > 0) {
left_cu = &lcu->cu[cu_index - 1];
}
// Don't take the above CU across the LCU boundary.
if ((y_px >> 3) > 0 && lcu_cu.y != 0) {
above_cu = &lcu->cu[cu_index - LCU_T_CU_WIDTH];
}
// Get intra predictors
intra_get_dir_luma_predictor(x_px, y_px, candidate_modes, cur_cu, left_cu, above_cu);
if (depth > 0) {
// Build reconstructed block to use in prediction with extrapolated borders
intra_build_reference_border(encoder_state->encoder_control, x_px, y_px, cu_width * 2 + 8,
rec_buffer, cu_width * 2 + 8, 0,
frame->width,
frame->height,
lcu);
}
int8_t modes[35];
double costs[35];
// Find best intra mode for 2Nx2N.
{
pixel *ref_pixels = &lcu->ref.y[lcu_px.x + lcu_px.y * LCU_WIDTH];
unsigned pu_index = PU_INDEX(x_px >> 2, y_px >> 2);
int8_t number_of_modes;
bool skip_rough_search = (depth == 0 || encoder_state->encoder_control->rdo >= 3);
if (!skip_rough_search) {
number_of_modes = search_intra_rough(encoder_state,
ref_pixels, LCU_WIDTH,
cu_in_rec_buffer, cu_width * 2 + 8,
cu_width, candidate_modes,
modes, costs);
} else {
number_of_modes = 35;
for (int i = 0; i < number_of_modes; ++i) {
modes[i] = i;
costs[i] = MAX_INT;
}
}
// Set transform depth to current depth, meaning no transform splits.
lcu_set_trdepth(lcu, x_px, y_px, depth, depth);
if (encoder_state->encoder_control->rdo >= 2) {
int number_of_modes_to_search = (cu_width <= 8) ? 8 : 3;
if (encoder_state->encoder_control->rdo == 3) {
number_of_modes_to_search = 35;
}
int num_modes_to_check = MIN(number_of_modes, number_of_modes_to_search);
search_intra_rdo(encoder_state,
x_px, y_px, depth,
ref_pixels, LCU_WIDTH,
cu_in_rec_buffer, cu_width * 2 + 8,
candidate_modes,
num_modes_to_check,
modes, costs, lcu);
}
cur_cu->intra[pu_index].mode = modes[0];
}
return costs[0];
}
/**
* Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode.
* - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH.
* - Data structure work_tree is maintained such that the neighbouring SCUs
* and pixels to the left and up of current CU are the final CUs decided
* via the search. This is done by copying the relevant data to all
* relevant levels whenever a decision is made whether to split or not.
* - All the final data for the LCU gets eventually copied to depth 0, which
* will be the final output of the recursion.
*/
static double search_cu(encoder_state * const encoder_state, int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH])
{
const videoframe * const frame = encoder_state->tile->frame;
int cu_width = LCU_WIDTH >> depth;
double cost = MAX_INT;
cu_info *cur_cu;
const vector2d lcu_px = { x & 0x3f, y & 0x3f };
const vector2d lcu_cu = { lcu_px.x >> 3, lcu_px.y >> 3 };
lcu_t *const lcu = &work_tree[depth];
int x_local = (x&0x3f), y_local = (y&0x3f);
#ifdef _DEBUG
int debug_split = 0;
#endif
PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_CU);
// Stop recursion if the CU is completely outside the frame.
if (x >= frame->width || y >= frame->height) {
// Return zero cost because this CU does not have to be coded.
return 0;
}
cur_cu = &(&work_tree[depth])->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH];
// Assign correct depth
cur_cu->depth = depth > MAX_DEPTH ? MAX_DEPTH : depth;
cur_cu->tr_depth = depth > 0 ? depth : 1;
cur_cu->type = CU_NOTSET;
cur_cu->part_size = depth > MAX_DEPTH ? SIZE_NxN : SIZE_2Nx2N;
// If the CU is completely inside the frame at this depth, search for
// prediction modes at this depth.
if (x + cu_width <= frame->width &&
y + cu_width <= frame->height)
{
if (encoder_state->global->slicetype != SLICE_I &&
depth >= MIN_INTER_SEARCH_DEPTH &&
depth <= MAX_INTER_SEARCH_DEPTH)
{
int mode_cost = search_cu_inter(encoder_state, x, y, depth, &work_tree[depth]);
if (mode_cost < cost) {
cost = mode_cost;
cur_cu->type = CU_INTER;
}
}
if (depth >= MIN_INTRA_SEARCH_DEPTH &&
depth <= MAX_INTRA_SEARCH_DEPTH)
{
double mode_cost = search_cu_intra(encoder_state, x, y, depth, &work_tree[depth]);
if (mode_cost < cost) {
cost = mode_cost;
cur_cu->type = CU_INTRA;
}
}
// Reconstruct best mode because we need the reconstructed pixels for
// mode search of adjacent CUs.
if (cur_cu->type == CU_INTRA) {
int8_t intra_mode = cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode;
lcu_set_intra_mode(&work_tree[depth], x, y, depth,
intra_mode,
intra_mode,
cur_cu->part_size);
intra_recon_lcu_luma(encoder_state, x, y, depth, intra_mode, NULL, &work_tree[depth]);
if (PU_INDEX(x >> 2, y >> 2) == 0) {
int8_t intra_mode_chroma = intra_mode;
// There is almost no benefit to doing the chroma mode search for
// rd2. Possibly because the luma mode search already takes chroma
// into account, so there is less of a chanse of luma mode being
// really bad for chroma.
if (encoder_state->encoder_control->rdo == 3) {
const videoframe * const frame = encoder_state->tile->frame;
double costs[5];
int8_t modes[5] = { 0, 26, 10, 1, 34 };
if (intra_mode != 0 && intra_mode != 26 && intra_mode != 10 && intra_mode != 1) {
modes[4] = intra_mode;
}
// The number of modes to select for slower chroma search. Luma mode
// is always one of the modes, so 2 means the final decision is made
// between luma mode and one other mode that looks the best
// according to search_intra_chroma_rough.
const int8_t modes_in_depth[5] = { 1, 1, 1, 1, 2 };
int num_modes = modes_in_depth[depth];
if (encoder_state->encoder_control->rdo == 3) {
num_modes = 5;
}
if (num_modes != 1 && num_modes != 5) {
pixel rec_u[(LCU_WIDTH_C * 2 + 8) * (LCU_WIDTH_C * 2 + 8)];
pixel rec_v[(LCU_WIDTH_C * 2 + 8) * (LCU_WIDTH_C * 2 + 8)];
const int16_t width_c = MAX(LCU_WIDTH_C >> depth, TR_MIN_WIDTH);
const int16_t rec_stride = width_c * 2 + 8;
const int16_t out_stride = rec_stride;
intra_build_reference_border(encoder_state->encoder_control,
x, y, out_stride,
rec_u, rec_stride, COLOR_U,
frame->width / 2, frame->height / 2,
lcu);
intra_build_reference_border(encoder_state->encoder_control,
x, y, out_stride,
rec_v, rec_stride, COLOR_V,
frame->width / 2, frame->height / 2,
lcu);
vector2d lcu_cpx = { lcu_px.x / 2, lcu_px.y / 2 };
pixel *ref_u = &lcu->ref.u[lcu_cpx.x + lcu_cpx.y * LCU_WIDTH_C];
pixel *ref_v = &lcu->ref.u[lcu_cpx.x + lcu_cpx.y * LCU_WIDTH_C];
search_intra_chroma_rough(encoder_state, x, y, depth,
ref_u, ref_v, LCU_WIDTH_C,
&rec_u[rec_stride + 1], &rec_v[rec_stride + 1], rec_stride,
intra_mode, modes, costs);
}
if (num_modes > 1) {
intra_mode_chroma = search_intra_chroma(encoder_state, x, y, depth, intra_mode, modes, num_modes, &work_tree[depth]);
lcu_set_intra_mode(&work_tree[depth], x, y, depth,
intra_mode, intra_mode_chroma,
cur_cu->part_size);
}
}
intra_recon_lcu_chroma(encoder_state, x, y, depth, intra_mode_chroma, NULL, &work_tree[depth]);
}
} else if (cur_cu->type == CU_INTER) {
// Reset transform depth because intra messes with them.
// This will no longer be necessary if the transform depths are not shared.
int tr_depth = depth > 0 ? depth : 1;
lcu_set_trdepth(&work_tree[depth], x, y, depth, tr_depth);
inter_recon_lcu(encoder_state, encoder_state->global->ref->images[cur_cu->inter.mv_ref], x, y, LCU_WIDTH>>depth, cur_cu->inter.mv, &work_tree[depth]);
quantize_lcu_luma_residual(encoder_state, x, y, depth, NULL, &work_tree[depth]);
quantize_lcu_chroma_residual(encoder_state, x, y, depth, NULL, &work_tree[depth]);
int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth);
if(cur_cu->merged && !cbf) {
cur_cu->merged = 0;
cur_cu->skipped = 1;
// Selecting skip reduces bits needed to code the CU
if (cur_cu->inter.bitcost > 1) {
cur_cu->inter.bitcost -= 1;
}
}
lcu_set_inter(&work_tree[depth], x, y, depth, cur_cu);
lcu_set_coeff(&work_tree[depth], x, y, depth, cur_cu);
}
}
if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) {
cost = cu_rd_cost_luma(encoder_state, x_local, y_local, depth, cur_cu, &work_tree[depth]);
cost += cu_rd_cost_chroma(encoder_state, x_local, y_local, depth, cur_cu, &work_tree[depth]);
double mode_bits;
// Bitcost
if (cur_cu->type == CU_INTER) {
mode_bits = cur_cu->inter.bitcost;
} else {
int8_t candidate_modes[3];
{
const cu_info *left_cu = ((x >> 3) ? &cur_cu[-1] : NULL);
const cu_info *above_cu = ((lcu_cu.y) ? &cur_cu[-LCU_T_CU_WIDTH] : NULL);
intra_get_dir_luma_predictor(x, y, candidate_modes, cur_cu, left_cu, above_cu);
}
mode_bits = luma_mode_bits(encoder_state, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode, candidate_modes);
if (PU_INDEX(x >> 2, y >> 2) == 0) {
mode_bits += chroma_mode_bits(encoder_state, cur_cu->intra[0].mode_chroma, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode);
}
}
cost += mode_bits * encoder_state->global->cur_lambda_cost;
}
// Recursively split all the way to max search depth.
if (depth < MAX_INTRA_SEARCH_DEPTH || (depth < MAX_INTER_SEARCH_DEPTH && encoder_state->global->slicetype != SLICE_I)) {
int half_cu = cu_width / 2;
// Using Cost = lambda * 9 to compensate on the price of the split
double split_cost = encoder_state->global->cur_lambda_cost * CU_COST;
int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth);
if (depth < MAX_DEPTH) {
vector2d lcu_cu = { x_local / 8, y_local / 8 };
cu_info *cu_array = &(&work_tree[depth])->cu[LCU_CU_OFFSET];
bool condA = x >= 8 && cu_array[(lcu_cu.x - 1) * lcu_cu.y * LCU_T_CU_WIDTH].depth > depth;
bool condL = y >= 8 && cu_array[lcu_cu.x * (lcu_cu.y - 1) * LCU_T_CU_WIDTH].depth > depth;
uint8_t split_model = condA + condL;
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.split_flag_model[split_model]);
cost += CTX_ENTROPY_FBITS(ctx, 0);
split_cost += CTX_ENTROPY_FBITS(ctx, 1);
}
if (cur_cu->type == CU_INTRA && depth == MAX_DEPTH) {
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.part_size_model[0]);
cost += CTX_ENTROPY_FBITS(ctx, 1); // 2Nx2N
split_cost += CTX_ENTROPY_FBITS(ctx, 0); // NxN
}
// If skip mode was selected for the block, skip further search.
// Skip mode means there's no coefficients in the block, so splitting
// might not give any better results but takes more time to do.
if (cur_cu->type == CU_NOTSET || cbf || FULL_CU_SPLIT_SEARCH) {
split_cost += search_cu(encoder_state, x, y, depth + 1, work_tree);
split_cost += search_cu(encoder_state, x + half_cu, y, depth + 1, work_tree);
split_cost += search_cu(encoder_state, x, y + half_cu, depth + 1, work_tree);
split_cost += search_cu(encoder_state, x + half_cu, y + half_cu, depth + 1, work_tree);
} else {
split_cost = INT_MAX;
}
// If no search is not performed for this depth, try just the best mode
// of the top left CU from the next depth. This should ensure that 64x64
// gets used, at least in the most obvious cases, while avoiding any
// searching.
vector2d lcu_cu = { x_local / 8, y_local / 8 };
cu_info *cu_array_d0 = &(&work_tree[0])->cu[LCU_CU_OFFSET];
cu_info *cu_array_d1 = &(&work_tree[1])->cu[LCU_CU_OFFSET];
cu_info *cu_d1 = &cu_array_d1[(lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH)];
if (cur_cu->type == CU_NOTSET && cu_d1->type == CU_INTRA && cu_d1->depth == depth + 1
&& x + cu_width <= frame->width && y + cu_width <= frame->height)
{
cost = 0;
cur_cu->intra[0] = cu_d1->intra[0];
cur_cu->type = CU_INTRA;
lcu_set_trdepth(&work_tree[depth], x, y, depth, cur_cu->tr_depth);
lcu_set_intra_mode(&work_tree[depth], x, y, depth,
cur_cu->intra[0].mode, cur_cu->intra[0].mode_chroma,
cur_cu->part_size);
intra_recon_lcu_luma(encoder_state, x, y, depth, cur_cu->intra[0].mode, NULL, &work_tree[depth]);
intra_recon_lcu_chroma(encoder_state, x, y, depth, cur_cu->intra[0].mode_chroma, NULL, &work_tree[depth]);
cost += cu_rd_cost_luma(encoder_state, x_local, y_local, depth, cur_cu, &work_tree[depth]);
cost += cu_rd_cost_chroma(encoder_state, x_local, y_local, depth, cur_cu, &work_tree[depth]);
bool condA = x >= 8 && cu_array_d0[(lcu_cu.x - 1) * lcu_cu.y * LCU_T_CU_WIDTH].depth > depth;
bool condL = y >= 8 && cu_array_d0[lcu_cu.x * (lcu_cu.y - 1) * LCU_T_CU_WIDTH].depth > depth;
uint8_t split_model = condA + condL;
const cabac_ctx *ctx = &(encoder_state->cabac.ctx.split_flag_model[split_model]);
cost += CTX_ENTROPY_FBITS(ctx, 0);
double mode_bits;
if (cur_cu->type == CU_INTER) {
mode_bits = cur_cu->inter.bitcost;
} else {
int8_t candidate_modes[3];
{
const cu_info *left_cu = ((x >> 3) ? &cur_cu[-1] : NULL);
const cu_info *above_cu = ((lcu_cu.y) ? &cur_cu[-LCU_T_CU_WIDTH] : NULL);
intra_get_dir_luma_predictor(x, y, candidate_modes, cur_cu, left_cu, above_cu);
}
mode_bits = luma_mode_bits(encoder_state, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode, candidate_modes);
if (PU_INDEX(x >> 2, y >> 2) == 0) {
mode_bits += chroma_mode_bits(encoder_state, cur_cu->intra[0].mode_chroma, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode);
}
}
cost += mode_bits * encoder_state->global->cur_lambda_cost;
}
if (split_cost < cost) {
// Copy split modes to this depth.
cost = split_cost;
work_tree_copy_up(x, y, depth, work_tree);
#if _DEBUG
debug_split = 1;
#endif
} else if (depth > 0) {
// Copy this CU's mode all the way down for use in adjacent CUs mode
// search.
work_tree_copy_down(x, y, depth, work_tree);
}
}
PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_CU, encoder_state->encoder_control->threadqueue, "type=search_cu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d,depth=%d,split=%d,cur_cu_is_intra=%d", encoder_state->global->frame, encoder_state->tile->id, encoder_state->slice->id,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + x,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + x + (LCU_WIDTH >> depth),
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + y,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + y + (LCU_WIDTH >> depth),
depth, debug_split, (cur_cu->type==CU_INTRA)?1:0);
return cost;
}
/**
* Initialize lcu_t for search.
* - Copy reference CUs.
* - Copy reference pixels from neighbouring LCUs.
* - Copy reference pixels from this LCU.
*/
static void init_lcu_t(const encoder_state * const encoder_state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf)
{
const videoframe * const frame = encoder_state->tile->frame;
// Copy reference cu_info structs from neighbouring LCUs.
{
const int x_cu = x >> MAX_DEPTH;
const int y_cu = y >> MAX_DEPTH;
// Use top-left sub-cu of LCU as pointer to lcu->cu array to make things
// simpler.
cu_info *lcu_cu = &lcu->cu[LCU_CU_OFFSET];
// Copy top CU row.
if (y_cu > 0) {
int i;
for (i = 0; i < LCU_CU_WIDTH; ++i) {
const cu_info *from_cu = videoframe_get_cu_const(frame, x_cu + i, y_cu - 1);
cu_info *to_cu = &lcu_cu[i - LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy left CU column.
if (x_cu > 0) {
int i;
for (i = 0; i < LCU_CU_WIDTH; ++i) {
const cu_info *from_cu = videoframe_get_cu_const(frame, x_cu - 1, y_cu + i);
cu_info *to_cu = &lcu_cu[-1 + i * LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy top-left CU.
if (x_cu > 0 && y_cu > 0) {
const cu_info *from_cu = videoframe_get_cu_const(frame, x_cu - 1, y_cu - 1);
cu_info *to_cu = &lcu_cu[-1 - LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
// Copy top-right CU.
if (y_cu > 0 && x + LCU_WIDTH < frame->width) {
const cu_info *from_cu = videoframe_get_cu_const(frame, x_cu + LCU_CU_WIDTH, y_cu - 1);
cu_info *to_cu = &lcu->cu[LCU_T_CU_WIDTH*LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy reference pixels.
{
const int pic_width = frame->width;
// Copy top reference pixels.
if (y > 0) {
// hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH
// number of allocated pixels left.
int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x);
int x_min_in_lcu = (x>0) ? 0 : 1;
memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu-1)], x_max + (1-x_min_in_lcu));
memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu-1)], x_max / 2 + (1-x_min_in_lcu));
memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu-1)], x_max / 2 + (1-x_min_in_lcu));
}
// Copy left reference pixels.
if (x > 0) {
int y_min_in_lcu = (y>0) ? 0 : 1;
memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[OFFSET_VER_BUF(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH + (1-y_min_in_lcu));
memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH / 2 + (1-y_min_in_lcu));
memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH / 2 + (1-y_min_in_lcu));
}
}
// Copy LCU pixels.
{
const videoframe * const frame = encoder_state->tile->frame;
int x_max = MIN(x + LCU_WIDTH, frame->width) - x;
int y_max = MIN(y + LCU_WIDTH, frame->height) - y;
int x_c = x / 2;
int y_c = y / 2;
int x_max_c = x_max / 2;
int y_max_c = y_max / 2;
pixels_blit(&frame->source->y[x + y * frame->source->stride], lcu->ref.y,
x_max, y_max, frame->source->stride, LCU_WIDTH);
pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride/2], lcu->ref.u,
x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2);
pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride/2], lcu->ref.v,
x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2);
}
}
/**
* Copy CU and pixel data to it's place in picture datastructure.
*/
static void copy_lcu_to_cu_data(const encoder_state * const encoder_state, int x_px, int y_px, const lcu_t *lcu)
{
// Copy non-reference CUs to picture.
{
const int x_cu = x_px >> MAX_DEPTH;
const int y_cu = y_px >> MAX_DEPTH;
videoframe * const frame = encoder_state->tile->frame;
// Use top-left sub-cu of LCU as pointer to lcu->cu array to make things
// simpler.
const cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
for (y = 0; y < LCU_CU_WIDTH; ++y) {
for (x = 0; x < LCU_CU_WIDTH; ++x) {
const cu_info *from_cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
cu_info *to_cu = videoframe_get_cu(frame, x_cu + x, y_cu + y);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
}
// Copy pixels to picture.
{
videoframe * const pic = encoder_state->tile->frame;
const int pic_width = pic->width;
const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px;
const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px;
const int luma_index = x_px + y_px * pic_width;
const int chroma_index = (x_px / 2) + (y_px / 2) * (pic_width / 2);
pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride],
x_max, y_max, LCU_WIDTH, pic->rec->stride);
coefficients_blit(lcu->coeff.y, &pic->coeff_y[luma_index],
x_max, y_max, LCU_WIDTH, pic_width);
pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
coefficients_blit(lcu->coeff.u, &pic->coeff_u[chroma_index],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2);
coefficients_blit(lcu->coeff.v, &pic->coeff_v[chroma_index],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2);
}
}
/**
* Search LCU for modes.
* - Best mode gets copied to current picture.
*/
void search_lcu(encoder_state * const encoder_state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf)
{
lcu_t work_tree[MAX_PU_DEPTH + 1];
int depth;
// Initialize work tree.
for (depth = 0; depth <= MAX_PU_DEPTH; ++depth) {
memset(&work_tree[depth], 0, sizeof(work_tree[depth]));
init_lcu_t(encoder_state, x, y, &work_tree[depth], hor_buf, ver_buf);
}
// Start search from depth 0.
search_cu(encoder_state, x, y, 0, work_tree);
copy_lcu_to_cu_data(encoder_state, x, y, &work_tree[0]);
}