/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "encoder_state-bitstream.h" #include #include #include #include "bitstream.h" #include "cabac.h" #include "checkpoint.h" #include "cu.h" #include "encoder.h" #include "encoder_state-geometry.h" #include "encoderstate.h" #include "imagelist.h" #include "kvazaar.h" #include "kvz_math.h" #include "nal.h" #include "scalinglist.h" #include "tables.h" #include "threadqueue.h" #include "videoframe.h" static void encoder_state_write_bitstream_aud(encoder_state_t * const state) { bitstream_t * const stream = &state->stream; kvz_nal_write(stream, KVZ_NAL_AUD_NUT, 0, 1); uint8_t pic_type = state->frame->slicetype == KVZ_SLICE_I ? 0 : state->frame->slicetype == KVZ_SLICE_P ? 1 : 2; WRITE_U(stream, pic_type, 3, "pic_type"); kvz_bitstream_add_rbsp_trailing_bits(stream); } static void encoder_state_write_bitstream_PTL(bitstream_t *stream, encoder_state_t * const state) { // PTL // Profile Tier WRITE_U(stream, 0, 2, "general_profile_space"); WRITE_U(stream, 0, 1, "general_tier_flag"); // Main Profile == 1, Main 10 profile == 2 WRITE_U(stream, (state->encoder_control->bitdepth == 8)?1:2, 5, "general_profile_idc"); /* Compatibility flags should be set at general_profile_idc * (so with general_profile_idc = 1, compatibility_flag[1] should be 1) * According to specification, when compatibility_flag[1] is set, * compatibility_flag[2] should be set too. */ WRITE_U(stream, 3<<29, 32, "general_profile_compatibility_flag[]"); WRITE_U(stream, 1, 1, "general_progressive_source_flag"); WRITE_U(stream, state->encoder_control->in.source_scan_type!= 0, 1, "general_interlaced_source_flag"); WRITE_U(stream, 0, 1, "general_non_packed_constraint_flag"); WRITE_U(stream, 0, 1, "general_frame_only_constraint_flag"); WRITE_U(stream, 0, 32, "XXX_reserved_zero_44bits[0..31]"); WRITE_U(stream, 0, 12, "XXX_reserved_zero_44bits[32..43]"); // end Profile Tier // Level 6.2 (general_level_idc is 30 * 6.2) WRITE_U(stream, 186, 8, "general_level_idc"); WRITE_U(stream, 0, 1, "sub_layer_profile_present_flag"); WRITE_U(stream, 0, 1, "sub_layer_level_present_flag"); for (int i = 1; i < 8; i++) { WRITE_U(stream, 0, 2, "reserved_zero_2bits"); } // end PTL } static void encoder_state_write_bitstream_vid_parameter_set(bitstream_t* stream, encoder_state_t * const state) { #ifdef KVZ_DEBUG printf("=========== Video Parameter Set ID: 0 ===========\n"); #endif WRITE_U(stream, 0, 4, "vps_video_parameter_set_id"); WRITE_U(stream, 3, 2, "vps_reserved_three_2bits" ); WRITE_U(stream, 0, 6, "vps_reserved_zero_6bits" ); WRITE_U(stream, 1, 3, "vps_max_sub_layers_minus1"); WRITE_U(stream, 0, 1, "vps_temporal_id_nesting_flag"); WRITE_U(stream, 0xffff, 16, "vps_reserved_ffff_16bits"); encoder_state_write_bitstream_PTL(stream, state); WRITE_U(stream, 0, 1, "vps_sub_layer_ordering_info_present_flag"); //for each layer for (int i = 0; i < 1; i++) { WRITE_UE(stream, 1, "vps_max_dec_pic_buffering"); WRITE_UE(stream, 0, "vps_num_reorder_pics"); WRITE_UE(stream, 0, "vps_max_latency_increase"); } WRITE_U(stream, 0, 6, "vps_max_nuh_reserved_zero_layer_id"); WRITE_UE(stream, 0, "vps_max_op_sets_minus1"); WRITE_U(stream, 0, 1, "vps_timing_info_present_flag"); //IF timing info //END IF WRITE_U(stream, 0, 1, "vps_extension_flag"); kvz_bitstream_add_rbsp_trailing_bits(stream); } static void encoder_state_write_bitstream_scaling_list(bitstream_t *stream, encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; uint32_t size_id; for (size_id = 0; size_id < SCALING_LIST_SIZE_NUM; size_id++) { int32_t list_id; for (list_id = 0; list_id < kvz_g_scaling_list_num[size_id]; list_id++) { uint8_t scaling_list_pred_mode_flag = 1; int32_t pred_list_idx; int32_t i; uint32_t ref_matrix_id = UINT32_MAX; for (pred_list_idx = list_id; pred_list_idx >= 0; pred_list_idx--) { const int32_t * const pred_list = (list_id == pred_list_idx) ? kvz_scalinglist_get_default(size_id, pred_list_idx) : encoder->scaling_list.scaling_list_coeff[size_id][pred_list_idx]; if (!memcmp(encoder->scaling_list.scaling_list_coeff[size_id][list_id], pred_list, sizeof(int32_t) * MIN(8, kvz_g_scaling_list_size[size_id])) && ((size_id < SCALING_LIST_16x16) || (encoder->scaling_list.scaling_list_dc[size_id][list_id] == encoder->scaling_list.scaling_list_dc[size_id][pred_list_idx]))) { ref_matrix_id = pred_list_idx; scaling_list_pred_mode_flag = 0; break; } } WRITE_U(stream, scaling_list_pred_mode_flag, 1, "scaling_list_pred_mode_flag" ); if (!scaling_list_pred_mode_flag) { WRITE_UE(stream, list_id - ref_matrix_id, "scaling_list_pred_matrix_id_delta"); } else { int32_t delta; const int32_t coef_num = MIN(MAX_MATRIX_COEF_NUM, kvz_g_scaling_list_size[size_id]); const uint32_t * const scan_cg = (size_id == 0) ? g_sig_last_scan_16x16 : g_sig_last_scan_32x32; int32_t next_coef = 8; const int32_t * const coef_list = encoder->scaling_list.scaling_list_coeff[size_id][list_id]; if (size_id >= SCALING_LIST_16x16) { WRITE_SE(stream, encoder->scaling_list.scaling_list_dc[size_id][list_id] - 8, "scaling_list_dc_coef_minus8"); next_coef = encoder->scaling_list.scaling_list_dc[size_id][list_id]; } for (i = 0; i < coef_num; i++) { delta = coef_list[scan_cg[i]] - next_coef; next_coef = coef_list[scan_cg[i]]; if (delta > 127) delta -= 256; if (delta < -128) delta += 256; WRITE_SE(stream, delta, "scaling_list_delta_coef"); } } } } } static void encoder_state_write_bitstream_VUI(bitstream_t *stream, encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; #ifdef KVZ_DEBUG printf("=========== VUI Set ID: 0 ===========\n"); #endif if (encoder->cfg.vui.sar_width > 0 && encoder->cfg.vui.sar_height > 0) { int i; static const struct { uint8_t width; uint8_t height; uint8_t idc; } sar[] = { // aspect_ratio_idc = 0 -> unspecified { 1, 1, 1 }, { 12, 11, 2 }, { 10, 11, 3 }, { 16, 11, 4 }, { 40, 33, 5 }, { 24, 11, 6 }, { 20, 11, 7 }, { 32, 11, 8 }, { 80, 33, 9 }, { 18, 11, 10}, { 15, 11, 11}, { 64, 33, 12}, {160, 99, 13}, { 4, 3, 14}, { 3, 2, 15}, { 2, 1, 16}, // aspect_ratio_idc = [17..254] -> reserved { 0, 0, 255 } }; for (i = 0; sar[i].idc != 255; i++) if (sar[i].width == encoder->cfg.vui.sar_width && sar[i].height == encoder->cfg.vui.sar_height) break; WRITE_U(stream, 1, 1, "aspect_ratio_info_present_flag"); WRITE_U(stream, sar[i].idc, 8, "aspect_ratio_idc"); if (sar[i].idc == 255) { // EXTENDED_SAR WRITE_U(stream, encoder->cfg.vui.sar_width, 16, "sar_width"); WRITE_U(stream, encoder->cfg.vui.sar_height, 16, "sar_height"); } } else WRITE_U(stream, 0, 1, "aspect_ratio_info_present_flag"); //IF aspect ratio info //ENDIF if (encoder->cfg.vui.overscan > 0) { WRITE_U(stream, 1, 1, "overscan_info_present_flag"); WRITE_U(stream, encoder->cfg.vui.overscan - 1, 1, "overscan_appropriate_flag"); } else WRITE_U(stream, 0, 1, "overscan_info_present_flag"); //IF overscan info //ENDIF if (encoder->cfg.vui.videoformat != 5 || encoder->cfg.vui.fullrange != 0 || encoder->cfg.vui.colorprim != 2 || encoder->cfg.vui.transfer != 2 || encoder->cfg.vui.colormatrix != 2) { WRITE_U(stream, 1, 1, "video_signal_type_present_flag"); WRITE_U(stream, encoder->cfg.vui.videoformat, 3, "chroma_format"); WRITE_U(stream, encoder->cfg.vui.fullrange, 1, "video_full_range_flag"); if (encoder->cfg.vui.colorprim != 2 || encoder->cfg.vui.transfer != 2 || encoder->cfg.vui.colormatrix != 2) { WRITE_U(stream, 1, 1, "colour_description_present_flag"); WRITE_U(stream, encoder->cfg.vui.colorprim, 8, "colour_primaries"); WRITE_U(stream, encoder->cfg.vui.transfer, 8, "transfer_characteristics"); WRITE_U(stream, encoder->cfg.vui.colormatrix, 8, "matrix_coeffs"); } else WRITE_U(stream, 0, 1, "colour_description_present_flag"); } else WRITE_U(stream, 0, 1, "video_signal_type_present_flag"); //IF video type //ENDIF if (encoder->cfg.vui.chroma_loc > 0) { WRITE_U(stream, 1, 1, "chroma_loc_info_present_flag"); WRITE_UE(stream, encoder->cfg.vui.chroma_loc, "chroma_sample_loc_type_top_field"); WRITE_UE(stream, encoder->cfg.vui.chroma_loc, "chroma_sample_loc_type_bottom_field"); } else WRITE_U(stream, 0, 1, "chroma_loc_info_present_flag"); //IF chroma loc info //ENDIF WRITE_U(stream, 0, 1, "neutral_chroma_indication_flag"); WRITE_U(stream, encoder->vui.field_seq_flag, 1, "field_seq_flag"); // 0: frames, 1: fields WRITE_U(stream, encoder->vui.frame_field_info_present_flag, 1, "frame_field_info_present_flag"); WRITE_U(stream, 0, 1, "default_display_window_flag"); //IF default display window //ENDIF WRITE_U(stream, encoder->vui.timing_info_present_flag, 1, "vui_timing_info_present_flag"); if (encoder->vui.timing_info_present_flag) { WRITE_U(stream, encoder->vui.num_units_in_tick, 32, "vui_num_units_in_tick"); WRITE_U(stream, encoder->vui.time_scale, 32, "vui_time_scale"); WRITE_U(stream, 0, 1, "vui_poc_proportional_to_timing_flag"); WRITE_U(stream, 0, 1, "vui_hrd_parameters_present_flag"); } WRITE_U(stream, 0, 1, "bitstream_restriction_flag"); //IF bitstream restriction //ENDIF } static void encoder_state_write_bitstream_SPS_extension(bitstream_t *stream, encoder_state_t * const state) { const kvz_config *cfg = &state->encoder_control->cfg; if (cfg->implicit_rdpcm && cfg->lossless) { WRITE_U(stream, 1, 1, "sps_extension_present_flag"); WRITE_U(stream, 1, 1, "sps_range_extension_flag"); WRITE_U(stream, 0, 1, "sps_multilayer_extension_flag"); WRITE_U(stream, 0, 1, "sps_3d_extension_flag"); WRITE_U(stream, 0, 5, "sps_extension_5bits"); WRITE_U(stream, 0, 1, "transform_skip_rotation_enabled_flag"); WRITE_U(stream, 0, 1, "transform_skip_context_enabled_flag"); WRITE_U(stream, 1, 1, "implicit_rdpcm_enabled_flag"); WRITE_U(stream, 0, 1, "explicit_rdpcm_enabled_flag"); WRITE_U(stream, 0, 1, "extended_precision_processing_flag"); WRITE_U(stream, 0, 1, "intra_smoothing_disabled_flag"); WRITE_U(stream, 0, 1, "high_precision_offsets_enabled_flag"); WRITE_U(stream, 0, 1, "persistent_rice_adaptation_enabled_flag"); WRITE_U(stream, 0, 1, "cabac_bypass_alignment_enabled_flag"); } else { WRITE_U(stream, 0, 1, "sps_extension_present_flag"); } } static void encoder_state_write_bitstream_seq_parameter_set(bitstream_t* stream, encoder_state_t * const state) { const encoder_control_t * encoder = state->encoder_control; #ifdef KVZ_DEBUG printf("=========== Sequence Parameter Set ID: 0 ===========\n"); #endif // TODO: profile IDC and level IDC should be defined later on WRITE_U(stream, 0, 4, "sps_video_parameter_set_id"); WRITE_U(stream, 1, 3, "sps_max_sub_layers_minus1"); WRITE_U(stream, 0, 1, "sps_temporal_id_nesting_flag"); encoder_state_write_bitstream_PTL(stream, state); WRITE_UE(stream, 0, "sps_seq_parameter_set_id"); WRITE_UE(stream, encoder->chroma_format, "chroma_format_idc"); if (encoder->chroma_format == KVZ_CSP_444) { WRITE_U(stream, 0, 1, "separate_colour_plane_flag"); } WRITE_UE(stream, encoder->in.width, "pic_width_in_luma_samples"); WRITE_UE(stream, encoder->in.height, "pic_height_in_luma_samples"); if (encoder->in.width != encoder->in.real_width || encoder->in.height != encoder->in.real_height) { // The standard does not seem to allow setting conf_win values such that // the number of luma samples is not a multiple of 2. Options are to either // hide one line or show an extra line of non-video. Neither seems like a // very good option, so let's not even try. assert(!(encoder->in.width % 2)); WRITE_U(stream, 1, 1, "conformance_window_flag"); WRITE_UE(stream, 0, "conf_win_left_offset"); WRITE_UE(stream, (encoder->in.width - encoder->in.real_width) >> 1, "conf_win_right_offset"); WRITE_UE(stream, 0, "conf_win_top_offset"); WRITE_UE(stream, (encoder->in.height - encoder->in.real_height) >> 1, "conf_win_bottom_offset"); } else { WRITE_U(stream, 0, 1, "conformance_window_flag"); } //IF window flag //END IF WRITE_UE(stream, encoder->bitdepth-8, "bit_depth_luma_minus8"); WRITE_UE(stream, encoder->bitdepth-8, "bit_depth_chroma_minus8"); WRITE_UE(stream, 1, "log2_max_pic_order_cnt_lsb_minus4"); WRITE_U(stream, 0, 1, "sps_sub_layer_ordering_info_present_flag"); //for each layer if (encoder->cfg.gop_lowdelay) { WRITE_UE(stream, encoder->cfg.ref_frames, "sps_max_dec_pic_buffering"); WRITE_UE(stream, 0, "sps_num_reorder_pics"); } else { WRITE_UE(stream, encoder->cfg.ref_frames + encoder->cfg.gop_len, "sps_max_dec_pic_buffering"); WRITE_UE(stream, encoder->cfg.gop_len, "sps_num_reorder_pics"); } WRITE_UE(stream, 0, "sps_max_latency_increase"); //end for WRITE_UE(stream, MIN_SIZE-3, "log2_min_coding_block_size_minus3"); WRITE_UE(stream, MAX_DEPTH, "log2_diff_max_min_coding_block_size"); WRITE_UE(stream, 0, "log2_min_transform_block_size_minus2"); // 4x4 WRITE_UE(stream, 3, "log2_diff_max_min_transform_block_size"); // 4x4...32x32 WRITE_UE(stream, TR_DEPTH_INTER, "max_transform_hierarchy_depth_inter"); WRITE_UE(stream, encoder->cfg.tr_depth_intra, "max_transform_hierarchy_depth_intra"); // scaling list WRITE_U(stream, encoder->scaling_list.enable, 1, "scaling_list_enable_flag"); if (encoder->scaling_list.enable) { WRITE_U(stream, 1, 1, "sps_scaling_list_data_present_flag"); encoder_state_write_bitstream_scaling_list(stream, state); } WRITE_U(stream, (encoder->cfg.amp_enable ? 1 : 0), 1, "amp_enabled_flag"); WRITE_U(stream, encoder->cfg.sao_enable ? 1 : 0, 1, "sample_adaptive_offset_enabled_flag"); WRITE_U(stream, ENABLE_PCM, 1, "pcm_enabled_flag"); #if ENABLE_PCM == 1 WRITE_U(stream, 7, 4, "pcm_sample_bit_depth_luma_minus1"); WRITE_U(stream, 7, 4, "pcm_sample_bit_depth_chroma_minus1"); WRITE_UE(stream, 0, "log2_min_pcm_coding_block_size_minus3"); WRITE_UE(stream, 2, "log2_diff_max_min_pcm_coding_block_size"); WRITE_U(stream, 1, 1, "pcm_loop_filter_disable_flag"); #endif WRITE_UE(stream, 0, "num_short_term_ref_pic_sets"); //IF num short term ref pic sets //ENDIF WRITE_U(stream, 0, 1, "long_term_ref_pics_present_flag"); //IF long_term_ref_pics_present //ENDIF WRITE_U(stream, state->encoder_control->cfg.tmvp_enable, 1, "sps_temporal_mvp_enable_flag"); WRITE_U(stream, 0, 1, "sps_strong_intra_smoothing_enable_flag"); WRITE_U(stream, 1, 1, "vui_parameters_present_flag"); encoder_state_write_bitstream_VUI(stream, state); encoder_state_write_bitstream_SPS_extension(stream, state); kvz_bitstream_add_rbsp_trailing_bits(stream); } static void encoder_state_write_bitstream_pic_parameter_set(bitstream_t* stream, encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; #ifdef KVZ_DEBUG printf("=========== Picture Parameter Set ID: 0 ===========\n"); #endif WRITE_UE(stream, 0, "pic_parameter_set_id"); WRITE_UE(stream, 0, "seq_parameter_set_id"); WRITE_U(stream, encoder->pps.dependent_slice_segments_enabled_flag, 1, "dependent_slice_segments_enabled_flag"); WRITE_U(stream, 0, 1, "output_flag_present_flag"); WRITE_U(stream, 0, 3, "num_extra_slice_header_bits"); WRITE_U(stream, encoder->cfg.signhide_enable, 1, "sign_data_hiding_flag"); WRITE_U(stream, 0, 1, "cabac_init_present_flag"); WRITE_UE(stream, 0, "num_ref_idx_l0_default_active_minus1"); WRITE_UE(stream, 0, "num_ref_idx_l1_default_active_minus1"); WRITE_SE(stream, ((int8_t)encoder->cfg.qp) - 26, "pic_init_qp_minus26"); WRITE_U(stream, 0, 1, "constrained_intra_pred_flag"); WRITE_U(stream, encoder->cfg.trskip_enable, 1, "transform_skip_enabled_flag"); if (encoder->cfg.target_bitrate > 0 || encoder->cfg.roi.dqps != NULL) { // Use separate QP for each LCU when rate control is enabled. WRITE_U(stream, 1, 1, "cu_qp_delta_enabled_flag"); WRITE_UE(stream, 0, "diff_cu_qp_delta_depth"); } else { WRITE_U(stream, 0, 1, "cu_qp_delta_enabled_flag"); } //TODO: add QP offsets WRITE_SE(stream, 0, "pps_cb_qp_offset"); WRITE_SE(stream, 0, "pps_cr_qp_offset"); WRITE_U(stream, 0, 1, "pps_slice_chroma_qp_offsets_present_flag"); WRITE_U(stream, 0, 1, "weighted_pred_flag"); WRITE_U(stream, 0, 1, "weighted_bipred_idc"); //WRITE_U(stream, 0, 1, "dependent_slices_enabled_flag"); WRITE_U(stream, encoder->cfg.lossless, 1, "transquant_bypass_enable_flag"); WRITE_U(stream, encoder->tiles_enable, 1, "tiles_enabled_flag"); //wavefronts WRITE_U(stream, encoder->cfg.wpp, 1, "entropy_coding_sync_enabled_flag"); if (encoder->tiles_enable) { WRITE_UE(stream, encoder->cfg.tiles_width_count - 1, "num_tile_columns_minus1"); WRITE_UE(stream, encoder->cfg.tiles_height_count - 1, "num_tile_rows_minus1"); WRITE_U(stream, encoder->tiles_uniform_spacing_flag, 1, "uniform_spacing_flag"); if (!encoder->tiles_uniform_spacing_flag) { int i; for (i = 0; i < encoder->cfg.tiles_width_count - 1; ++i) { WRITE_UE(stream, encoder->tiles_col_width[i] - 1, "column_width_minus1[...]"); } for (i = 0; i < encoder->cfg.tiles_height_count - 1; ++i) { WRITE_UE(stream, encoder->tiles_row_height[i] - 1, "row_height_minus1[...]"); } } WRITE_U(stream, 0, 1, "loop_filter_across_tiles_enabled_flag"); } WRITE_U(stream, 0, 1, "loop_filter_across_slice_flag"); WRITE_U(stream, 1, 1, "deblocking_filter_control_present_flag"); //IF deblocking_filter WRITE_U(stream, 0, 1, "deblocking_filter_override_enabled_flag"); WRITE_U(stream, encoder->cfg.deblock_enable ? 0 : 1, 1, "pps_disable_deblocking_filter_flag"); //IF !disabled if (encoder->cfg.deblock_enable) { WRITE_SE(stream, encoder->cfg.deblock_beta, "beta_offset_div2"); WRITE_SE(stream, encoder->cfg.deblock_tc, "tc_offset_div2"); } //ENDIF //ENDIF WRITE_U(stream, 0, 1, "pps_scaling_list_data_present_flag"); //IF scaling_list //ENDIF WRITE_U(stream, 0, 1, "lists_modification_present_flag"); WRITE_UE(stream, 0, "log2_parallel_merge_level_minus2"); WRITE_U(stream, 0, 1, "slice_segment_header_extension_present_flag"); WRITE_U(stream, 0, 1, "pps_extension_flag"); kvz_bitstream_add_rbsp_trailing_bits(stream); } static void encoder_state_write_bitstream_prefix_sei_version(encoder_state_t * const state) { #define STR_BUF_LEN 1000 bitstream_t * const stream = &state->stream; int i, length; char buf[STR_BUF_LEN] = { 0 }; char *s = buf + 16; const kvz_config * const cfg = &state->encoder_control->cfg; // random uuid_iso_iec_11578 generated with www.famkruithof.net/uuid/uuidgen static const uint8_t uuid[16] = { 0x32, 0xfe, 0x46, 0x6c, 0x98, 0x41, 0x42, 0x69, 0xae, 0x35, 0x6a, 0x91, 0x54, 0x9e, 0xf3, 0xf1 }; memcpy(buf, uuid, 16); // user_data_payload_byte s += sprintf(s, "Kvazaar HEVC Encoder v. " VERSION_STRING " - " "Copyleft 2012-2015 - http://ultravideo.cs.tut.fi/ - options:"); s += sprintf(s, " %dx%d", cfg->width, cfg->height); s += sprintf(s, " deblock=%d:%d:%d", cfg->deblock_enable, cfg->deblock_beta, cfg->deblock_tc); s += sprintf(s, " sao=%d", cfg->sao_enable); s += sprintf(s, " intra_period=%d", cfg->intra_period); s += sprintf(s, " qp=%d", cfg->qp); s += sprintf(s, " ref=%d", cfg->ref_frames); length = (int)(s - buf + 1); // length, +1 for \0 // Assert this so that in the future if the message gets longer, we remember // to increase the buf len. Divide by 2 for margin. assert(length < STR_BUF_LEN / 2); // payloadType = 5 -> user_data_unregistered WRITE_U(stream, 5, 8, "last_payload_type_byte"); // payloadSize for (i = 0; i <= length - 255; i += 255) WRITE_U(stream, 255, 8, "ff_byte"); WRITE_U(stream, length - i, 8, "last_payload_size_byte"); for (i = 0; i < length; i++) WRITE_U(stream, ((uint8_t *)buf)[i], 8, "sei_payload"); // The bitstream is already aligned, but align it anyway. kvz_bitstream_align(stream); #undef STR_BUF_LEN } /* static void encoder_state_write_active_parameter_sets_sei_message(encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; bitstream_t * const stream = &state->stream; int i = 0; int active_vps_id = 0; int self_contained_cvs_flag = 0; int no_parameter_set_update_flag = 0; int num_sps_ids_minus1 = 0; int layer_sps_idx = 0; int active_seq_parameter_set_id = 0; int vps_base_layer_internal_flag = 0; int max_layers_minus1 = 0; WRITE_U(stream, 129, 8, "last_payload_type_byte"); //active_parameter_sets WRITE_U(stream, 2, 8, "last_payload_size_byte"); WRITE_U(stream, active_vps_id, 4, "active_video_parameter_set_id"); WRITE_U(stream, self_contained_cvs_flag, 1, "self_contained_cvs_flag"); WRITE_U(stream, no_parameter_set_update_flag, 1, "no_parameter_set_update_flag"); WRITE_UE(stream, num_sps_ids_minus1, "num_sps_ids_minus1"); //for (i = 0; i <= num_sps_ids_minus1; ++i) { WRITE_UE(stream, active_seq_parameter_set_id, "active_seq_parameter_set_id"); //} // for (i = vps_base_layer_internal_flag; i <= max_layers_minus1; ++i){ WRITE_UE(stream, layer_sps_idx, "layer_sps_idx"); //} kvz_bitstream_rbsp_trailing_bits(stream); //rbsp_trailing_bits } */ static void encoder_state_write_picture_timing_sei_message(encoder_state_t * const state) { bitstream_t * const stream = &state->stream; if (state->encoder_control->vui.frame_field_info_present_flag){ int8_t odd_picture = state->frame->num % 2; int8_t pic_struct = 0; //0: progressive picture, 1: top field, 2: bottom field, 3... int8_t source_scan_type = 1; //0: interlaced, 1: progressive switch (state->tile->frame->source->interlacing){ case 0: //Progressive frame pic_struct = 0; source_scan_type = 1; break; case 1: //Top field first pic_struct = odd_picture ? 2 : 1; source_scan_type = 0; break; case 2: //Bottom field first pic_struct = odd_picture ? 1 : 2; source_scan_type = 0; break; default: assert(0); //Should never execute break; } WRITE_U(stream, 1, 8, "last_payload_type_byte"); //pic_timing WRITE_U(stream, 1, 8, "last_payload_size_byte"); WRITE_U(stream, pic_struct, 4, "pic_struct"); WRITE_U(stream, source_scan_type, 2, "source_scan_type"); WRITE_U(stream, 0, 1, "duplicate_flag"); kvz_bitstream_align(stream); } } static void encoder_state_entry_points_explore(const encoder_state_t * const state, int * const r_count, int * const r_max_length) { int i; for (i = 0; state->children[i].encoder_control; ++i) { if (state->children[i].is_leaf) { const int my_length = kvz_bitstream_tell(&state->children[i].stream)/8; ++(*r_count); if (my_length > *r_max_length) { *r_max_length = my_length; } } else { encoder_state_entry_points_explore(&state->children[i], r_count, r_max_length); } } } static void encoder_state_write_bitstream_entry_points_write(bitstream_t * const stream, const encoder_state_t * const state, const int num_entry_points, const int write_length, int * const r_count) { int i; for (i = 0; state->children[i].encoder_control; ++i) { if (state->children[i].is_leaf) { const int my_length = kvz_bitstream_tell(&state->children[i].stream)/8; ++(*r_count); //Don't write the last one if (*r_count < num_entry_points) { WRITE_U(stream, my_length - 1, write_length, "entry_point_offset-minus1") } } else { encoder_state_write_bitstream_entry_points_write(stream, &state->children[i], num_entry_points, write_length, r_count); } } } static void kvz_encoder_state_write_bitstream_slice_header_independent( struct bitstream_t * const stream, struct encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; int j; int ref_negative = 0; int ref_positive = 0; if (encoder->cfg.gop_len) { for (j = 0; j < state->frame->ref->used_size; j++) { if (state->frame->ref->pocs[j] < state->frame->poc) { ref_negative++; } else { ref_positive++; } } } else ref_negative = state->frame->ref->used_size; WRITE_UE(stream, state->frame->slicetype, "slice_type"); if (state->frame->pictype != KVZ_NAL_IDR_W_RADL && state->frame->pictype != KVZ_NAL_IDR_N_LP) { int last_poc = 0; int poc_shift = 0; WRITE_U(stream, state->frame->poc&0x1f, 5, "pic_order_cnt_lsb"); WRITE_U(stream, 0, 1, "short_term_ref_pic_set_sps_flag"); WRITE_UE(stream, ref_negative, "num_negative_pics"); WRITE_UE(stream, ref_positive, "num_positive_pics"); for (j = 0; j < ref_negative; j++) { int8_t delta_poc = 0; if (encoder->cfg.gop_len) { int8_t found = 0; do { delta_poc = encoder->cfg.gop[state->frame->gop_offset].ref_neg[j + poc_shift]; for (int i = 0; i < state->frame->ref->used_size; i++) { if (state->frame->ref->pocs[i] == state->frame->poc - delta_poc) { found = 1; break; } } if (!found) poc_shift++; if (j + poc_shift == ref_negative) { fprintf(stderr, "Failure, reference not found!"); exit(EXIT_FAILURE); } } while (!found); } WRITE_UE(stream, encoder->cfg.gop_len?delta_poc - last_poc - 1:0, "delta_poc_s0_minus1"); last_poc = delta_poc; WRITE_U(stream,1,1, "used_by_curr_pic_s0_flag"); } last_poc = 0; poc_shift = 0; for (j = 0; j < ref_positive; j++) { int8_t delta_poc = 0; if (encoder->cfg.gop_len) { int8_t found = 0; do { delta_poc = encoder->cfg.gop[state->frame->gop_offset].ref_pos[j + poc_shift]; for (int i = 0; i < state->frame->ref->used_size; i++) { if (state->frame->ref->pocs[i] == state->frame->poc + delta_poc) { found = 1; break; } } if (!found) poc_shift++; if (j + poc_shift == ref_positive) { fprintf(stderr, "Failure, reference not found!"); exit(EXIT_FAILURE); } } while (!found); } WRITE_UE(stream, encoder->cfg.gop_len ? delta_poc - last_poc - 1 : 0, "delta_poc_s1_minus1"); last_poc = delta_poc; WRITE_U(stream, 1, 1, "used_by_curr_pic_s1_flag"); } //WRITE_UE(stream, 0, "short_term_ref_pic_set_idx"); if (state->encoder_control->cfg.tmvp_enable) { WRITE_U(stream, ref_negative?1:0, 1, "slice_temporal_mvp_enabled_flag"); } } //end if //end if if (encoder->cfg.sao_enable) { WRITE_U(stream, 1, 1, "slice_sao_luma_flag"); if (encoder->chroma_format != KVZ_CSP_400) { WRITE_U(stream, 1, 1, "slice_sao_chroma_flag"); } } if (state->frame->slicetype != KVZ_SLICE_I) { WRITE_U(stream, 1, 1, "num_ref_idx_active_override_flag"); WRITE_UE(stream, ref_negative != 0 ? ref_negative - 1: 0, "num_ref_idx_l0_active_minus1"); if (state->frame->slicetype == KVZ_SLICE_B) { WRITE_UE(stream, ref_positive != 0 ? ref_positive - 1 : 0, "num_ref_idx_l1_active_minus1"); WRITE_U(stream, 0, 1, "mvd_l1_zero_flag"); } // Temporal Motion Vector Prediction flags if (state->encoder_control->cfg.tmvp_enable && ref_negative > 0) { if (state->frame->slicetype == KVZ_SLICE_B) { // Always use L0 for prediction WRITE_U(stream, 1, 1, "collocated_from_l0_flag"); } if (ref_negative > 1) { // Use first reference from L0 // ToDo: use better reference WRITE_UE(stream, 0, "collocated_ref_idx"); } } WRITE_UE(stream, 5-MRG_MAX_NUM_CANDS, "five_minus_max_num_merge_cand"); } { int slice_qp_delta = state->frame->QP - encoder->cfg.qp; WRITE_SE(stream, slice_qp_delta, "slice_qp_delta"); } } void kvz_encoder_state_write_bitstream_slice_header( struct bitstream_t * const stream, struct encoder_state_t * const state, bool independent) { const encoder_control_t * const encoder = state->encoder_control; #ifdef KVZ_DEBUG printf("=========== Slice ===========\n"); #endif bool first_slice_segment_in_pic = (state->slice->start_in_rs == 0); if ((state->encoder_control->cfg.slices & KVZ_SLICES_WPP) && state->wfrow->lcu_offset_y > 0) { first_slice_segment_in_pic = false; } WRITE_U(stream, first_slice_segment_in_pic, 1, "first_slice_segment_in_pic_flag"); if (state->frame->pictype >= KVZ_NAL_BLA_W_LP && state->frame->pictype <= KVZ_NAL_RSV_IRAP_VCL23) { WRITE_U(stream, 0, 1, "no_output_of_prior_pics_flag"); } WRITE_UE(stream, 0, "slice_pic_parameter_set_id"); if (!first_slice_segment_in_pic) { if (encoder->pps.dependent_slice_segments_enabled_flag) { WRITE_U(stream, !independent, 1, "dependent_slice_segment_flag"); } int lcu_cnt = encoder->in.width_in_lcu * encoder->in.height_in_lcu; int num_bits = kvz_math_ceil_log2(lcu_cnt); int slice_start_rs = state->slice->start_in_rs; if (state->encoder_control->cfg.slices & KVZ_SLICES_WPP) { slice_start_rs += state->wfrow->lcu_offset_y * state->tile->frame->width_in_lcu; } WRITE_U(stream, slice_start_rs, num_bits, "slice_segment_address"); } if (independent) { kvz_encoder_state_write_bitstream_slice_header_independent(stream, state); } if (encoder->tiles_enable || encoder->cfg.wpp) { int num_entry_points = 0; int max_length_seen = 0; if (state->is_leaf) { num_entry_points = 1; } else { encoder_state_entry_points_explore(state, &num_entry_points, &max_length_seen); } int num_offsets = num_entry_points - 1; WRITE_UE(stream, num_offsets, "num_entry_point_offsets"); if (num_offsets > 0) { int entry_points_written = 0; int offset_len = kvz_math_floor_log2(max_length_seen) + 1; WRITE_UE(stream, offset_len - 1, "offset_len_minus1"); encoder_state_write_bitstream_entry_points_write(stream, state, num_entry_points, offset_len, &entry_points_written); } } } /** * \brief Add a checksum SEI message to the bitstream. * \param encoder The encoder. * \returns Void */ static void add_checksum(encoder_state_t * const state) { bitstream_t * const stream = &state->stream; const videoframe_t * const frame = state->tile->frame; unsigned char checksum[3][SEI_HASH_MAX_LENGTH]; kvz_nal_write(stream, KVZ_NAL_SUFFIX_SEI_NUT, 0, 0); WRITE_U(stream, 132, 8, "sei_type"); int num_colors = (state->encoder_control->chroma_format == KVZ_CSP_400 ? 1 : 3); switch (state->encoder_control->cfg.hash) { case KVZ_HASH_CHECKSUM: kvz_image_checksum(frame->rec, checksum, state->encoder_control->bitdepth); WRITE_U(stream, 1 + num_colors * 4, 8, "size"); WRITE_U(stream, 2, 8, "hash_type"); // 2 = checksum for (int i = 0; i < num_colors; ++i) { uint32_t checksum_val = ( (checksum[i][0] << 24) + (checksum[i][1] << 16) + (checksum[i][2] << 8) + (checksum[i][3])); WRITE_U(stream, checksum_val, 32, "picture_checksum"); CHECKPOINT("checksum[%d] = %u", i, checksum_val); } break; case KVZ_HASH_MD5: kvz_image_md5(frame->rec, checksum, state->encoder_control->bitdepth); WRITE_U(stream, 1 + num_colors * 16, 8, "size"); WRITE_U(stream, 0, 8, "hash_type"); // 0 = md5 for (int i = 0; i < num_colors; ++i) { for (int b = 0; b < 16; ++b) { WRITE_U(stream, checksum[i][b], 8, "picture_md5"); } } break; case KVZ_HASH_NONE: // Means we shouldn't be writing this SEI. assert(0); } kvz_bitstream_align(stream); // spec:sei_rbsp() rbsp_trailing_bits kvz_bitstream_add_rbsp_trailing_bits(stream); } static void encoder_state_write_slice_header( bitstream_t * stream, encoder_state_t * state, bool independent) { uint8_t nal_type = (state->frame->is_idr_frame ? KVZ_NAL_IDR_W_RADL : KVZ_NAL_TRAIL_R); kvz_nal_write(stream, nal_type, 0, state->frame->first_nal); state->frame->first_nal = false; kvz_encoder_state_write_bitstream_slice_header(stream, state, independent); kvz_bitstream_add_rbsp_trailing_bits(stream); } /** * \brief Move child state bitstreams to the parent stream. */ static void encoder_state_write_bitstream_children(encoder_state_t * const state) { // Write Slice headers to the parent stream instead of the child stream // in case the child stream is a leaf with something in it already. for (int i = 0; state->children[i].encoder_control; ++i) { if (state->children[i].type == ENCODER_STATE_TYPE_SLICE) { encoder_state_write_slice_header(&state->stream, &state->children[i], true); } else if (state->children[i].type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) { if ((state->encoder_control->cfg.slices & KVZ_SLICES_WPP) && i != 0) { // Add header for dependent WPP row slice. encoder_state_write_slice_header(&state->stream, &state->children[i], false); } } kvz_encoder_state_write_bitstream(&state->children[i]); kvz_bitstream_move(&state->stream, &state->children[i].stream); } } static void encoder_state_write_bitstream_main(encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; bitstream_t * const stream = &state->stream; uint64_t curpos = kvz_bitstream_tell(stream); // The first NAL unit of the access unit must use a long start code. state->frame->first_nal = true; // Access Unit Delimiter (AUD) if (encoder->cfg.aud_enable) { state->frame->first_nal = false; encoder_state_write_bitstream_aud(state); } if (encoder_state_must_write_vps(state)) { state->frame->first_nal = false; kvz_encoder_state_write_parameter_sets(&state->stream, state); } // Send Kvazaar version information only in the first frame. if (state->frame->num == 0 && encoder->cfg.add_encoder_info) { kvz_nal_write(stream, KVZ_NAL_PREFIX_SEI_NUT, 0, state->frame->first_nal); state->frame->first_nal = false; encoder_state_write_bitstream_prefix_sei_version(state); // spec:sei_rbsp() rbsp_trailing_bits kvz_bitstream_add_rbsp_trailing_bits(stream); } //SEI messages for interlacing if (encoder->vui.frame_field_info_present_flag) { // These should be optional, needed for earlier versions // of HM decoder to accept bitstream //kvz_nal_write(stream, KVZ_NAL_PREFIX_SEI_NUT, 0, 0); //encoder_state_write_active_parameter_sets_sei_message(state); //kvz_bitstream_rbsp_trailing_bits(stream); kvz_nal_write(stream, KVZ_NAL_PREFIX_SEI_NUT, 0, state->frame->first_nal); state->frame->first_nal = false; encoder_state_write_picture_timing_sei_message(state); // spec:sei_rbsp() rbsp_trailing_bits kvz_bitstream_add_rbsp_trailing_bits(stream); } { PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME); encoder_state_write_bitstream_children(state); PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, encoder->threadqueue, "type=write_bitstream_append,frame=%d,encoder_type=%c", state->frame->num, state->type); } if (state->encoder_control->cfg.hash != KVZ_HASH_NONE) { PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME); // Calculate checksum add_checksum(state); PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, encoder->threadqueue, "type=write_bitstream_checksum,frame=%d,encoder_type=%c", state->frame->num, state->type); } //Get bitstream length for stats uint64_t newpos = kvz_bitstream_tell(stream); state->stats_bitstream_length = (newpos >> 3) - (curpos >> 3); if (state->frame->num > 0) { state->frame->total_bits_coded = state->previous_encoder_state->frame->total_bits_coded; } state->frame->total_bits_coded += newpos - curpos; state->frame->cur_gop_bits_coded = state->previous_encoder_state->frame->cur_gop_bits_coded; state->frame->cur_gop_bits_coded += newpos - curpos; } void kvz_encoder_state_write_bitstream(encoder_state_t * const state) { if (!state->is_leaf) { switch (state->type) { case ENCODER_STATE_TYPE_MAIN: encoder_state_write_bitstream_main(state); break; case ENCODER_STATE_TYPE_TILE: case ENCODER_STATE_TYPE_SLICE: encoder_state_write_bitstream_children(state); break; default: fprintf(stderr, "Unsupported node type %c!\n", state->type); assert(0); } } } void kvz_encoder_state_worker_write_bitstream(void * opaque) { kvz_encoder_state_write_bitstream((encoder_state_t *) opaque); } void kvz_encoder_state_write_parameter_sets(bitstream_t *stream, encoder_state_t * const state) { // Video Parameter Set (VPS) kvz_nal_write(stream, KVZ_NAL_VPS_NUT, 0, 1); encoder_state_write_bitstream_vid_parameter_set(stream, state); // Sequence Parameter Set (SPS) kvz_nal_write(stream, KVZ_NAL_SPS_NUT, 0, 1); encoder_state_write_bitstream_seq_parameter_set(stream, state); // Picture Parameter Set (PPS) kvz_nal_write(stream, KVZ_NAL_PPS_NUT, 0, 1); encoder_state_write_bitstream_pic_parameter_set(stream, state); }