/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include #include "sao-avx2.h" #include "sao.h" #include "strategyselector.h" #include "rdo.h" #if COMPILE_INTEL_AVX2 #include // These optimizations are based heavily on sao-generic.c. // Might be useful to check that if (when) this file // is difficult to understand. // Mapping of edge_idx values to eo-classes. static int sao_calc_eo_cat(kvz_pixel a, kvz_pixel b, kvz_pixel c) { // Mapping relationships between a, b and c to eo_idx. static const int sao_eo_idx_to_eo_category[] = { 1, 2, 0, 3, 4 }; int eo_idx = 2 + SIGN3((int)c - (int)a) + SIGN3((int)c - (int)b); return sao_eo_idx_to_eo_category[eo_idx]; } static __m128i sao_calc_eo_cat_avx2(__m128i* a, __m128i* b, __m128i* c) { __m128i v_eo_idx = _mm_set1_epi16(2); __m128i v_a = _mm_cvtepu8_epi16(*a); __m128i v_c = _mm_cvtepu8_epi16(*c); __m128i v_b = _mm_cvtepu8_epi16(*b); __m128i temp_a = _mm_sign_epi16(_mm_set1_epi16(1), _mm_sub_epi16(v_c, v_a)); __m128i temp_b = _mm_sign_epi16(_mm_set1_epi16(1), _mm_sub_epi16(v_c, v_b)); v_eo_idx = _mm_add_epi16(v_eo_idx, temp_a); v_eo_idx = _mm_add_epi16(v_eo_idx, temp_b); v_eo_idx = _mm_packus_epi16(v_eo_idx, v_eo_idx); __m128i v_cat_lookup = _mm_setr_epi8(1,2,0,3,4,0,0,0,0,0,0,0,0,0,0,0); __m128i v_cat = _mm_shuffle_epi8(v_cat_lookup, v_eo_idx); return v_cat; } int kvz_sao_edge_ddistortion_avx2(const kvz_pixel *orig_data, const kvz_pixel *rec_data, int block_width, int block_height, int eo_class, int offsets[NUM_SAO_EDGE_CATEGORIES]) { int y, x; int sum = 0; vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1]; for (y = 1; y < block_height - 1; ++y) { for (x = 1; x < block_width - 1; ++x) { const kvz_pixel *c_data = &rec_data[y * block_width + x]; kvz_pixel a = c_data[a_ofs.y * block_width + a_ofs.x]; kvz_pixel c = c_data[0]; kvz_pixel b = c_data[b_ofs.y * block_width + b_ofs.x]; int offset = offsets[sao_calc_eo_cat(a, b, c)]; if (offset != 0) { int diff = orig_data[y * block_width + x] - c; // Offset is applied to reconstruction, so it is subtracted from diff. sum += (diff - offset) * (diff - offset) - diff * diff; } } } return sum; } /** * \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma. * \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma. * \param dir_offsets * \param is_chroma 0 for luma, 1 for chroma. Indicates */ void kvz_calc_sao_edge_dir_avx2(const kvz_pixel *orig_data, const kvz_pixel *rec_data, int eo_class, int block_width, int block_height, int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES]) { int y, x; vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1]; // Arrays orig_data and rec_data are quarter size for chroma. // Don't sample the edge pixels because this function doesn't have access to // their neighbours. for (y = 1; y < block_height - 1; ++y) { for (x = 1; x < block_width - 1; ++x) { const kvz_pixel *c_data = &rec_data[y * block_width + x]; kvz_pixel a = c_data[a_ofs.y * block_width + a_ofs.x]; kvz_pixel c = c_data[0]; kvz_pixel b = c_data[b_ofs.y * block_width + b_ofs.x]; int eo_cat = sao_calc_eo_cat(a, b, c); cat_sum_cnt[0][eo_cat] += orig_data[y * block_width + x] - c; cat_sum_cnt[1][eo_cat] += 1; } } } void kvz_sao_reconstruct_color_avx2(const encoder_control_t * const encoder, const kvz_pixel *rec_data, kvz_pixel *new_rec_data, const sao_info_t *sao, int stride, int new_stride, int block_width, int block_height, color_t color_i) { int y, x; // Arrays orig_data and rec_data are quarter size for chroma. int offset_v = color_i == COLOR_V ? 5 : 0; if(sao->type == SAO_TYPE_BAND) { int offsets[1<eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1]; const kvz_pixel *c_data = &rec_data[y * stride + x]; kvz_pixel *new_data = &new_rec_data[y * new_stride + x]; kvz_pixel a = c_data[a_ofs.y * stride + a_ofs.x]; kvz_pixel c = c_data[0]; kvz_pixel b = c_data[b_ofs.y * stride + b_ofs.x]; int eo_cat = sao_calc_eo_cat(a, b, c); new_data[0] = (kvz_pixel)CLIP(0, (1 << KVZ_BIT_DEPTH) - 1, c_data[0] + sao->offsets[eo_cat + offset_v]); } } } } int kvz_sao_band_ddistortion_avx2(const encoder_state_t * const state, const kvz_pixel *orig_data, const kvz_pixel *rec_data, int block_width, int block_height, int band_pos, int sao_bands[4]) { int y, x; int shift = state->encoder_control->bitdepth-5; int sum = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { int band = (rec_data[y * block_width + x] >> shift) - band_pos; int offset = 0; if (band >= 0 && band < 4) { offset = sao_bands[band]; } if (offset != 0) { int diff = orig_data[y * block_width + x] - rec_data[y * block_width + x]; // Offset is applied to reconstruction, so it is subtracted from diff. sum += (diff - offset) * (diff - offset) - diff * diff; } } } return sum; } #endif //COMPILE_INTEL_AVX2 int kvz_strategy_register_sao_avx2(void* opaque, uint8_t bitdepth) { bool success = true; #if COMPILE_INTEL_AVX2 if (bitdepth == 8) { success &= kvz_strategyselector_register(opaque, "sao_edge_ddistortion", "avx2", 40, &kvz_sao_edge_ddistortion_avx2); success &= kvz_strategyselector_register(opaque, "calc_sao_edge_dir", "avx2", 40, &kvz_calc_sao_edge_dir_avx2); success &= kvz_strategyselector_register(opaque, "sao_reconstruct_color", "avx2", 40, &kvz_sao_reconstruct_color_avx2); success &= kvz_strategyselector_register(opaque, "sao_band_ddistortion", "avx2", 40, &kvz_sao_band_ddistortion_avx2); } #endif //COMPILE_INTEL_AVX2 return success; }