/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "sao.h" #include "rdo.h" #include "strategies/strategies-picture.h" #include #include #include // Offsets of a and b in relation to c. // dir_offset[dir][a or b] // | | a | a | a | // | a c b | c | c | c | // | | b | b | b | static const vector2d_t g_sao_edge_offsets[SAO_NUM_EO][2] = { { { -1, 0 }, { 1, 0 } }, { { 0, -1 }, { 0, 1 } }, { { -1, -1 }, { 1, 1 } }, { { 1, -1 }, { -1, 1 } } }; // Mapping of edge_idx values to eo-classes. static int sao_calc_eo_cat(kvz_pixel a, kvz_pixel b, kvz_pixel c) { // Mapping relationships between a, b and c to eo_idx. static const int sao_eo_idx_to_eo_category[] = { 1, 2, 0, 3, 4 }; int eo_idx = 2 + SIGN3((int)c - (int)a) + SIGN3((int)c - (int)b); return sao_eo_idx_to_eo_category[eo_idx]; } int kvz_sao_band_ddistortion(const encoder_state_t * const state, const kvz_pixel *orig_data, const kvz_pixel *rec_data, int block_width, int block_height, int band_pos, int sao_bands[4]) { int y, x; int shift = state->encoder_control->bitdepth-5; int sum = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { int band = (rec_data[y * block_width + x] >> shift) - band_pos; int offset = 0; if (band >= 0 && band < 4) { offset = sao_bands[band]; } if (offset != 0) { int diff = orig_data[y * block_width + x] - rec_data[y * block_width + x]; // Offset is applied to reconstruction, so it is subtracted from diff. sum += (diff - offset) * (diff - offset) - diff * diff; } } } return sum; } int kvz_sao_edge_ddistortion(const kvz_pixel *orig_data, const kvz_pixel *rec_data, int block_width, int block_height, int eo_class, int offsets[NUM_SAO_EDGE_CATEGORIES]) { int y, x; int sum = 0; vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1]; for (y = 1; y < block_height - 1; ++y) { for (x = 1; x < block_width - 1; ++x) { const kvz_pixel *c_data = &rec_data[y * block_width + x]; kvz_pixel a = c_data[a_ofs.y * block_width + a_ofs.x]; kvz_pixel c = c_data[0]; kvz_pixel b = c_data[b_ofs.y * block_width + b_ofs.x]; int offset = offsets[sao_calc_eo_cat(a, b, c)]; if (offset != 0) { int diff = orig_data[y * block_width + x] - c; // Offset is applied to reconstruction, so it is subtracted from diff. sum += (diff - offset) * (diff - offset) - diff * diff; } } } return sum; } void kvz_init_sao_info(sao_info_t *sao) { sao->type = SAO_TYPE_NONE; sao->merge_left_flag = 0; sao->merge_up_flag = 0; } static float sao_mode_bits_none(const encoder_state_t * const state, sao_info_t *sao_top, sao_info_t *sao_left) { float mode_bits = 0.0; const cabac_data_t * const cabac = &state->cabac; const cabac_ctx_t *ctx = NULL; // FL coded merges. if (sao_left != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } if (sao_top != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } // TR coded type_idx_, none = 0 ctx = &(cabac->ctx.sao_type_idx_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); return mode_bits; } static float sao_mode_bits_merge(const encoder_state_t * const state, int8_t merge_cand) { float mode_bits = 0.0; const cabac_data_t * const cabac = &state->cabac; const cabac_ctx_t *ctx = NULL; // FL coded merges. ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, merge_cand == 1); if (merge_cand == 1) return mode_bits; mode_bits += CTX_ENTROPY_FBITS(ctx, merge_cand == 2); return mode_bits; } static float sao_mode_bits_edge(const encoder_state_t * const state, int edge_class, int offsets[NUM_SAO_EDGE_CATEGORIES], sao_info_t *sao_top, sao_info_t *sao_left, unsigned buf_cnt) { float mode_bits = 0.0; const cabac_data_t * const cabac = &state->cabac; const cabac_ctx_t *ctx = NULL; // FL coded merges. if (sao_left != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } if (sao_top != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } // TR coded type_idx_, edge = 2 = cMax ctx = &(cabac->ctx.sao_type_idx_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 1) + 1.0; // TR coded offsets. for (unsigned buf_index = 0; buf_index < buf_cnt; buf_index++) { sao_eo_cat edge_cat; for (edge_cat = SAO_EO_CAT1; edge_cat <= SAO_EO_CAT4; ++edge_cat) { int abs_offset = abs(offsets[edge_cat+5*buf_index]); if (abs_offset == 0 || abs_offset == SAO_ABS_OFFSET_MAX) { mode_bits += abs_offset + 1; } else { mode_bits += abs_offset + 2; } } } mode_bits += 2.0; return mode_bits; } static float sao_mode_bits_band(const encoder_state_t * const state, int band_position[2], int offsets[10], sao_info_t *sao_top, sao_info_t *sao_left, unsigned buf_cnt) { float mode_bits = 0.0; const cabac_data_t * const cabac = &state->cabac; const cabac_ctx_t *ctx = NULL; // FL coded merges. if (sao_left != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } if (sao_top != NULL) { ctx = &(cabac->ctx.sao_merge_flag_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 0); } // TR coded sao_type_idx_, band = 1 ctx = &(cabac->ctx.sao_type_idx_model); mode_bits += CTX_ENTROPY_FBITS(ctx, 1) + 1.0; // TR coded offsets and possible FL coded offset signs. for (unsigned buf_index = 0; buf_index < buf_cnt; buf_index++) { int i; for (i = 0; i < 4; ++i) { int abs_offset = abs(offsets[i + 1 + buf_index*5]); if (abs_offset == 0) { mode_bits += abs_offset + 1; } else if(abs_offset == SAO_ABS_OFFSET_MAX) { mode_bits += abs_offset + 1 + 1; } else { mode_bits += abs_offset + 2 + 1; } } } // FL coded band position. mode_bits += 5.0 * buf_cnt; return mode_bits; } /** * \brief calculate an array of intensity correlations for each intensity value */ static void calc_sao_offset_array(const encoder_control_t * const encoder, const sao_info_t *sao, int *offset, color_t color_i) { int val; int values = (1<bitdepth); int shift = encoder->bitdepth-5; int band_pos = (color_i == COLOR_V) ? 1 : 0; // Loop through all intensity values and construct an offset array for (val = 0; val < values; val++) { int cur_band = val>>shift; if (cur_band >= sao->band_position[band_pos] && cur_band < sao->band_position[band_pos] + 4) { offset[val] = CLIP(0, values - 1, val + sao->offsets[cur_band - sao->band_position[band_pos] + 1 + 5 * band_pos]); } else { offset[val] = val; } } } /** * \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma. * \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma. * \param sao_bands an array of bands for original and reconstructed block */ static int calc_sao_band_offsets(int sao_bands[2][32], int offsets[4], int *band_position) { int band; int offset; int best_dist; int temp_dist; int dist[32]; int temp_offsets[32]; int temp_rate[32]; int best_dist_pos = 0; FILL(dist, 0); FILL(temp_rate, 0); // Calculate distortion for each band using N*h^2 - 2*h*E for (band = 0; band < 32; band++) { best_dist = INT_MAX; offset = 0; if (sao_bands[1][band] != 0) { offset = (sao_bands[0][band] + (sao_bands[1][band] >> 1)) / sao_bands[1][band]; offset = CLIP(-SAO_ABS_OFFSET_MAX, SAO_ABS_OFFSET_MAX, offset); } dist[band] = offset==0?0:INT_MAX; temp_offsets[band] = 0; while(offset != 0) { temp_dist = sao_bands[1][band]*offset*offset - 2*offset*sao_bands[0][band]; // Store best distortion and offset if(temp_dist < best_dist) { dist[band] = temp_dist; temp_offsets[band] = offset; } offset += (offset > 0) ? -1:1; } } best_dist = INT_MAX; //Find starting pos for best 4 band distortions for (band = 0; band < 28; band++) { temp_dist = dist[band] + dist[band+1] + dist[band+2] + dist[band+3]; if(temp_dist < best_dist) { best_dist = temp_dist; best_dist_pos = band; } } // Copy best offsets to output memcpy(offsets, &temp_offsets[best_dist_pos], 4*sizeof(int)); *band_position = best_dist_pos; return best_dist; } /** * \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma. * \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma. * \param sao_bands an array of bands for original and reconstructed block */ static void calc_sao_bands(const encoder_state_t * const state, const kvz_pixel *orig_data, const kvz_pixel *rec_data, int block_width, int block_height, int sao_bands[2][32]) { int y, x; int shift = state->encoder_control->bitdepth-5; //Loop pixels and take top 5 bits to classify different bands for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sao_bands[0][rec_data[y * block_width + x]>>shift] += orig_data[y * block_width + x] - rec_data[y * block_width + x]; sao_bands[1][rec_data[y * block_width + x]>>shift]++; } } } /** * \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma. * \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma. * \param dir_offsets * \param is_chroma 0 for luma, 1 for chroma. Indicates */ static void calc_sao_edge_dir(const kvz_pixel *orig_data, const kvz_pixel *rec_data, int eo_class, int block_width, int block_height, int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES]) { int y, x; vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1]; // Arrays orig_data and rec_data are quarter size for chroma. // Don't sample the edge pixels because this function doesn't have access to // their neighbours. for (y = 1; y < block_height - 1; ++y) { for (x = 1; x < block_width - 1; ++x) { const kvz_pixel *c_data = &rec_data[y * block_width + x]; kvz_pixel a = c_data[a_ofs.y * block_width + a_ofs.x]; kvz_pixel c = c_data[0]; kvz_pixel b = c_data[b_ofs.y * block_width + b_ofs.x]; int eo_cat = sao_calc_eo_cat(a, b, c); cat_sum_cnt[0][eo_cat] += orig_data[y * block_width + x] - c; cat_sum_cnt[1][eo_cat] += 1; } } } static void sao_reconstruct_color(const encoder_control_t * const encoder, const kvz_pixel *rec_data, kvz_pixel *new_rec_data, const sao_info_t *sao, int stride, int new_stride, int block_width, int block_height, color_t color_i) { int y, x; // Arrays orig_data and rec_data are quarter size for chroma. int offset_v = color_i == COLOR_V ? 5 : 0; if(sao->type == SAO_TYPE_BAND) { int offsets[1<eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1]; const kvz_pixel *c_data = &rec_data[y * stride + x]; kvz_pixel *new_data = &new_rec_data[y * new_stride + x]; kvz_pixel a = c_data[a_ofs.y * stride + a_ofs.x]; kvz_pixel c = c_data[0]; kvz_pixel b = c_data[b_ofs.y * stride + b_ofs.x]; int eo_cat = sao_calc_eo_cat(a, b, c); new_data[0] = (kvz_pixel)CLIP(0, (1 << KVZ_BIT_DEPTH) - 1, c_data[0] + sao->offsets[eo_cat + offset_v]); } } } } /** * \brief Calculate dimensions of the buffer used by sao reconstruction. * \param pic Picture. * \param sao Sao parameters. * \param rec Top-left corner of the LCU */ static void sao_calc_band_block_dims(const videoframe_t *frame, color_t color_i, vector2d_t *rec, vector2d_t *block) { const int is_chroma = (color_i != COLOR_Y ? 1 : 0); int width = frame->width >> is_chroma; int height = frame->height >> is_chroma; int block_width = LCU_WIDTH >> is_chroma; // Handle right and bottom, taking care of non-LCU sized CUs. if (rec->y + block_width >= height) { if (rec->y + block_width >= height) { block->y = height - rec->y; } } if (rec->x + block_width >= width) { if (rec->x + block_width > width) { block->x = width - rec->x; } } rec->x = 0; rec->y = 0; } /** * \brief Calculate dimensions of the buffer used by sao reconstruction. * * This function calculates 4 vectors that can be used to make the temporary * buffers required by sao_reconstruct_color. * * Vector block is the area affected by sao. Vectors tr and br are top-left * margin and bottom-right margin, which contain pixels that are not modified * by the reconstruction of this LCU but are needed by the reconstruction. * Vector rec is the offset from the CU to the required pixel area. * * The margins are always either 0 or 1, depending on the direction of the * edge offset class. * * This also takes into account borders of the picture and non-LCU sized * CU's at the bottom and right of the picture. * * \ CU + rec * +------+ * |\ tl | * | +--+ | * | |\ block * | | \| | * | +--+ | * | \ br * +------+ * * \param pic Picture. * \param sao Sao parameters. * \param rec Top-left corner of the LCU, modified to be top-left corner of */ static void sao_calc_edge_block_dims(const videoframe_t * const frame, color_t color_i, const sao_info_t *sao, vector2d_t *rec, vector2d_t *tl, vector2d_t *br, vector2d_t *block) { vector2d_t a_ofs = g_sao_edge_offsets[sao->eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1]; const int is_chroma = (color_i != COLOR_Y ? 1 : 0); int width = frame->width >> is_chroma; int height = frame->height >> is_chroma; int block_width = LCU_WIDTH >> is_chroma; // Handle top and left. if (rec->y == 0) { tl->y = 0; if (a_ofs.y == -1 || b_ofs.y == -1) { block->y -= 1; tl->y += 1; } } if (rec->x == 0) { tl->x = 0; if (a_ofs.x == -1 || b_ofs.x == -1) { block->x -= 1; tl->x += 1; } } // Handle right and bottom, taking care of non-LCU sized CUs. if (rec->y + block_width >= height) { br->y = 0; block->y -= block_width + rec->y - height; if (a_ofs.y == 1 || b_ofs.y == 1) { block->y -= 1; br->y += 1; } } if (rec->x + block_width >= width) { br->x = 0; block->x -= block_width + rec->x - width; if (a_ofs.x == 1 || b_ofs.x == 1) { block->x -= 1; br->x += 1; } } rec->y = (rec->y == 0 ? 0 : -1); rec->x = (rec->x == 0 ? 0 : -1); } void kvz_sao_reconstruct(const encoder_control_t * const encoder, videoframe_t * frame, const kvz_pixel *old_rec, unsigned x_ctb, unsigned y_ctb, const sao_info_t *sao, color_t color_i) { const int is_chroma = (color_i != COLOR_Y ? 1 : 0); const int pic_stride = frame->width >> is_chroma; const int lcu_stride = LCU_WIDTH >> is_chroma; const int buf_stride = lcu_stride + 2; kvz_pixel *recdata = frame->rec->data[color_i]; kvz_pixel buf_rec[(LCU_WIDTH + 2) * (LCU_WIDTH + 2)]; kvz_pixel new_rec[LCU_WIDTH * LCU_WIDTH]; // Calling CU_TO_PIXEL with depth 1 is the same as using block size of 32. kvz_pixel *lcu_rec = &recdata[CU_TO_PIXEL(x_ctb, y_ctb, is_chroma, frame->rec->stride>>is_chroma)]; const kvz_pixel *old_lcu_rec = &old_rec[CU_TO_PIXEL(x_ctb, y_ctb, is_chroma, pic_stride)]; vector2d_t ofs; vector2d_t tl = { 1, 1 }; vector2d_t br = { 1, 1 }; vector2d_t block; if (sao->type == SAO_TYPE_NONE) { return; } ofs.x = x_ctb * lcu_stride; ofs.y = y_ctb * lcu_stride; block.x = lcu_stride; block.y = lcu_stride; if (sao->type == SAO_TYPE_BAND) { tl.x = 0; tl.y = 0; br.x = 0; br.y = 0; sao_calc_band_block_dims(frame, color_i, &ofs, &block); } else { sao_calc_edge_block_dims(frame, color_i, sao, &ofs, &tl, &br, &block); } assert(ofs.x + tl.x + block.x + br.x <= frame->width); assert(ofs.y + tl.y + block.y + br.y <= frame->height); CHECKPOINT("ofs.x=%d ofs.y=%d tl.x=%d tl.y=%d block.x=%d block.y=%d br.x=%d br.y=%d", ofs.x, ofs.y, tl.x, tl.y, block.x, block.y, br.x, br.y); // Data to tmp buffer. kvz_pixels_blit(&old_lcu_rec[ofs.y * pic_stride + ofs.x], buf_rec, tl.x + block.x + br.x, tl.y + block.y + br.y, pic_stride, buf_stride); sao_reconstruct_color(encoder, &buf_rec[tl.y * buf_stride + tl.x], &new_rec[(ofs.y + tl.y) * lcu_stride + ofs.x + tl.x], sao, buf_stride, lcu_stride, block.x, block.y, color_i); // Copy reconstructed block from tmp buffer to rec image. kvz_pixels_blit(&new_rec[(tl.y + ofs.y) * lcu_stride + (tl.x + ofs.x)], &lcu_rec[(tl.y + ofs.y) * (frame->rec->stride >> is_chroma) + (tl.x + ofs.x)], block.x, block.y, lcu_stride, frame->rec->stride >> is_chroma); } static void sao_search_edge_sao(const encoder_state_t * const state, const kvz_pixel * data[], const kvz_pixel * recdata[], int block_width, int block_height, unsigned buf_cnt, sao_info_t *sao_out, sao_info_t *sao_top, sao_info_t *sao_left) { sao_eo_class edge_class; // This array is used to calculate the mean offset used to minimize distortion. int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES]; unsigned i = 0; sao_out->type = SAO_TYPE_EDGE; sao_out->ddistortion = INT_MAX; for (edge_class = SAO_EO0; edge_class <= SAO_EO3; ++edge_class) { int edge_offset[NUM_SAO_EDGE_CATEGORIES*2]; int sum_ddistortion = 0; sao_eo_cat edge_cat; // Call calc_sao_edge_dir once for luma and twice for chroma. for (i = 0; i < buf_cnt; ++i) { FILL(cat_sum_cnt, 0); calc_sao_edge_dir(data[i], recdata[i], edge_class, block_width, block_height, cat_sum_cnt); for (edge_cat = SAO_EO_CAT1; edge_cat <= SAO_EO_CAT4; ++edge_cat) { int cat_sum = cat_sum_cnt[0][edge_cat]; int cat_cnt = cat_sum_cnt[1][edge_cat]; // The optimum offset can be calculated by getting the minima of the // fast ddistortion estimation formula. The minima is the mean error // and we round that to the nearest integer. int offset = 0; if (cat_cnt != 0) { offset = (cat_sum + (cat_cnt >> 1)) / cat_cnt; offset = CLIP(-SAO_ABS_OFFSET_MAX, SAO_ABS_OFFSET_MAX, offset); } // Sharpening edge offsets can't be encoded, so set them to 0 here. if (edge_cat >= SAO_EO_CAT1 && edge_cat <= SAO_EO_CAT2 && offset < 0) { offset = 0; } if (edge_cat >= SAO_EO_CAT3 && edge_cat <= SAO_EO_CAT4 && offset > 0) { offset = 0; } edge_offset[edge_cat+5*i] = offset; // The ddistortion is amount by which the SSE of data changes. It should // be negative for all categories, if offset was chosen correctly. // ddistortion = N * h^2 - 2 * h * E, where N is the number of samples // and E is the sum of errors. // It basically says that all pixels that are not improved by offset // increase increase SSE by h^2 and all pixels that are improved by // offset decrease SSE by h*E. sum_ddistortion += cat_cnt * offset * offset - 2 * offset * cat_sum; } } { float mode_bits = sao_mode_bits_edge(state, edge_class, edge_offset, sao_top, sao_left, buf_cnt); sum_ddistortion += (int)((double)mode_bits*state->global->cur_lambda_cost+0.5); } // SAO is not applied for category 0. edge_offset[SAO_EO_CAT0] = 0; edge_offset[SAO_EO_CAT0 + 5] = 0; // Choose the offset class that offers the least error after offset. if (sum_ddistortion < sao_out->ddistortion) { sao_out->eo_class = edge_class; sao_out->ddistortion = sum_ddistortion; memcpy(sao_out->offsets, edge_offset, sizeof(int) * NUM_SAO_EDGE_CATEGORIES * 2); } } } static void sao_search_band_sao(const encoder_state_t * const state, const kvz_pixel * data[], const kvz_pixel * recdata[], int block_width, int block_height, unsigned buf_cnt, sao_info_t *sao_out, sao_info_t *sao_top, sao_info_t *sao_left) { unsigned i; sao_out->type = SAO_TYPE_BAND; sao_out->ddistortion = MAX_INT; // Band offset { int sao_bands[2][32]; int temp_offsets[10]; int ddistortion = 0; float temp_rate = 0.0; for (i = 0; i < buf_cnt; ++i) { FILL(sao_bands, 0); calc_sao_bands(state, data[i], recdata[i],block_width, block_height,sao_bands); ddistortion += calc_sao_band_offsets(sao_bands, &temp_offsets[1+5*i], &sao_out->band_position[i]); } temp_rate = sao_mode_bits_band(state, sao_out->band_position, temp_offsets, sao_top, sao_left, buf_cnt); ddistortion += (int)((double)temp_rate*state->global->cur_lambda_cost + 0.5); // Select band sao over edge sao when distortion is lower if (ddistortion < sao_out->ddistortion) { sao_out->type = SAO_TYPE_BAND; sao_out->ddistortion = ddistortion; memcpy(&sao_out->offsets[0], &temp_offsets[0], sizeof(int) * buf_cnt * 5); } } } /** * \param data Array of pointers to reference pixels. * \param recdata Array of pointers to reconstructed pixels. * \param block_width Width of the area to be examined. * \param block_height Height of the area to be examined. * \param buf_cnt Number of pointers data and recdata have. * \param sao_out Output parameter for the best sao parameters. */ static void sao_search_best_mode(const encoder_state_t * const state, const kvz_pixel * data[], const kvz_pixel * recdata[], int block_width, int block_height, unsigned buf_cnt, sao_info_t *sao_out, sao_info_t *sao_top, sao_info_t *sao_left, int32_t merge_cost[3]) { sao_info_t edge_sao; sao_info_t band_sao; kvz_init_sao_info(&edge_sao); kvz_init_sao_info(&band_sao); //Avoid "random" uninitialized value edge_sao.band_position[0] = edge_sao.band_position[1] = 0; edge_sao.eo_class = SAO_EO0; band_sao.offsets[0] = 0; band_sao.offsets[5] = 0; band_sao.eo_class = SAO_EO0; sao_search_edge_sao(state, data, recdata, block_width, block_height, buf_cnt, &edge_sao, sao_top, sao_left); sao_search_band_sao(state, data, recdata, block_width, block_height, buf_cnt, &band_sao, sao_top, sao_left); { float mode_bits = sao_mode_bits_edge(state, edge_sao.eo_class, edge_sao.offsets, sao_top, sao_left, buf_cnt); int ddistortion = (int)(mode_bits * state->global->cur_lambda_cost + 0.5); unsigned buf_i; for (buf_i = 0; buf_i < buf_cnt; ++buf_i) { ddistortion += kvz_sao_edge_ddistortion(data[buf_i], recdata[buf_i], block_width, block_height, edge_sao.eo_class, &edge_sao.offsets[5 * buf_i]); } edge_sao.ddistortion = ddistortion; } { float mode_bits = sao_mode_bits_band(state, band_sao.band_position, band_sao.offsets, sao_top, sao_left, buf_cnt); int ddistortion = (int)(mode_bits * state->global->cur_lambda_cost + 0.5); unsigned buf_i; for (buf_i = 0; buf_i < buf_cnt; ++buf_i) { ddistortion += kvz_sao_band_ddistortion(state, data[buf_i], recdata[buf_i], block_width, block_height, band_sao.band_position[buf_i], &band_sao.offsets[1 + 5 * buf_i]); } band_sao.ddistortion = ddistortion; } if (edge_sao.ddistortion <= band_sao.ddistortion) { *sao_out = edge_sao; merge_cost[0] = edge_sao.ddistortion; } else { *sao_out = band_sao; merge_cost[0] = band_sao.ddistortion; } // Choose between SAO and doing nothing, taking into account the // rate-distortion cost of coding do nothing. { int cost_of_nothing = (int)(sao_mode_bits_none(state, sao_top, sao_left) * state->global->cur_lambda_cost + 0.5); if (sao_out->ddistortion >= cost_of_nothing) { sao_out->type = SAO_TYPE_NONE; merge_cost[0] = cost_of_nothing; } } // Calculate merge costs if (sao_top || sao_left) { sao_info_t* merge_sao[2] = { sao_left, sao_top}; int i; for (i = 0; i < 2; i++) { sao_info_t* merge_cand = merge_sao[i]; if (merge_cand) { unsigned buf_i; float mode_bits = sao_mode_bits_merge(state, i + 1); int ddistortion = (int)(mode_bits * state->global->cur_lambda_cost + 0.5); switch (merge_cand->type) { case SAO_TYPE_EDGE: for (buf_i = 0; buf_i < buf_cnt; ++buf_i) { ddistortion += kvz_sao_edge_ddistortion(data[buf_i], recdata[buf_i], block_width, block_height, merge_cand->eo_class, &merge_cand->offsets[5 * buf_i]); } merge_cost[i + 1] = ddistortion; break; case SAO_TYPE_BAND: for (buf_i = 0; buf_i < buf_cnt; ++buf_i) { ddistortion += kvz_sao_band_ddistortion(state, data[buf_i], recdata[buf_i], block_width, block_height, merge_cand->band_position[buf_i], &merge_cand->offsets[1 + 5 * buf_i]); } merge_cost[i + 1] = ddistortion; break; case SAO_TYPE_NONE: merge_cost[i + 1] = ddistortion; break; } } } } return; } void kvz_sao_search_chroma(const encoder_state_t * const state, const videoframe_t *frame, unsigned x_ctb, unsigned y_ctb, sao_info_t *sao, sao_info_t *sao_top, sao_info_t *sao_left, int32_t merge_cost[3]) { int block_width = (LCU_WIDTH / 2); int block_height = (LCU_WIDTH / 2); const kvz_pixel *orig_list[2]; const kvz_pixel *rec_list[2]; kvz_pixel orig[2][LCU_CHROMA_SIZE]; kvz_pixel rec[2][LCU_CHROMA_SIZE]; color_t color_i; // Check for right and bottom boundaries. if (x_ctb * (LCU_WIDTH / 2) + (LCU_WIDTH / 2) >= (unsigned)frame->width / 2) { block_width = (frame->width - x_ctb * LCU_WIDTH) / 2; } if (y_ctb * (LCU_WIDTH / 2) + (LCU_WIDTH / 2) >= (unsigned)frame->height / 2) { block_height = (frame->height - y_ctb * LCU_WIDTH) / 2; } sao->type = SAO_TYPE_EDGE; // Copy data to temporary buffers and init orig and rec lists to point to those buffers. for (color_i = COLOR_U; color_i <= COLOR_V; ++color_i) { kvz_pixel *data = &frame->source->data[color_i][CU_TO_PIXEL(x_ctb, y_ctb, 1, frame->source->stride / 2)]; kvz_pixel *recdata = &frame->rec->data[color_i][CU_TO_PIXEL(x_ctb, y_ctb, 1, frame->rec->stride / 2)]; kvz_pixels_blit(data, orig[color_i - 1], block_width, block_height, frame->source->stride / 2, block_width); kvz_pixels_blit(recdata, rec[color_i - 1], block_width, block_height, frame->rec->stride / 2, block_width); orig_list[color_i - 1] = &orig[color_i - 1][0]; rec_list[color_i - 1] = &rec[color_i - 1][0]; } // Calculate sao_search_best_mode(state, orig_list, rec_list, block_width, block_height, 2, sao, sao_top, sao_left, merge_cost); } void kvz_sao_search_luma(const encoder_state_t * const state, const videoframe_t *frame, unsigned x_ctb, unsigned y_ctb, sao_info_t *sao, sao_info_t *sao_top, sao_info_t *sao_left, int32_t merge_cost[3]) { kvz_pixel orig[LCU_LUMA_SIZE]; kvz_pixel rec[LCU_LUMA_SIZE]; const kvz_pixel * orig_list[1] = { NULL }; const kvz_pixel * rec_list[1] = { NULL }; kvz_pixel *data = &frame->source->y[CU_TO_PIXEL(x_ctb, y_ctb, 0, frame->source->stride)]; kvz_pixel *recdata = &frame->rec->y[CU_TO_PIXEL(x_ctb, y_ctb, 0, frame->rec->stride)]; int block_width = LCU_WIDTH; int block_height = LCU_WIDTH; // Check for right and bottom boundaries. if (x_ctb * LCU_WIDTH + LCU_WIDTH >= (unsigned)frame->width) { block_width = frame->width - x_ctb * LCU_WIDTH; } if (y_ctb * LCU_WIDTH + LCU_WIDTH >= (unsigned)frame->height) { block_height = frame->height - y_ctb * LCU_WIDTH; } sao->type = SAO_TYPE_EDGE; // Fill temporary buffers with picture data. kvz_pixels_blit(data, orig, block_width, block_height, frame->source->stride, block_width); kvz_pixels_blit(recdata, rec, block_width, block_height, frame->rec->stride, block_width); orig_list[0] = orig; rec_list[0] = rec; sao_search_best_mode(state, orig_list, rec_list, block_width, block_height, 1, sao, sao_top, sao_left, merge_cost); } void kvz_sao_reconstruct_frame(encoder_state_t * const state) { vector2d_t lcu; videoframe_t * const frame = state->tile->frame; // These are needed because SAO needs the pre-SAO pixels form left and // top LCUs. Single pixel wide buffers, like what kvz_search_lcu takes, would // be enough though. kvz_pixel *new_y_data = MALLOC(kvz_pixel, frame->rec->width * frame->rec->height); kvz_pixel *new_u_data = MALLOC(kvz_pixel, (frame->rec->width * frame->rec->height) >> 2); kvz_pixel *new_v_data = MALLOC(kvz_pixel, (frame->rec->width * frame->rec->height) >> 2); kvz_pixels_blit(frame->rec->y, new_y_data, frame->rec->width, frame->rec->height, frame->rec->stride, frame->rec->width); kvz_pixels_blit(frame->rec->u, new_u_data, frame->rec->width/2, frame->rec->height/2, frame->rec->stride/2, frame->rec->width/2); kvz_pixels_blit(frame->rec->v, new_v_data, frame->rec->width/2, frame->rec->height/2, frame->rec->stride/2, frame->rec->width/2); for (lcu.y = 0; lcu.y < frame->height_in_lcu; lcu.y++) { for (lcu.x = 0; lcu.x < frame->width_in_lcu; lcu.x++) { unsigned stride = frame->width_in_lcu; sao_info_t *sao_luma = &frame->sao_luma[lcu.y * stride + lcu.x]; sao_info_t *sao_chroma = &frame->sao_chroma[lcu.y * stride + lcu.x]; // sao_do_rdo(encoder, lcu.x, lcu.y, sao_luma, sao_chroma); kvz_sao_reconstruct(state->encoder_control, frame, new_y_data, lcu.x, lcu.y, sao_luma, COLOR_Y); kvz_sao_reconstruct(state->encoder_control, frame, new_u_data, lcu.x, lcu.y, sao_chroma, COLOR_U); kvz_sao_reconstruct(state->encoder_control, frame, new_v_data, lcu.x, lcu.y, sao_chroma, COLOR_V); } } free(new_y_data); free(new_u_data); free(new_v_data); }