/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2014 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Kvazaar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*
*/
#include "cabac.h"
#include
#include
#include
#include
const uint8_t g_auc_next_state_mps[128] =
{
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 124, 125, 126, 127
};
const uint8_t g_auc_next_state_lps[128] =
{
1, 0, 0, 1, 2, 3, 4, 5, 4, 5, 8, 9, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 18, 19, 22, 23, 22, 23, 24, 25,
26, 27, 26, 27, 30, 31, 30, 31, 32, 33, 32, 33, 36, 37, 36, 37,
38, 39, 38, 39, 42, 43, 42, 43, 44, 45, 44, 45, 46, 47, 48, 49,
48, 49, 50, 51, 52, 53, 52, 53, 54, 55, 54, 55, 56, 57, 58, 59,
58, 59, 60, 61, 60, 61, 60, 61, 62, 63, 64, 65, 64, 65, 66, 67,
66, 67, 66, 67, 68, 69, 68, 69, 70, 71, 70, 71, 70, 71, 72, 73,
72, 73, 72, 73, 74, 75, 74, 75, 74, 75, 76, 77, 76, 77, 126, 127
};
const uint8_t g_auc_lpst_table[64][4] =
{
{128, 176, 208, 240}, {128, 167, 197, 227}, {128, 158, 187, 216}, {123, 150, 178, 205}, {116, 142, 169, 195},
{111, 135, 160, 185}, {105, 128, 152, 175}, {100, 122, 144, 166}, { 95, 116, 137, 158}, { 90, 110, 130, 150},
{ 85, 104, 123, 142}, { 81, 99, 117, 135}, { 77, 94, 111, 128}, { 73, 89, 105, 122}, { 69, 85, 100, 116},
{ 66, 80, 95, 110}, { 62, 76, 90, 104}, { 59, 72, 86, 99}, { 56, 69, 81, 94}, { 53, 65, 77, 89},
{ 51, 62, 73, 85}, { 48, 59, 69, 80}, { 46, 56, 66, 76}, { 43, 53, 63, 72}, { 41, 50, 59, 69},
{ 39, 48, 56, 65}, { 37, 45, 54, 62}, { 35, 43, 51, 59}, { 33, 41, 48, 56}, { 32, 39, 46, 53},
{ 30, 37, 43, 50}, { 29, 35, 41, 48}, { 27, 33, 39, 45}, { 26, 31, 37, 43}, { 24, 30, 35, 41},
{ 23, 28, 33, 39}, { 22, 27, 32, 37}, { 21, 26, 30, 35}, { 20, 24, 29, 33}, { 19, 23, 27, 31},
{ 18, 22, 26, 30}, { 17, 21, 25, 28}, { 16, 20, 23, 27}, { 15, 19, 22, 25}, { 14, 18, 21, 24},
{ 14, 17, 20, 23}, { 13, 16, 19, 22}, { 12, 15, 18, 21}, { 12, 14, 17, 20}, { 11, 14, 16, 19},
{ 11, 13, 15, 18}, { 10, 12, 15, 17}, { 10, 12, 14, 16}, { 9, 11, 13, 15}, { 9, 11, 12, 14},
{ 8, 10, 12, 14}, { 8, 9, 11, 13}, { 7, 9, 11, 12}, { 7, 9, 10, 12}, { 7, 8, 10, 11},
{ 6, 8, 9, 11}, { 6, 7, 9, 10}, { 6, 7, 8, 9}, { 2, 2, 2, 2}
};
const uint8_t g_auc_renorm_table[32] =
{
6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
/**
* \brief Initialize struct cabac_data.
*/
void cabac_start(cabac_data *data)
{
data->low = 0;
data->range = 510;
data->bits_left = 23;
data->num_buffered_bytes = 0;
data->buffered_byte = 0xff;
data->only_count = 0; // By default, write bits out
}
/**
* \brief
*/
void cabac_encode_bin(cabac_data *data, uint32_t bin_value)
{
uint32_t lps;
lps = g_auc_lpst_table[CTX_STATE(data->ctx)][(data->range >> 6) & 3];
data->range -= lps;
// Not the Most Probable Symbol?
if (bin_value != (uint32_t)CTX_MPS(data->ctx)) {
int num_bits = g_auc_renorm_table[lps >> 3];
data->low = (data->low + data->range) << num_bits;
data->range = lps << num_bits;
CTX_UPDATE_LPS(data->ctx);
data->bits_left -= num_bits;
} else {
CTX_UPDATE_MPS(data->ctx);
if (data->range >= 256) return;
data->low <<= 1;
data->range <<= 1;
data->bits_left--;
}
if (data->bits_left < 12) {
cabac_write(data);
}
}
/**
* \brief
*/
void cabac_write(cabac_data *data)
{
uint32_t lead_byte = data->low >> (24 - data->bits_left);
data->bits_left += 8;
data->low &= 0xffffffffu >> data->bits_left;
// Binary counter mode
if(data->only_count) {
data->num_buffered_bytes++;
return;
}
if (lead_byte == 0xff) {
data->num_buffered_bytes++;
} else {
if (data->num_buffered_bytes > 0) {
uint32_t carry = lead_byte >> 8;
uint32_t byte = data->buffered_byte + carry;
data->buffered_byte = lead_byte & 0xff;
bitstream_put(data->stream, byte, 8);
byte = (0xff + carry) & 0xff;
while (data->num_buffered_bytes > 1) {
bitstream_put(data->stream, byte, 8);
data->num_buffered_bytes--;
}
} else {
data->num_buffered_bytes = 1;
data->buffered_byte = lead_byte;
}
}
}
/**
* \brief
*/
void cabac_finish(cabac_data *data)
{
assert(data->bits_left <= 32);
if (data->low >> (32 - data->bits_left)) {
bitstream_put(data->stream,data->buffered_byte + 1, 8);
while (data->num_buffered_bytes > 1) {
bitstream_put(data->stream, 0, 8);
data->num_buffered_bytes--;
}
data->low -= 1 << (32 - data->bits_left);
} else {
if (data->num_buffered_bytes > 0) {
bitstream_put(data->stream,data->buffered_byte, 8);
}
while (data->num_buffered_bytes > 1) {
bitstream_put(data->stream, 0xff, 8);
data->num_buffered_bytes--;
}
}
{
uint8_t bits = (uint8_t)(24 - data->bits_left);
bitstream_put(data->stream, data->low >> 8, bits);
}
}
/*!
\brief Encode terminating bin
\param binValue bin value
*/
void cabac_encode_bin_trm(cabac_data *data, uint8_t bin_value)
{
data->range -= 2;
if(bin_value) {
data->low += data->range;
data->low <<= 7;
data->range = 2 << 7;
data->bits_left -= 7;
} else if (data->range >= 256) {
return;
} else {
data->low <<= 1;
data->range <<= 1;
data->bits_left--;
}
if (data->bits_left < 12) {
cabac_write(data);
}
}
/**
* \brief
*/
void cabac_flush(cabac_data *data)
{
cabac_finish(data);
bitstream_put(data->stream, 1, 1);
bitstream_align_zero(data->stream);
cabac_start(data);
}
/**
* \brief
*/
void cabac_encode_bin_ep(cabac_data *data, uint32_t bin_value)
{
data->low <<= 1;
if (bin_value) {
data->low += data->range;
}
data->bits_left--;
if (data->bits_left < 12) {
cabac_write(data);
}
}
/**
* \brief
*/
void cabac_encode_bins_ep(cabac_data *data, uint32_t bin_values, int num_bins)
{
uint32_t pattern;
while (num_bins > 8) {
num_bins -= 8;
pattern = bin_values >> num_bins;
data->low <<= 8;
data->low += data->range * pattern;
bin_values -= pattern << num_bins;
data->bits_left -= 8;
if(data->bits_left < 12) {
cabac_write(data);
}
}
data->low <<= num_bins;
data->low += data->range * bin_values;
data->bits_left -= num_bins;
if (data->bits_left < 12) {
cabac_write(data);
}
}
/**
* \brief Coding of coeff_abs_level_minus3.
* \param symbol Value of coeff_abs_level_minus3.
* \param r_param Reference to Rice parameter.
*/
void cabac_write_coeff_remain(cabac_data *cabac, uint32_t symbol, uint32_t r_param)
{
int32_t code_number = symbol;
uint32_t length;
if (code_number < (3 << r_param)) {
length = code_number >> r_param;
cabac_encode_bins_ep(cabac, (1 << (length + 1)) - 2 , length + 1);
cabac_encode_bins_ep(cabac, (code_number % (1 << r_param)), r_param);
} else {
length = r_param;
code_number = code_number - (3 << r_param);
while (code_number >= (1 << length)) {
code_number -= 1 << length;
++length;
}
cabac_encode_bins_ep(cabac, (1 << (3 + length + 1 - r_param)) - 2, 3 + length + 1 - r_param);
cabac_encode_bins_ep(cabac, code_number, length);
}
}
/**
* \brief
*/
void cabac_write_unary_max_symbol(cabac_data *data, cabac_ctx *ctx, uint32_t symbol, int32_t offset, uint32_t max_symbol)
{
int8_t code_last = max_symbol > symbol;
assert(symbol <= max_symbol);
if (!max_symbol) return;
data->ctx = &ctx[0];
CABAC_BIN(data, symbol ? 1 : 0, "ums");
if (!symbol) return;
while (--symbol) {
data->ctx = &ctx[offset];
CABAC_BIN(data, 1, "ums");
}
if (code_last) {
data->ctx = &ctx[offset];
CABAC_BIN(data, 0, "ums");
}
}
/**
* This can be used for Truncated Rice binarization with cRiceParam=0.
*/
void cabac_write_unary_max_symbol_ep(cabac_data *data, unsigned symbol, unsigned max_symbol)
{
/*if (symbol == 0) {
CABAC_BIN_EP(data, 0, "ums_ep");
} else {
// Make a bit-string of (symbol) times 1 and a single 0, except when
// symbol == max_symbol.
unsigned bins = ((1 << symbol) - 1) << (symbol < max_symbol);
CABAC_BINS_EP(data, bins, symbol + (symbol < max_symbol), "ums_ep");
}*/
int8_t code_last = max_symbol > symbol;
assert(symbol <= max_symbol);
CABAC_BIN_EP(data, symbol ? 1 : 0, "ums_ep");
if (!symbol) return;
while (--symbol) {
CABAC_BIN_EP(data, 1, "ums_ep");
}
if (code_last) {
CABAC_BIN_EP(data, 0, "ums_ep");
}
}
/**
* \brief
*/
void cabac_write_ep_ex_golomb(cabac_data *data, uint32_t symbol, uint32_t count)
{
uint32_t bins = 0;
int32_t num_bins = 0;
while (symbol >= (uint32_t)(1 << count)) {
bins = 2 * bins + 1;
++num_bins;
symbol -= 1 << count;
++count;
}
bins = 2 * bins;
++num_bins;
bins = (bins << count) | symbol;
num_bins += count;
cabac_encode_bins_ep(data, bins, num_bins);
}