/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*
*/
#ifdef _WIN32
/* The following two defines must be located before the inclusion of any system header files. */
#define WINVER 0x0500
#define _WIN32_WINNT 0x0500
#include /* _setmode() */
#include /* _O_BINARY */
#endif
#include
#include
#include
#include
#include "checkpoint.h"
#include "global.h"
#include "config.h"
#include "threads.h"
#include "encoder.h"
#include "cabac.h"
#include "image.h"
#include "transform.h"
#include "scalinglist.h"
#include "strategyselector.h"
#include "cli.h"
#include "kvazaar.h"
/**
* \brief Program main function.
* \param argc Argument count from commandline
* \param argv Argument list
* \return Program exit state
*/
int main(int argc, char *argv[])
{
config_t *cfg = NULL; //!< Global configuration
FILE *input = NULL; //!< input file (YUV)
FILE *output = NULL; //!< output file (HEVC NAL stream)
uint64_t curpos = 0;
FILE *recout = NULL; //!< reconstructed YUV output, --debug
clock_t start_time = clock();
clock_t encoding_start_cpu_time;
CLOCK_T encoding_start_real_time;
clock_t encoding_end_cpu_time;
CLOCK_T encoding_end_real_time;
// Stdin and stdout need to be binary for input and output to work.
// Stderr needs to be text mode to convert \n to \r\n in Windows.
#ifdef _WIN32
_setmode( _fileno( stdin ), _O_BINARY );
_setmode( _fileno( stdout ), _O_BINARY );
_setmode( _fileno( stderr ), _O_TEXT );
#endif
CHECKPOINTS_INIT();
// Handle configuration
cfg = config_alloc();
// If problem with configuration, print banner and shutdown
if (!cfg || !config_init(cfg) || !config_read(cfg,argc,argv)) {
print_version();
print_help();
goto exit_failure;
}
//Initialize strategies
if (!strategyselector_init(cfg->cpuid)) {
fprintf(stderr, "Failed to initialize strategies.\n");
goto exit_failure;
}
// Check if the input file name is a dash, this means stdin
if (!strcmp(cfg->input, "-")) {
input = stdin;
} else {
// Otherwise we try to open the input file
input = fopen(cfg->input, "rb");
}
// Check that input was opened correctly
if (input == NULL) {
fprintf(stderr, "Could not open input file, shutting down!\n");
goto exit_failure;
}
// Check if the output file name is a dash, this means stdout
if (!strcmp(cfg->output, "-")) {
output = stdout;
} else {
// Otherwise we try to open the output file
output = fopen(cfg->output, "wb");
}
// Check that output was opened correctly
if (output == NULL) {
fprintf(stderr, "Could not open output file, shutting down!\n");
goto exit_failure;
}
if (cfg->debug != NULL) {
recout = fopen(cfg->debug, "wb");
if (recout == NULL) {
fprintf(stderr, "Could not open reconstruction file (%s), shutting down!\n", cfg->debug);
goto exit_failure;
}
}
//Allocate and init exp golomb table
if (!init_exp_golomb(4096*8)) {
fprintf(stderr, "Failed to allocate the exp golomb code table, shutting down!\n");
goto exit_failure;
}
const kvz_api *api = kvz_api_get(8);
kvz_encoder* enc = api->encoder_open(cfg);
if (!enc) {
fprintf(stderr, "Failed to open encoder.");
goto exit_failure;
}
for (unsigned i = 0; i <= cfg->owf; ++i) {
enc->states[i].stream.file.output = output;
}
encoder_control_t *encoder = enc->control;
fprintf(stderr, "Input: %s, output: %s\n", cfg->input, cfg->output);
fprintf(stderr, " Video size: %dx%d (input=%dx%d)\n",
encoder->in.width, encoder->in.height,
encoder->in.real_width, encoder->in.real_height);
//Now, do the real stuff
{
int i;
int current_encoder_state = 0;
if (cfg->seek > 0) {
int frame_bytes = cfg->width * cfg->height * 3 / 2;
int error = 0;
if (!strcmp(cfg->input, "-")) {
// Input is stdin.
int i;
image_t *img_in = image_alloc(encoder->in.width, encoder->in.height, 0);
if (!img_in) {
fprintf(stderr, "Failed to allocate image.\n");
goto exit_failure;
}
for (i = 0; !error && i < cfg->seek; ++i) {
error = !read_one_frame(input, &enc->states[current_encoder_state], img_in);
}
image_free(img_in);
} else {
// input is a file. We hope. Proper detection is OS dependent.
error = fseek(input, cfg->seek * frame_bytes, SEEK_CUR);
}
if (error && !feof(input)) {
fprintf(stderr, "Failed to seek %d frames.\n", cfg->seek);
goto exit_failure;
}
}
GET_TIME(&encoding_start_real_time);
encoding_start_cpu_time = clock();
uint64_t bitstream_length = 0;
uint32_t frames_started = 0;
uint32_t frames_done = 0;
double psnr_sum[3] = { 0.0, 0.0, 0.0 };
// Start coding cycle while data on input and not on the last frame
encoder_state_t *state = &enc->states[current_encoder_state];
while (cfg->frames == 0 || frames_started < cfg->frames) {
image_t *img_out = NULL;
frames_started += 1;
image_t *img_in = image_alloc(state->tile->frame->width, state->tile->frame->height, 0);
if (!img_in) {
fprintf(stderr, "Failed to allocate image.\n");
goto exit_failure;
}
// Read one frame from the input
if (!read_one_frame(input, &enc->states[current_encoder_state], img_in)) {
if (!feof(input))
fprintf(stderr, "Failed to read a frame %d\n", enc->states[current_encoder_state].global->frame);
enc->states[current_encoder_state].stats_done = 1;
break;
}
encoder_next_frame(&enc->states[current_encoder_state], img_in);
CHECKPOINT_MARK("read source frame: %d", encoder_states[current_encoder_state].global->frame + cfg->seek);
// The actual coding happens here, after this function we have a coded frame
encode_one_frame(&enc->states[current_encoder_state]);
//Switch to the next encoder
current_encoder_state = (current_encoder_state + 1) % (encoder->owf + 1);
state = &enc->states[current_encoder_state];
if (frames_started >= enc->num_encoder_states && !state->stats_done) {
threadqueue_waitfor(encoder->threadqueue, state->tqj_bitstream_written);
img_out = image_make_subimage(state->tile->frame->rec, 0, 0, state->tile->frame->width, state->tile->frame->height);
}
// If all frame encoders are in use, wait for the next encoder to finish.
if (img_out != NULL) {
double frame_psnr[3] = { 0.0, 0.0, 0.0 };
encoder_compute_stats(state, recout, frame_psnr, &bitstream_length);
frames_done += 1;
psnr_sum[0] += frame_psnr[0];
psnr_sum[1] += frame_psnr[1];
psnr_sum[2] += frame_psnr[2];
print_frame_info(state, frame_psnr);
}
image_free(img_in);
image_free(img_out);
}
//Compute stats for the remaining encoders
{
int first_enc = current_encoder_state;
do {
double frame_psnr[3] = { 0.0, 0.0, 0.0 };
encoder_state_t *state = &enc->states[current_encoder_state];
if (!state->stats_done) {
encoder_compute_stats(state, recout, frame_psnr, &bitstream_length);
print_frame_info(state, frame_psnr);
frames_done += 1;
psnr_sum[0] += frame_psnr[0];
psnr_sum[1] += frame_psnr[1];
psnr_sum[2] += frame_psnr[2];
}
current_encoder_state = (current_encoder_state + 1) % (encoder->owf + 1);
} while (current_encoder_state != first_enc);
}
GET_TIME(&encoding_end_real_time);
encoding_end_cpu_time = clock();
threadqueue_flush(encoder->threadqueue);
// Coding finished
fgetpos(output,(fpos_t*)&curpos);
// Print statistics of the coding
fprintf(stderr, " Processed %d frames, %10llu bits AVG PSNR: %2.4f %2.4f %2.4f\n",
frames_done, (long long unsigned int)bitstream_length * 8,
psnr_sum[0] / frames_done, psnr_sum[1] / frames_done, psnr_sum[2] / frames_done);
fprintf(stderr, " Total CPU time: %.3f s.\n", ((float)(clock() - start_time)) / CLOCKS_PER_SEC);
{
double encoding_time = ( (double)(encoding_end_cpu_time - encoding_start_cpu_time) ) / (double) CLOCKS_PER_SEC;
double wall_time = CLOCK_T_AS_DOUBLE(encoding_end_real_time) - CLOCK_T_AS_DOUBLE(encoding_start_real_time);
fprintf(stderr, " Encoding time: %.3f s.\n", encoding_time);
fprintf(stderr, " Encoding wall time: %.3f s.\n", wall_time);
fprintf(stderr, " Encoding CPU usage: %.2f%%\n", encoding_time/wall_time*100.f);
fprintf(stderr, " FPS: %.2f\n", ((double)frames_done)/wall_time);
}
fclose(input);
fclose(output);
if(recout != NULL) fclose(recout);
for (i = 0; i <= encoder->owf; ++i) {
encoder_state_finalize(&enc->states[i]);
}
api->encoder_close(enc);
}
// Deallocating
config_destroy(cfg);
free_exp_golomb();
strategyselector_free();
CHECKPOINTS_FINALIZE();
return EXIT_SUCCESS;
exit_failure:
if (cfg) config_destroy(cfg);
if (input) fclose(input);
if (output) fclose(output);
if (recout) fclose(recout);
strategyselector_free();
CHECKPOINTS_FINALIZE();
return EXIT_FAILURE;
}