/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2014 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Kvazaar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "bitstream.h" #include #include #include #include #include #include //for hton #ifdef _WIN32 #include #else #include #endif const uint32_t bit_set_mask[] = { 0x00000001,0x00000002,0x00000004,0x00000008, 0x00000010,0x00000020,0x00000040,0x00000080, 0x00000100,0x00000200,0x00000400,0x00000800, 0x00001000,0x00002000,0x00004000,0x00008000, 0x00010000,0x00020000,0x00040000,0x00080000, 0x00100000,0x00200000,0x00400000,0x00800000, 0x01000000,0x02000000,0x04000000,0x08000000, 0x10000000,0x20000000,0x40000000,0x80000000 }; //#define VERBOSE #ifdef VERBOSE void printf_bitstream(char *msg, ...) { va_list fmtargs; char buffer[1024]; va_start(fmtargs,msg); vsnprintf(buffer,sizeof(buffer)-1,msg,fmtargs); va_end(fmtargs); printf("%s",buffer); } #endif const bit_table *g_exp_table; //From wikipedia //http://en.wikipedia.org/wiki/Binary_logarithm#Algorithm int floor_log2(unsigned int n) { int pos = 0; if (n >= 1<<16) { n >>= 16; pos += 16; } if (n >= 1<< 8) { n >>= 8; pos += 8; } if (n >= 1<< 4) { n >>= 4; pos += 4; } if (n >= 1<< 2) { n >>= 2; pos += 2; } if (n >= 1<< 1) { pos += 1; } return ((n == 0) ? (-1) : pos); } /** * \brief Initialize the Exp Golomb code table with desired number of values * \param len table length to init * \return 1 on success, 0 on failure * * Allocates g_exp_table with len*sizeof(bit_table) and fills it with exponential golomb codes */ int init_exp_golomb(uint32_t len) { uint32_t code_num; uint8_t M; uint32_t info; bit_table* exp_table; exp_table = (bit_table*)malloc(len*sizeof(bit_table)); if(!exp_table) return 0; for (code_num = 0; code_num < len; code_num++) { M = (uint8_t)floor_log2(code_num + 1); info = code_num + 1 - (uint32_t)pow(2, M); exp_table[code_num].len = M * 2 + 1; exp_table[code_num].value = (1<allocated_length = 0; stream_mem->output_data = NULL; stream_mem->output_length = 0; stream = (bitstream*) stream_mem; } else if (type == BITSTREAM_TYPE_FILE) { bitstream_file *stream_file = malloc(sizeof(bitstream_file)); if (!stream_file) { fprintf(stderr, "Failed to allocate the bitstream object!\n"); return NULL; } //FIXME: it would make sense to avoid constructing an incomplete object stream_file->output = NULL; stream = (bitstream*) stream_file; } else { fprintf(stderr, "Unknown type for bitstream!\n"); return NULL; } // Initialize buffer-related values stream->data = 0; stream->cur_bit = 0; stream->zerocount = 0; stream->type = type; // Return the created bitstream return stream; } /** * \brief Free a bitstream */ void free_bitstream(bitstream* stream) { if (stream->type == BITSTREAM_TYPE_MEMORY) { bitstream_mem *stream_mem = (bitstream_mem*) stream; FREE_POINTER(stream_mem->output_data); } else if (stream->type == BITSTREAM_TYPE_FILE) { bitstream_file *stream_file = (bitstream_file*) stream; //FIXME: if we fix create_bitstream, we would maybe have to do something here stream_file->output = NULL; } else { fprintf(stderr, "Unknown type for bitstream!\n"); return; } FREE_POINTER(stream); } /** * \brief Write a byte to bitstream * \param stream_abstract pointer bitstream to put the data * \param byte byte to write * \return 1 on success, 0 on failure */ int bitstream_writebyte(bitstream *stream_abstract, uint8_t byte) { if (stream_abstract->type == BITSTREAM_TYPE_FILE) { bitstream_file *stream = (bitstream_file*) stream_abstract; if (fwrite(&byte, 1, 1, stream->output) != 1) { fprintf(stderr, "Could not write byte to bitstream_file object."); return 0; } else { return 1; } } else if (stream_abstract->type == BITSTREAM_TYPE_MEMORY) { bitstream_mem *stream = (bitstream_mem*) stream_abstract; if (stream->allocated_length==stream->output_length) { //Need to reallocate uint32_t new_size = stream->allocated_length + BITSTREAM_MEMORY_CHUNK_SIZE; uint8_t* new_data = realloc(stream->output_data, new_size); if (!new_data) { fprintf(stderr, "Failed to allocate memory for bitstream_mem object"); return 0; } stream->output_data = new_data; stream->allocated_length = new_size; } //Write byte stream->output_data[stream->output_length++] = byte; return 1; } else { fprintf(stderr, "Unknown stream type %d.", stream_abstract->type); return 0; } } /** * \brief Put bits to bitstream * \param stream pointer bitstream to put the data * \param data input data * \param bits number of bits to write from data to stream */ void bitstream_put(bitstream *stream, uint32_t data, uint8_t bits) { const uint8_t emulation_prevention_three_byte = 0x03; while(bits--) { stream->data <<= 1; if (data & bit_set_mask[bits]) { stream->data |= 1; } stream->cur_bit++; // write byte to output if (stream->cur_bit==8) { if((stream->zerocount == 2) && (stream->data < 4)) { bitstream_writebyte(stream, emulation_prevention_three_byte); stream->zerocount = 0; } if(stream->data == 0) { stream->zerocount++; } else { stream->zerocount = 0; } bitstream_writebyte(stream, stream->data); stream->cur_bit = 0; } } } /** * \brief Align the bitstream with one-bit padding */ void bitstream_align(bitstream *stream) { bitstream_put(stream, 1, 1); if ((stream->cur_bit & 7) != 0) { bitstream_put(stream, 0, 8 - (stream->cur_bit & 7)); } } /** * \brief Align the bitstream with zero */ void bitstream_align_zero(bitstream *stream) { if ((stream->cur_bit & 7) != 0) { bitstream_put(stream, 0, 8 - (stream->cur_bit & 7)); } }