/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "inter.h" #include #include #include #include "encoder.h" #include "imagelist.h" #include "strategies/generic/picture-generic.h" #include "strategies/strategies-ipol.h" #include "videoframe.h" #include "strategies/strategies-picture.h" typedef struct { const cu_info_t *a[2]; const cu_info_t *b[3]; const cu_info_t *c3; const cu_info_t *h; } merge_candidates_t; static void inter_recon_frac_luma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, int32_t block_height, const int16_t mv_param[2], lcu_t *lcu) { int mv_frac_x = (mv_param[0] & 3); int mv_frac_y = (mv_param[1] & 3); #define FILTER_SIZE_Y 8 //Luma filter size // Fractional luma 1/4-pel kvz_extended_block src = {0, 0, 0, 0}; // Fractional luma kvz_get_extended_block(xpos, ypos, mv_param[0] >> 2, mv_param[1] >> 2, state->tile->offset_x, state->tile->offset_y, ref->y, ref->width, ref->height, FILTER_SIZE_Y, block_width, block_height, &src); kvz_sample_quarterpel_luma(state->encoder_control, src.orig_topleft, src.stride, block_width, block_height, lcu->rec.y + (ypos%LCU_WIDTH)*LCU_WIDTH + (xpos%LCU_WIDTH), LCU_WIDTH, mv_frac_x, mv_frac_y, mv_param); if (src.malloc_used) free(src.buffer); } static void inter_recon_14bit_frac_luma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, int32_t block_height, const int16_t mv_param[2], hi_prec_buf_t *hi_prec_out) { int mv_frac_x = (mv_param[0] & 3); int mv_frac_y = (mv_param[1] & 3); #define FILTER_SIZE_Y 8 //Luma filter size // Fractional luma 1/4-pel kvz_extended_block src = { 0, 0, 0, 0 }; // Fractional luma kvz_get_extended_block(xpos, ypos, mv_param[0] >> 2, mv_param[1] >> 2, state->tile->offset_x, state->tile->offset_y, ref->y, ref->width, ref->height, FILTER_SIZE_Y, block_width, block_height, &src); kvz_sample_14bit_quarterpel_luma(state->encoder_control, src.orig_topleft, src.stride, block_width, block_height, hi_prec_out->y + (ypos%LCU_WIDTH)*LCU_WIDTH + (xpos%LCU_WIDTH), LCU_WIDTH, mv_frac_x, mv_frac_y, mv_param); if (src.malloc_used) free(src.buffer); } static void inter_recon_frac_chroma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, int32_t block_height, const int16_t mv_param[2], lcu_t *lcu) { int mv_frac_x = (mv_param[0] & 7); int mv_frac_y = (mv_param[1] & 7); // Translate to chroma xpos >>= 1; ypos >>= 1; block_width >>= 1; block_height >>= 1; #define FILTER_SIZE_C 4 //Chroma filter size // Fractional chroma 1/8-pel kvz_extended_block src_u = { 0, 0, 0, 0 }; kvz_extended_block src_v = { 0, 0, 0, 0 }; //Fractional chroma U kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->offset_x >> 1, state->tile->offset_y >> 1, ref->u, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_u); kvz_sample_octpel_chroma(state->encoder_control, src_u.orig_topleft, src_u.stride, block_width, block_height, lcu->rec.u + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param); //Fractional chroma V kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->offset_x >> 1, state->tile->offset_y >> 1, ref->v, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_v); kvz_sample_octpel_chroma(state->encoder_control, src_v.orig_topleft, src_v.stride, block_width, block_height, lcu->rec.v + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param); if (src_u.malloc_used) free(src_u.buffer); if (src_v.malloc_used) free(src_v.buffer); } static void inter_recon_14bit_frac_chroma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, int32_t block_height, const int16_t mv_param[2], hi_prec_buf_t *hi_prec_out) { int mv_frac_x = (mv_param[0] & 7); int mv_frac_y = (mv_param[1] & 7); // Translate to chroma xpos >>= 1; ypos >>= 1; block_width >>= 1; block_height >>= 1; #define FILTER_SIZE_C 4 //Chroma filter size // Fractional chroma 1/8-pel kvz_extended_block src_u = { 0, 0, 0, 0 }; kvz_extended_block src_v = { 0, 0, 0, 0 }; //Fractional chroma U kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->offset_x >> 1, state->tile->offset_y >> 1, ref->u, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_u); kvz_sample_14bit_octpel_chroma(state->encoder_control, src_u.orig_topleft, src_u.stride, block_width, block_height, hi_prec_out->u + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param); //Fractional chroma V kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->offset_x >> 1, state->tile->offset_y >> 1, ref->v, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_v); kvz_sample_14bit_octpel_chroma(state->encoder_control, src_v.orig_topleft, src_v.stride, block_width, block_height, hi_prec_out->v + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param); if (src_u.malloc_used) free(src_u.buffer); if (src_v.malloc_used) free(src_v.buffer); } /** * \brief Copy from frame with extended border. * * \param ref_buf pointer to the start of ref buffer * \param ref_stride stride of ref buffer * \param ref_width width of frame * \param ref_height height of frame * \param rec_buf pointer to the start of pu in rec buffer * \param rec_stride stride of rec buffer * \param width width of copied block * \param height height of copied block * \param mv_in_frame coordinates of copied block in frame coordinates */ static void inter_cp_with_ext_border(const kvz_pixel *ref_buf, int ref_stride, int ref_width, int ref_height, kvz_pixel *rec_buf, int rec_stride, int width, int height, const vector2d_t *mv_in_frame) { for (int y = mv_in_frame->y; y < mv_in_frame->y + height; ++y) { for (int x = mv_in_frame->x; x < mv_in_frame->x + width; ++x) { vector2d_t in_frame = { CLIP(0, ref_width - 1, x), CLIP(0, ref_height - 1, y), }; vector2d_t in_pu = { x - mv_in_frame->x, y - mv_in_frame->y, }; int pu_index = in_pu.y * rec_stride + in_pu.x; int frame_index = in_frame.y * ref_stride + in_frame.x; rec_buf[pu_index] = ref_buf[frame_index]; } } } /** * \brief Reconstruct an inter PU using uniprediction. * * \param state encoder state * \param ref picture to copy the data from * \param xpos PU x position * \param ypos PU y position * \param width PU width * \param height PU height * \param mv_param motion vector * \param lcu destination lcu * \param hi_prec_out destination of high precision output, or NULL if not needed */ static void inter_recon_unipred(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t width, int32_t height, const int16_t mv_param[2], lcu_t *lcu, hi_prec_buf_t *hi_prec_out) { const vector2d_t pu_in_tile = { xpos, ypos }; const vector2d_t pu_in_lcu = { xpos % LCU_WIDTH, ypos % LCU_WIDTH }; const vector2d_t mv_in_pu = { mv_param[0] >> 2, mv_param[1] >> 2 }; const vector2d_t mv_in_frame = { mv_in_pu.x + pu_in_tile.x + state->tile->offset_x, mv_in_pu.y + pu_in_tile.y + state->tile->offset_y }; const bool mv_is_outside_frame = mv_in_frame.x < 0 || mv_in_frame.y < 0 || mv_in_frame.x + width > ref->width || mv_in_frame.y + height > ref->height; // With 420, odd coordinates need interpolation. const int8_t fractional_chroma = (mv_in_pu.x & 1) || (mv_in_pu.y & 1); const int8_t fractional_luma = ((mv_param[0] & 3) || (mv_param[1] & 3)); // Generate prediction for luma. if (fractional_luma) { // With a fractional MV, do interpolation. if (state->encoder_control->cfg.bipred && hi_prec_out) { inter_recon_14bit_frac_luma(state, ref, pu_in_tile.x, pu_in_tile.y, width, height, mv_param, hi_prec_out); } else { inter_recon_frac_luma(state, ref, pu_in_tile.x, pu_in_tile.y, width, height, mv_param, lcu); } } else { // With an integer MV, copy pixels directly from the reference. const int lcu_pu_index = pu_in_lcu.y * LCU_WIDTH + pu_in_lcu.x; if (mv_is_outside_frame) { inter_cp_with_ext_border(ref->y, ref->width, ref->width, ref->height, &lcu->rec.y[lcu_pu_index], LCU_WIDTH, width, height, &mv_in_frame); } else { const int frame_mv_index = mv_in_frame.y * ref->width + mv_in_frame.x; kvz_pixels_blit(&ref->y[frame_mv_index], &lcu->rec.y[lcu_pu_index], width, height, ref->width, LCU_WIDTH); } } if (state->encoder_control->chroma_format == KVZ_CSP_400) { return; } // Generate prediction for chroma. if (fractional_luma || fractional_chroma) { // With a fractional MV, do interpolation. if (state->encoder_control->cfg.bipred && hi_prec_out) { inter_recon_14bit_frac_chroma(state, ref, pu_in_tile.x, pu_in_tile.y, width, height, mv_param, hi_prec_out); } else { inter_recon_frac_chroma(state, ref, pu_in_tile.x, pu_in_tile.y, width, height, mv_param, lcu); } } else { // With an integer MV, copy pixels directly from the reference. const int lcu_pu_index_c = pu_in_lcu.y / 2 * LCU_WIDTH_C + pu_in_lcu.x / 2; const vector2d_t mv_in_frame_c = { mv_in_frame.x / 2, mv_in_frame.y / 2 }; if (mv_is_outside_frame) { inter_cp_with_ext_border(ref->u, ref->width / 2, ref->width / 2, ref->height / 2, &lcu->rec.u[lcu_pu_index_c], LCU_WIDTH_C, width / 2, height / 2, &mv_in_frame_c); inter_cp_with_ext_border(ref->v, ref->width / 2, ref->width / 2, ref->height / 2, &lcu->rec.v[lcu_pu_index_c], LCU_WIDTH_C, width / 2, height / 2, &mv_in_frame_c); } else { const int frame_mv_index = mv_in_frame_c.y * ref->width / 2 + mv_in_frame_c.x; kvz_pixels_blit(&ref->u[frame_mv_index], &lcu->rec.u[lcu_pu_index_c], width / 2, height / 2, ref->width / 2, LCU_WIDTH_C); kvz_pixels_blit(&ref->v[frame_mv_index], &lcu->rec.v[lcu_pu_index_c], width / 2, height / 2, ref->width / 2, LCU_WIDTH_C); } } } /** * \brief Reconstruct bi-pred inter PU * * \param state encoder state * \param ref1 reference picture to copy the data from * \param ref2 other reference picture to copy the data from * \param xpos PU x position * \param ypos PU y position * \param width PU width * \param height PU height * \param mv_param motion vectors * \param lcu destination lcu */ void kvz_inter_recon_bipred(const encoder_state_t * const state, const kvz_picture * ref1, const kvz_picture * ref2, int32_t xpos, int32_t ypos, int32_t width, int32_t height, int16_t mv_param[2][2], lcu_t* lcu) { kvz_pixel temp_lcu_y[LCU_WIDTH*LCU_WIDTH]; kvz_pixel temp_lcu_u[LCU_WIDTH_C*LCU_WIDTH_C]; kvz_pixel temp_lcu_v[LCU_WIDTH_C*LCU_WIDTH_C]; const int hi_prec_luma_rec0 = mv_param[0][0] & 3 || mv_param[0][1] & 3; const int hi_prec_luma_rec1 = mv_param[1][0] & 3 || mv_param[1][1] & 3; const int hi_prec_chroma_rec0 = mv_param[0][0] & 7 || mv_param[0][1] & 7; const int hi_prec_chroma_rec1 = mv_param[1][0] & 7 || mv_param[1][1] & 7; hi_prec_buf_t* high_precision_rec0 = 0; hi_prec_buf_t* high_precision_rec1 = 0; if (hi_prec_chroma_rec0) high_precision_rec0 = kvz_hi_prec_buf_t_alloc(LCU_WIDTH*LCU_WIDTH); if (hi_prec_chroma_rec1) high_precision_rec1 = kvz_hi_prec_buf_t_alloc(LCU_WIDTH*LCU_WIDTH); //Reconstruct both predictors inter_recon_unipred(state, ref1, xpos, ypos, width, height, mv_param[0], lcu, high_precision_rec0); if (!hi_prec_luma_rec0){ memcpy(temp_lcu_y, lcu->rec.y, sizeof(kvz_pixel) * 64 * 64); } if (!hi_prec_chroma_rec0){ memcpy(temp_lcu_u, lcu->rec.u, sizeof(kvz_pixel) * 32 * 32); memcpy(temp_lcu_v, lcu->rec.v, sizeof(kvz_pixel) * 32 * 32); } inter_recon_unipred(state, ref2, xpos, ypos, width, height, mv_param[1], lcu, high_precision_rec1); kvz_inter_recon_bipred_test(hi_prec_luma_rec0, hi_prec_luma_rec1, hi_prec_chroma_rec0, hi_prec_chroma_rec1, height, width, ypos, xpos, high_precision_rec0, high_precision_rec1, lcu); /* // After reconstruction, merge the predictors by taking an average of each pixel for (temp_y = 0; temp_y < height; ++temp_y) { int y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1)); for (temp_x = 0; temp_x < width; ++temp_x) { int x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1)); int16_t sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift); } } for (temp_y = 0; temp_y < height >> 1; ++temp_y) { int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1)); for (temp_x = 0; temp_x < width >> 1; ++temp_x) { int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1)); int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift); int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift); } } */ if (high_precision_rec0 != 0) kvz_hi_prec_buf_t_free(high_precision_rec0); if (high_precision_rec1 != 0) kvz_hi_prec_buf_t_free(high_precision_rec1); } /** * Reconstruct a single CU. * * The CU may consist of multiple PUs, each of which can use either * uniprediction or biprediction. * * \param state encoder state * \param lcu containing LCU * \param x x-coordinate of the CU in pixels * \param y y-coordinate of the CU in pixels * \param width CU width */ void kvz_inter_recon_cu(const encoder_state_t * const state, lcu_t *lcu, int32_t x, int32_t y, int32_t width) { cu_info_t *cu = LCU_GET_CU_AT_PX(lcu, SUB_SCU(x), SUB_SCU(y)); const int num_pu = kvz_part_mode_num_parts[cu->part_size]; for (int i = 0; i < num_pu; ++i) { const int pu_x = PU_GET_X(cu->part_size, width, x, i); const int pu_y = PU_GET_Y(cu->part_size, width, y, i); const int pu_w = PU_GET_W(cu->part_size, width, i); const int pu_h = PU_GET_H(cu->part_size, width, i); cu_info_t *pu = LCU_GET_CU_AT_PX(lcu, SUB_SCU(pu_x), SUB_SCU(pu_y)); if (pu->inter.mv_dir == 3) { const kvz_picture *const refs[2] = { state->frame->ref->images[ state->frame->ref_LX[0][ pu->inter.mv_ref[0]]], state->frame->ref->images[ state->frame->ref_LX[1][ pu->inter.mv_ref[1]]], }; kvz_inter_recon_bipred(state, refs[0], refs[1], pu_x, pu_y, pu_w, pu_h, pu->inter.mv, lcu); } else { const int mv_idx = pu->inter.mv_dir - 1; const kvz_picture *const ref = state->frame->ref->images[ state->frame->ref_LX[mv_idx][ pu->inter.mv_ref[mv_idx]]]; inter_recon_unipred(state, ref, pu_x, pu_y, pu_w, pu_h, pu->inter.mv[mv_idx], lcu, NULL); } } } /** * \brief Clear unused L0/L1 motion vectors and reference * \param cu coding unit to clear */ static void inter_clear_cu_unused(cu_info_t* cu) { for (unsigned i = 0; i < 2; ++i) { if (cu->inter.mv_dir & (1 << i)) continue; cu->inter.mv[i][0] = 0; cu->inter.mv[i][1] = 0; cu->inter.mv_ref[i] = 255; } } /** * \brief Check whether a0 mv cand block is coded before the current block. * \param x x-coordinate of the current block (in pixels) * \param y y-coordinate of the current block (in pixels) * \param width width of the current block (in pixels) * \param height height of the current block (in pixels) * \return True, if the a0 mv candidate block is coded before the * current block. Otherwise false. */ static bool is_a0_cand_coded(int x, int y, int width, int height) { int size = MIN(width & ~(width - 1), height & ~(height - 1)); if (height != size) { // For SMP and AMP blocks the situation is equivalent to a square block // at the lower left corner of the PU. y = y + height - size; } while (size < LCU_WIDTH) { const int parent_size = 2 * size; const int cu_index = (x % parent_size != 0) + 2 * (y % parent_size != 0); switch (cu_index) { case 0: // A0 is in the CU directly left of the parent CU so it has been // coded already. // +---+---+ // | X | | // |---+---+ // A0 | | | // +---+---+ return true; case 1: // A0 is in the CU that will be coded after the current CU. // +---+---+ // | | X | // |---+---+ // |A0 | | // +---+---+ return false; case 2: // +---+---+ // | | | // |---+---+ // | X | | // +---+---+ // A0 // Move to the parent block. y -= size; size = parent_size; break; case 3: // A0 is in the CU directly down of the parent CU so is has not // been coded yet. // +---+---+ // | | | // |---+---+ // | | X | // +---+---+ // A0 return false; } } // For 64x64 blocks A0 candidate is located outside the LCU. return false; } /** * \brief Check whether b0 mv cand block is coded before the current block. * \param x x-coordinate of the current block (in pixels) * \param y y-coordinate of the current block (in pixels) * \param width width of the current block (in pixels) * \param height height of the current block (in pixels) * \return True, if the b0 mv candidate block is coded before the * current block. Otherwise false. */ static bool is_b0_cand_coded(int x, int y, int width, int height) { int size = MIN(width & ~(width - 1), height & ~(height - 1)); if (width != size) { // For SMP and AMP blocks the situation is equivalent to a square block // at the upper right corner of the PU. x = x + width - size; } while (size < LCU_WIDTH) { const int parent_size = 2 * size; const int cu_index = (x % parent_size != 0) + 2 * (y % parent_size != 0); switch (cu_index) { case 0: // B0 is in the CU directly above the parent CU so it has been // coded already. // B0 // +---+---+ // | X | | // |---+---+ // | | | // +---+---+ return true; case 1: // B0 // +---+---+ // | | X | // |---+---+ // | | | // +---+---+ // Move to the parent block. x -= size; size = parent_size; break; case 2: // +---+---+ // | |B0 | // |---+---+ // | X | | // +---+---+ return true; case 3: // B0 is in the CU directly right of the parent CU so is has not // been coded yet. // +---+---+ // | | | B0 // |---+---+ // | | X | // +---+---+ return false; } } // The LCU to the right and up of the current LCU has been coded already. return true; } /** * \brief Get merge candidates for current block * * \param state encoder control state to use * \param x block x position in SCU * \param y block y position in SCU * \param width current block width * \param height current block height * \param ref_list which reference list, L0 is 1 and L1 is 2 * \param ref_idx index in the reference list * \param cand_out will be filled with C3 and H candidates */ static void get_temporal_merge_candidates(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, uint8_t ref_list, uint8_t ref_idx, merge_candidates_t *cand_out) { /* Predictor block locations _________ |CurrentPU| | |C0|__ | | |C3| | |_________|_ |H| */ cand_out->c3 = cand_out->h = NULL; // Find temporal reference if (state->frame->ref->used_size) { uint32_t colocated_ref; // Select L0/L1 ref_idx reference if (state->frame->ref_LX_size[ref_list-1] > ref_idx) { colocated_ref = state->frame->ref_LX[ref_list - 1][ref_idx]; } else { // not found return; } cu_array_t *ref_cu_array = state->frame->ref->cu_arrays[colocated_ref]; int cu_per_width = ref_cu_array->width / SCU_WIDTH; uint32_t xColBr = x + width; uint32_t yColBr = y + height; // H must be available if (xColBr < state->encoder_control->in.width && yColBr < state->encoder_control->in.height) { int32_t H_offset = -1; // Y inside the current CTU / LCU if (yColBr % LCU_WIDTH != 0) { H_offset = ((xColBr >> 4) << 4) / SCU_WIDTH + (((yColBr >> 4) << 4) / SCU_WIDTH) * cu_per_width; } if (H_offset >= 0) { // Only use when it's inter block if (ref_cu_array->data[H_offset].type == CU_INTER) { cand_out->h = &ref_cu_array->data[H_offset]; } } } uint32_t xColCtr = x + (width / 2); uint32_t yColCtr = y + (height / 2); // C3 must be inside the LCU, in the center position of current CU if (xColCtr < state->encoder_control->in.width && yColCtr < state->encoder_control->in.height) { uint32_t C3_offset = ((xColCtr >> 4) << 4) / SCU_WIDTH + ((((yColCtr >> 4) << 4) / SCU_WIDTH) * cu_per_width); if (ref_cu_array->data[C3_offset].type == CU_INTER) { cand_out->c3 = &ref_cu_array->data[C3_offset]; } } } } /** * \brief Get merge candidates for current block. * * The output parameters b0, b1, b2, a0, a1 are pointed to the * corresponding cu_info_t struct in lcu->cu, or set to NULL, if the * candidate is not available. * * \param x block x position in pixels * \param y block y position in pixels * \param width block width in pixels * \param height block height in pixels * \param picture_width tile width in pixels * \param picture_height tile height in pixels * \param lcu current LCU * \param cand_out will be filled with A and B candidates */ static void get_spatial_merge_candidates(int32_t x, int32_t y, int32_t width, int32_t height, int32_t picture_width, int32_t picture_height, lcu_t *lcu, merge_candidates_t *cand_out) { /* Predictor block locations ____ _______ |B2|______|B1|B0| | | | Cur CU | __| | |A1|_________| |A0| */ int32_t x_local = SUB_SCU(x); //!< coordinates from top-left of this LCU int32_t y_local = SUB_SCU(y); // A0 and A1 availability testing if (x != 0) { cu_info_t *a1 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local + height - 1); // Do not check a1->coded because the block above is always coded before // the current one and the flag is not set when searching an SMP block. if (a1->type == CU_INTER) { inter_clear_cu_unused(a1); cand_out->a[1] = a1; } if (y_local + height < LCU_WIDTH && y + height < picture_height) { cu_info_t *a0 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local + height); if (a0->type == CU_INTER && is_a0_cand_coded(x, y, width, height)) { inter_clear_cu_unused(a0); cand_out->a[0] = a0; } } } // B0, B1 and B2 availability testing if (y != 0) { cu_info_t *b0 = NULL; if (x + width < picture_width) { if (x_local + width < LCU_WIDTH) { b0 = LCU_GET_CU_AT_PX(lcu, x_local + width, y_local - 1); } else if (y_local == 0) { // Special case, top-right CU b0 = LCU_GET_TOP_RIGHT_CU(lcu); } } if (b0 && b0->type == CU_INTER && is_b0_cand_coded(x, y, width, height)) { inter_clear_cu_unused(b0); cand_out->b[0] = b0; } cu_info_t *b1 = LCU_GET_CU_AT_PX(lcu, x_local + width - 1, y_local - 1); // Do not check b1->coded because the block to the left is always coded // before the current one and the flag is not set when searching an SMP // block. if (b1->type == CU_INTER) { inter_clear_cu_unused(b1); cand_out->b[1] = b1; } if (x != 0) { cu_info_t *b2 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local - 1); // Do not check b2->coded because the block above and to the left is // always coded before the current one. if (b2->type == CU_INTER) { inter_clear_cu_unused(b2); cand_out->b[2] = b2; } } } } /** * \brief Get merge candidates for current block. * * The output parameters b0, b1, b2, a0, a1 are pointed to the * corresponding cu_info_t struct in lcu->cu, or set to NULL, if the * candidate is not available. * * \param cua cu information * \param x block x position in pixels * \param y block y position in pixels * \param width block width in pixels * \param height block height in pixels * \param picture_width tile width in pixels * \param picture_height tile height in pixels * \param cand_out will be filled with A and B candidates */ static void get_spatial_merge_candidates_cua(const cu_array_t *cua, int32_t x, int32_t y, int32_t width, int32_t height, int32_t picture_width, int32_t picture_height, merge_candidates_t *cand_out) { /* Predictor block locations ____ _______ |B2|______|B1|B0| | | | Cur CU | __| | |A1|_________| |A0| */ int32_t x_local = SUB_SCU(x); //!< coordinates from top-left of this LCU int32_t y_local = SUB_SCU(y); // A0 and A1 availability testing if (x != 0) { const cu_info_t *a1 = kvz_cu_array_at_const(cua, x - 1, y + height - 1); // The block above is always coded before the current one. if (a1->type == CU_INTER) { cand_out->a[1] = a1; } if (y_local + height < LCU_WIDTH && y + height < picture_height) { const cu_info_t *a0 = kvz_cu_array_at_const(cua, x - 1, y + height); if (a0->type == CU_INTER && is_a0_cand_coded(x, y, width, height)) { cand_out->a[0] = a0; } } } // B0, B1 and B2 availability testing if (y != 0) { if (x + width < picture_width && (x_local + width < LCU_WIDTH || y_local == 0)) { const cu_info_t *b0 = kvz_cu_array_at_const(cua, x + width, y - 1); if (b0->type == CU_INTER && is_b0_cand_coded(x, y, width, height)) { cand_out->b[0] = b0; } } const cu_info_t *b1 = kvz_cu_array_at_const(cua, x + width - 1, y - 1); // The block to the left is always coded before the current one. if (b1->type == CU_INTER) { cand_out->b[1] = b1; } if (x != 0) { const cu_info_t *b2 = kvz_cu_array_at_const(cua, x - 1, y - 1); // The block above and to the left is always coded before the current // one. if (b2->type == CU_INTER) { cand_out->b[2] = b2; } } } } static INLINE int16_t get_scaled_mv(int16_t mv, int scale) { int32_t scaled = scale * mv; return CLIP(-32768, 32767, (scaled + 127 + (scaled < 0)) >> 8); } static void apply_mv_scaling_pocs(int32_t current_poc, int32_t current_ref_poc, int32_t neighbor_poc, int32_t neighbor_ref_poc, int16_t mv_cand[2]) { int32_t diff_current = current_poc - current_ref_poc; int32_t diff_neighbor = neighbor_poc - neighbor_ref_poc; if (diff_current == diff_neighbor) return; diff_current = CLIP(-128, 127, diff_current); diff_neighbor = CLIP(-128, 127, diff_neighbor); int scale = CLIP(-4096, 4095, (diff_current * ((0x4000 + (abs(diff_neighbor) >> 1)) / diff_neighbor) + 32) >> 6); mv_cand[0] = get_scaled_mv(mv_cand[0], scale); mv_cand[1] = get_scaled_mv(mv_cand[1], scale); } static INLINE void apply_mv_scaling(const encoder_state_t *state, const cu_info_t *current_cu, const cu_info_t *neighbor_cu, int8_t current_reflist, int8_t neighbor_reflist, int16_t mv_cand[2]) { apply_mv_scaling_pocs(state->frame->poc, state->frame->ref->pocs[ state->frame->ref_LX[current_reflist][ current_cu->inter.mv_ref[current_reflist]]], state->frame->poc, state->frame->ref->pocs[ state->frame->ref_LX[neighbor_reflist][ neighbor_cu->inter.mv_ref[neighbor_reflist]]], mv_cand); } /** * \brief Try to add a temporal MVP or merge candidate. * * \param state encoder state * \param current_ref index of the picture referenced by the current CU * \param colocated colocated CU * \param reflist either 0 (for L0) or 1 (for L1) * \param[out] mv_out Returns the motion vector * * \return Whether a temporal candidate was added or not. */ static bool add_temporal_candidate(const encoder_state_t *state, uint8_t current_ref, const cu_info_t *colocated, int32_t reflist, int16_t mv_out[2]) { if (!colocated) return false; int colocated_ref; if (state->frame->ref_LX_size[0] > 0) { // get the first reference from L0 if it exists colocated_ref = state->frame->ref_LX[0][0]; } else { // otherwise no candidate added return false; } // When there are reference pictures from the future (POC > current POC) // in L0 or L1, the primary list for the colocated PU is the inverse of // collocated_from_l0_flag. Otherwise it is equal to reflist. // // Kvazaar always sets collocated_from_l0_flag so the list is L1 when // there are future references. int col_list = reflist; for (int i = 0; i < state->frame->ref->used_size; i++) { if (state->frame->ref->pocs[i] > state->frame->poc) { col_list = 1; break; } } if ((colocated->inter.mv_dir & (col_list + 1)) == 0) { // Use the other list if the colocated PU does not have a MV for the // primary list. col_list = 1 - col_list; } mv_out[0] = colocated->inter.mv[col_list][0]; mv_out[1] = colocated->inter.mv[col_list][1]; apply_mv_scaling_pocs( state->frame->poc, state->frame->ref->pocs[current_ref], state->frame->ref->pocs[colocated_ref], state->frame->ref->images[colocated_ref]->ref_pocs[ state->frame->ref->ref_LXs[colocated_ref] [col_list][colocated->inter.mv_ref[col_list]]], mv_out ); return true; } static INLINE bool add_mvp_candidate(const encoder_state_t *state, const cu_info_t *cur_cu, const cu_info_t *cand, int8_t reflist, bool scaling, int16_t mv_cand_out[2]) { if (!cand) return false; assert(cand->inter.mv_dir != 0); for (int i = 0; i < 2; i++) { const int cand_list = i == 0 ? reflist : !reflist; if ((cand->inter.mv_dir & (1 << cand_list)) == 0) continue; if (scaling) { mv_cand_out[0] = cand->inter.mv[cand_list][0]; mv_cand_out[1] = cand->inter.mv[cand_list][1]; apply_mv_scaling(state, cur_cu, cand, reflist, cand_list, mv_cand_out); return true; } if (cand->inter.mv_dir & (1 << cand_list) && state->frame->ref_LX[cand_list][cand->inter.mv_ref[cand_list]] == state->frame->ref_LX[reflist][cur_cu->inter.mv_ref[reflist]]) { mv_cand_out[0] = cand->inter.mv[cand_list][0]; mv_cand_out[1] = cand->inter.mv[cand_list][1]; return true; } } return false; } /** * \brief Pick two mv candidates from the spatial and temporal candidates. */ static void get_mv_cand_from_candidates(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, const merge_candidates_t *merge_cand, const cu_info_t *cur_cu, int8_t reflist, int16_t mv_cand[2][2]) { const cu_info_t *const *a = merge_cand->a; const cu_info_t *const *b = merge_cand->b; const cu_info_t *c3 = merge_cand->c3; const cu_info_t *h = merge_cand->h; uint8_t candidates = 0; uint8_t b_candidates = 0; // Left predictors without scaling for (int i = 0; i < 2; i++) { if (add_mvp_candidate(state, cur_cu, a[i], reflist, false, mv_cand[candidates])) { candidates++; break; } } // Left predictors with scaling if (candidates == 0) { for (int i = 0; i < 2; i++) { if (add_mvp_candidate(state, cur_cu, a[i], reflist, true, mv_cand[candidates])) { candidates++; break; } } } // Top predictors without scaling for (int i = 0; i < 3; i++) { if (add_mvp_candidate(state, cur_cu, b[i], reflist, false, mv_cand[candidates])) { b_candidates++; break; } } candidates += b_candidates; // When a1 or a0 is available, we dont check for secondary B candidates. if (a[0] || a[1]) { b_candidates = 1; } else if (candidates != 2) { b_candidates = 0; } if (!b_candidates) { // Top predictors with scaling for (int i = 0; i < 3; i++) { if (add_mvp_candidate(state, cur_cu, b[i], reflist, true, mv_cand[candidates])) { candidates++; break; } } } // Remove identical candidate if (candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) { candidates = 1; } // Use Temporal Motion Vector Prediction when enabled. // TMVP required at least two sequential P/B-frames. bool can_use_tmvp = state->encoder_control->cfg.tmvp_enable && state->frame->poc > 1 && state->frame->ref->used_size && candidates < AMVP_MAX_NUM_CANDS && (h != NULL || c3 != NULL); if (can_use_tmvp && add_temporal_candidate(state, state->frame->ref_LX[reflist][cur_cu->inter.mv_ref[reflist]], (h != NULL) ? h : c3, reflist, mv_cand[candidates])) { candidates++; } // Fill with (0,0) while (candidates < AMVP_MAX_NUM_CANDS) { mv_cand[candidates][0] = 0; mv_cand[candidates][1] = 0; candidates++; } } /** * \brief Get MV prediction for current block. * * \param state encoder state * \param x block x position in pixels * \param y block y position in pixels * \param width block width in pixels * \param height block height in pixels * \param mv_cand Return the motion vector candidates. * \param cur_cu current CU * \param lcu current LCU * \param reflist reflist index (either 0 or 1) */ void kvz_inter_get_mv_cand(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, int16_t mv_cand[2][2], cu_info_t* cur_cu, lcu_t *lcu, int8_t reflist) { merge_candidates_t merge_cand = { {0, 0}, {0, 0, 0}, 0, 0 }; get_spatial_merge_candidates(x, y, width, height, state->tile->frame->width, state->tile->frame->height, lcu, &merge_cand); get_temporal_merge_candidates(state, x, y, width, height, 1, 0, &merge_cand); get_mv_cand_from_candidates(state, x, y, width, height, &merge_cand, cur_cu, reflist, mv_cand); } /** * \brief Get MV prediction for current block using state->tile->frame->cu_array. * * \param state encoder state * \param x block x position in pixels * \param y block y position in pixels * \param width block width in pixels * \param height block height in pixels * \param mv_cand Return the motion vector candidates. * \param cur_cu current CU * \param reflist reflist index (either 0 or 1) */ void kvz_inter_get_mv_cand_cua(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, int16_t mv_cand[2][2], const cu_info_t* cur_cu, int8_t reflist) { merge_candidates_t merge_cand = { {0, 0}, {0, 0, 0}, 0, 0 }; const cu_array_t *cua = state->tile->frame->cu_array; get_spatial_merge_candidates_cua(cua, x, y, width, height, state->tile->frame->width, state->tile->frame->height, &merge_cand); get_temporal_merge_candidates(state, x, y, width, height, 1, 0, &merge_cand); get_mv_cand_from_candidates(state, x, y, width, height, &merge_cand, cur_cu, reflist, mv_cand); } static bool is_duplicate_candidate(const cu_info_t* cu1, const cu_info_t* cu2) { if (!cu2) return false; if (cu1->inter.mv_dir != cu2->inter.mv_dir) return false; for (int reflist = 0; reflist < 2; reflist++) { if (cu1->inter.mv_dir & (1 << reflist)) { if (cu1->inter.mv[reflist][0] != cu2->inter.mv[reflist][0] || cu1->inter.mv[reflist][1] != cu2->inter.mv[reflist][1] || cu1->inter.mv_ref[reflist] != cu2->inter.mv_ref[reflist]) { return false; } } } return true; } static bool add_merge_candidate(const cu_info_t *cand, const cu_info_t *possible_duplicate1, const cu_info_t *possible_duplicate2, inter_merge_cand_t *merge_cand_out) { if (!cand || is_duplicate_candidate(cand, possible_duplicate1) || is_duplicate_candidate(cand, possible_duplicate2)) { return false; } merge_cand_out->mv[0][0] = cand->inter.mv[0][0]; merge_cand_out->mv[0][1] = cand->inter.mv[0][1]; merge_cand_out->mv[1][0] = cand->inter.mv[1][0]; merge_cand_out->mv[1][1] = cand->inter.mv[1][1]; merge_cand_out->ref[0] = cand->inter.mv_ref[0]; // L0/L1 references merge_cand_out->ref[1] = cand->inter.mv_ref[1]; merge_cand_out->dir = cand->inter.mv_dir; return true; } /** * \brief Get merge predictions for current block * \param state the encoder state * \param x block x position in SCU * \param y block y position in SCU * \param width block width * \param height block height * \param use_a1 true, if candidate a1 can be used * \param use_b1 true, if candidate b1 can be used * \param mv_cand Returns the merge candidates. * \param lcu lcu containing the block * \return number of merge candidates */ uint8_t kvz_inter_get_merge_cand(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, bool use_a1, bool use_b1, inter_merge_cand_t mv_cand[MRG_MAX_NUM_CANDS], lcu_t *lcu) { uint8_t candidates = 0; int8_t zero_idx = 0; merge_candidates_t merge_cand = { {0, 0}, {0, 0, 0}, 0, 0 }; get_spatial_merge_candidates(x, y, width, height, state->tile->frame->width, state->tile->frame->height, lcu, &merge_cand); const cu_info_t **a = merge_cand.a; const cu_info_t **b = merge_cand.b; if (!use_a1) a[1] = NULL; if (!use_b1) b[1] = NULL; if (add_merge_candidate(a[1], NULL, NULL, &mv_cand[candidates])) candidates++; if (add_merge_candidate(b[1], a[1], NULL, &mv_cand[candidates])) candidates++; if (add_merge_candidate(b[0], b[1], NULL, &mv_cand[candidates])) candidates++; if (add_merge_candidate(a[0], a[1], NULL, &mv_cand[candidates])) candidates++; if (candidates < 4 && add_merge_candidate(b[2], a[1], b[1], &mv_cand[candidates])) candidates++; bool can_use_tmvp = state->encoder_control->cfg.tmvp_enable && candidates < MRG_MAX_NUM_CANDS && state->frame->ref->used_size; if (can_use_tmvp) { mv_cand[candidates].dir = 0; const int max_reflist = (state->frame->slicetype == KVZ_SLICE_B ? 1 : 0); for (int reflist = 0; reflist <= max_reflist; reflist++) { // Fetch temporal candidates for the current CU get_temporal_merge_candidates(state, x, y, width, height, 1, 0, &merge_cand); // TODO: enable L1 TMVP candidate // get_temporal_merge_candidates(state, x, y, width, height, 2, 0, &merge_cand); const cu_info_t *temporal_cand = (merge_cand.h != NULL) ? merge_cand.h : merge_cand.c3; if (add_temporal_candidate(state, // Reference index 0 is always used for // the temporal merge candidate. state->frame->ref_LX[reflist][0], temporal_cand, reflist, mv_cand[candidates].mv[reflist])) { mv_cand[candidates].ref[reflist] = 0; mv_cand[candidates].dir |= (1 << reflist); } } if (mv_cand[candidates].dir != 0) candidates++; } if (candidates < MRG_MAX_NUM_CANDS && state->frame->slicetype == KVZ_SLICE_B) { #define NUM_PRIORITY_LIST 12; static const uint8_t priorityList0[] = { 0, 1, 0, 2, 1, 2, 0, 3, 1, 3, 2, 3 }; static const uint8_t priorityList1[] = { 1, 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2 }; uint8_t cutoff = candidates; for (int32_t idx = 0; idx= candidates || j >= candidates) break; // Find one L0 and L1 candidate according to the priority list if ((mv_cand[i].dir & 0x1) && (mv_cand[j].dir & 0x2)) { mv_cand[candidates].dir = 3; // get Mv from cand[i] and cand[j] mv_cand[candidates].mv[0][0] = mv_cand[i].mv[0][0]; mv_cand[candidates].mv[0][1] = mv_cand[i].mv[0][1]; mv_cand[candidates].mv[1][0] = mv_cand[j].mv[1][0]; mv_cand[candidates].mv[1][1] = mv_cand[j].mv[1][1]; mv_cand[candidates].ref[0] = mv_cand[i].ref[0]; mv_cand[candidates].ref[1] = mv_cand[j].ref[1]; if (state->frame->ref_LX[0][mv_cand[i].ref[0]] == state->frame->ref_LX[1][mv_cand[j].ref[1]] && mv_cand[i].mv[0][0] == mv_cand[j].mv[1][0] && mv_cand[i].mv[0][1] == mv_cand[j].mv[1][1]) { // Not a candidate } else { candidates++; } } } } int num_ref = state->frame->ref->used_size; if (candidates < MRG_MAX_NUM_CANDS && state->frame->slicetype == KVZ_SLICE_B) { int j; int ref_negative = 0; int ref_positive = 0; for (j = 0; j < state->frame->ref->used_size; j++) { if (state->frame->ref->pocs[j] < state->frame->poc) { ref_negative++; } else { ref_positive++; } } num_ref = MIN(ref_negative, ref_positive); } // Add (0,0) prediction while (candidates != MRG_MAX_NUM_CANDS) { mv_cand[candidates].mv[0][0] = 0; mv_cand[candidates].mv[0][1] = 0; mv_cand[candidates].ref[0] = (zero_idx >= num_ref - 1) ? 0 : zero_idx; mv_cand[candidates].ref[1] = mv_cand[candidates].ref[0]; mv_cand[candidates].dir = 1; if (state->frame->slicetype == KVZ_SLICE_B) { mv_cand[candidates].mv[1][0] = 0; mv_cand[candidates].mv[1][1] = 0; mv_cand[candidates].dir = 3; } zero_idx++; candidates++; } return candidates; }