/***************************************************************************** * This file is part of uvg266 VVC encoder. * * Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS ****************************************************************************/ #include "strategyselector.h" #include #include #include #ifdef _WIN32 #include #else #include #endif hardware_flags_t kvz_g_hardware_flags; hardware_flags_t kvz_g_strategies_in_use; hardware_flags_t kvz_g_strategies_available; static void set_hardware_flags(int32_t cpuid); static void* strategyselector_choose_for(const strategy_list_t * const strategies, const char * const strategy_type); //Strategies to include (add new file here) //Returns 1 if successful int kvz_strategyselector_init(int32_t cpuid, uint8_t bitdepth) { const strategy_to_select_t *cur_strategy_to_select = strategies_to_select; strategy_list_t strategies; strategies.allocated = 0; strategies.count = 0; strategies.strategies = NULL; set_hardware_flags(cpuid); //Add new register function here if (!kvz_strategy_register_picture(&strategies, bitdepth)) { fprintf(stderr, "kvz_strategy_register_picture failed!\n"); return 0; } if (!kvz_strategy_register_nal(&strategies, bitdepth)) { fprintf(stderr, "kvz_strategy_register_nal failed!\n"); return 0; } if (!kvz_strategy_register_dct(&strategies, bitdepth)) { fprintf(stderr, "kvz_strategy_register_dct failed!\n"); return 0; } if (!kvz_strategy_register_ipol(&strategies, bitdepth)) { fprintf(stderr, "kvz_strategy_register_ipol failed!\n"); return 0; } if (!kvz_strategy_register_quant(&strategies, bitdepth)) { fprintf(stderr, "kvz_strategy_register_quant failed!\n"); return 0; } if (!kvz_strategy_register_intra(&strategies, bitdepth)) { fprintf(stderr, "kvz_strategy_register_intra failed!\n"); return 0; } if (!kvz_strategy_register_sao(&strategies, bitdepth)) { fprintf(stderr, "kvz_strategy_register_sao failed!\n"); return 0; } if (!kvz_strategy_register_encode(&strategies, bitdepth)) { fprintf(stderr, "kvz_strategy_register_encode failed!\n"); return 0; } if (!kvz_strategy_register_alf(&strategies, bitdepth)) { fprintf(stderr, "kvz_strategy_register_encode failed!\n"); return 0; } while(cur_strategy_to_select->fptr) { *(cur_strategy_to_select->fptr) = strategyselector_choose_for(&strategies, cur_strategy_to_select->strategy_type); if (!(*(cur_strategy_to_select->fptr))) { fprintf(stderr, "Could not find a strategy for %s!\n", cur_strategy_to_select->strategy_type); return 0; } ++cur_strategy_to_select; } //We can free the structure now, as all strategies are statically set to pointers if (strategies.allocated) { //Also check what optimizations are available and what are in use //SIMD optimizations available bool strategies_available = false; fprintf(stderr, "Available: "); if (kvz_g_strategies_available.intel_flags.avx != 0){ fprintf(stderr, "avx(%d) ", kvz_g_strategies_available.intel_flags.avx); strategies_available = true; } if (kvz_g_strategies_available.intel_flags.avx2 != 0){ fprintf(stderr, "avx2(%d) ", kvz_g_strategies_available.intel_flags.avx2); strategies_available = true; } if (kvz_g_strategies_available.intel_flags.mmx != 0) { fprintf(stderr, "mmx(%d) ", kvz_g_strategies_available.intel_flags.mmx); strategies_available = true; } if (kvz_g_strategies_available.intel_flags.sse != 0) { fprintf(stderr, "sse(%d) ", kvz_g_strategies_available.intel_flags.sse); strategies_available = true; } if (kvz_g_strategies_available.intel_flags.sse2 != 0) { fprintf(stderr, "sse2(%d) ", kvz_g_strategies_available.intel_flags.sse2); strategies_available = true; } if (kvz_g_strategies_available.intel_flags.sse3 != 0) { fprintf(stderr, "sse3(%d) ", kvz_g_strategies_available.intel_flags.sse3); strategies_available = true; } if (kvz_g_strategies_available.intel_flags.sse41 != 0) { fprintf(stderr, "sse41(%d) ", kvz_g_strategies_available.intel_flags.sse41); strategies_available = true; } if (kvz_g_strategies_available.intel_flags.sse42 != 0) { fprintf(stderr, "sse42(%d) ", kvz_g_strategies_available.intel_flags.sse42); strategies_available = true; } if (kvz_g_strategies_available.intel_flags.ssse3 != 0) { fprintf(stderr, "ssse3(%d) ", kvz_g_strategies_available.intel_flags.ssse3); strategies_available = true; } if (kvz_g_strategies_available.arm_flags.neon != 0) { fprintf(stderr, "neon(%d) ", kvz_g_strategies_available.arm_flags.neon); strategies_available = true; } if (kvz_g_strategies_available.powerpc_flags.altivec != 0) { fprintf(stderr, "altivec(%d) ", kvz_g_strategies_available.powerpc_flags.altivec); strategies_available = true; } //If there is no strategies available if (!strategies_available){ fprintf(stderr, "no SIMD optimizations"); } fprintf(stderr, "\n"); //SIMD optimizations in use bool strategies_in_use = false; fprintf(stderr, "In use: "); if (kvz_g_strategies_in_use.intel_flags.avx != 0){ fprintf(stderr, "avx(%d) ", kvz_g_strategies_in_use.intel_flags.avx); strategies_in_use = true; } if (kvz_g_strategies_in_use.intel_flags.avx2 != 0){ fprintf(stderr, "avx2(%d) ", kvz_g_strategies_in_use.intel_flags.avx2); strategies_in_use = true; } if (kvz_g_strategies_in_use.intel_flags.mmx != 0) { fprintf(stderr, "mmx(%d) ", kvz_g_strategies_in_use.intel_flags.mmx); strategies_in_use = true; } if (kvz_g_strategies_in_use.intel_flags.sse != 0) { fprintf(stderr, "sse(%d) ", kvz_g_strategies_in_use.intel_flags.sse); strategies_in_use = true; } if (kvz_g_strategies_in_use.intel_flags.sse2 != 0) { fprintf(stderr, "sse2(%d) ", kvz_g_strategies_in_use.intel_flags.sse2); strategies_in_use = true; } if (kvz_g_strategies_in_use.intel_flags.sse3 != 0) { fprintf(stderr, "sse3(%d) ", kvz_g_strategies_in_use.intel_flags.sse3); strategies_in_use = true; } if (kvz_g_strategies_in_use.intel_flags.sse41 != 0) { fprintf(stderr, "sse41(%d) ", kvz_g_strategies_in_use.intel_flags.sse41); strategies_in_use = true; } if (kvz_g_strategies_in_use.intel_flags.sse42 != 0) { fprintf(stderr, "sse42(%d) ", kvz_g_strategies_in_use.intel_flags.sse42); strategies_in_use = true; } if (kvz_g_strategies_in_use.intel_flags.ssse3 != 0) { fprintf(stderr, "ssse3(%d) ", kvz_g_strategies_in_use.intel_flags.ssse3); strategies_in_use = true; } if (kvz_g_strategies_in_use.arm_flags.neon != 0) { fprintf(stderr, "neon(%d) ", kvz_g_strategies_in_use.arm_flags.neon); strategies_in_use = true; } if (kvz_g_strategies_in_use.powerpc_flags.altivec != 0) { fprintf(stderr, "altivec(%d) ", kvz_g_strategies_in_use.powerpc_flags.altivec); strategies_in_use = true; } //If there is no strategies in use if (!strategies_in_use){ fprintf(stderr, "no SIMD optimizations"); } fprintf(stderr, "\n"); //Free memory free(strategies.strategies); } return 1; } //Returns 1 if successful, 0 otherwise int kvz_strategyselector_register(void * const opaque, const char * const type, const char * const strategy_name, int priority, void * const fptr) { strategy_list_t * const strategies = opaque; if (strategies->allocated == strategies->count) { strategy_t* new_strategies = realloc(strategies->strategies, sizeof(strategy_t) * (strategies->allocated + STRATEGY_LIST_ALLOC_SIZE)); if (!new_strategies) { fprintf(stderr, "Could not increase strategies list size!\n"); return 0; } strategies->strategies = new_strategies; strategies->allocated += STRATEGY_LIST_ALLOC_SIZE; } { strategy_t *new_strategy = &strategies->strategies[strategies->count++]; new_strategy->type = type; new_strategy->strategy_name = strategy_name; new_strategy->priority = priority; new_strategy->fptr = fptr; } //Check what strategies are available when they are registered if (strcmp(strategy_name, "avx") == 0) kvz_g_strategies_available.intel_flags.avx++; if (strcmp(strategy_name, "x86_asm_avx") == 0) kvz_g_strategies_available.intel_flags.avx++; if (strcmp(strategy_name, "avx2") == 0) kvz_g_strategies_available.intel_flags.avx2++; if (strcmp(strategy_name, "mmx") == 0) kvz_g_strategies_available.intel_flags.mmx++; if (strcmp(strategy_name, "sse") == 0) kvz_g_strategies_available.intel_flags.sse++; if (strcmp(strategy_name, "sse2") == 0) kvz_g_strategies_available.intel_flags.sse2++; if (strcmp(strategy_name, "sse3") == 0) kvz_g_strategies_available.intel_flags.sse3++; if (strcmp(strategy_name, "sse41") == 0) kvz_g_strategies_available.intel_flags.sse41++; if (strcmp(strategy_name, "sse42") == 0) kvz_g_strategies_available.intel_flags.sse42++; if (strcmp(strategy_name, "ssse3") == 0) kvz_g_strategies_available.intel_flags.ssse3++; if (strcmp(strategy_name, "altivec") == 0) kvz_g_strategies_available.powerpc_flags.altivec++; if (strcmp(strategy_name, "neon") == 0) kvz_g_strategies_available.arm_flags.neon++; #ifdef DEBUG_STRATEGYSELECTOR fprintf(stderr, "Registered strategy %s:%s with priority %d (%p)\n", type, strategy_name, priority, fptr); #endif //DEBUG_STRATEGYSELECTOR return 1; } static void* strategyselector_choose_for(const strategy_list_t * const strategies, const char * const strategy_type) { unsigned int max_priority = 0; int max_priority_i = -1; char buffer[256]; char *override = NULL; int i = 0; // Because VS doesn't support snprintf, let's assert that there is // enough room in the buffer. Max length for strategy type is // buffersize (256) - prefix including terminating zero. assert(strlen(strategy_type) < 256 - sizeof("KVAZAAR_OVERRIDE_") ); sprintf(buffer, "KVAZAAR_OVERRIDE_%s", strategy_type); override = getenv(buffer); for (i=0; i < strategies->count; ++i) { if (strcmp(strategies->strategies[i].type, strategy_type) == 0) { if (override && strcmp(strategies->strategies[i].strategy_name, override) == 0) { fprintf(stderr, "%s environment variable present, choosing %s:%s\n", buffer, strategy_type, strategies->strategies[i].strategy_name); return strategies->strategies[i].fptr; } if (strategies->strategies[i].priority >= max_priority) { max_priority_i = i; max_priority = strategies->strategies[i].priority; } } } if (override) { fprintf(stderr, "%s environment variable present, but no strategy %s was found!\n", buffer, override); return NULL; } #ifdef DEBUG_STRATEGYSELECTOR fprintf(stderr, "Choosing strategy for %s:\n", strategy_type); for (i=0; i < strategies->count; ++i) { if (strcmp(strategies->strategies[i].type, strategy_type) == 0) { if (i != max_priority_i) { fprintf(stderr, "- %s (%d, %p)\n", strategies->strategies[i].strategy_name, strategies->strategies[i].priority, strategies->strategies[i].fptr); } else { fprintf(stderr, "> %s (%d, %p)\n", strategies->strategies[i].strategy_name, strategies->strategies[i].priority, strategies->strategies[i].fptr); } } } #endif //DEBUG_STRATEGYSELECTOR if (max_priority_i == -1) { return NULL; } //Check what strategy we are going to use if (strcmp(strategies->strategies[max_priority_i].strategy_name, "avx") == 0) kvz_g_strategies_in_use.intel_flags.avx++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "x86_asm_avx") == 0) kvz_g_strategies_in_use.intel_flags.avx++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "avx2") == 0) kvz_g_strategies_in_use.intel_flags.avx2++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "mmx") == 0) kvz_g_strategies_in_use.intel_flags.mmx++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse") == 0) kvz_g_strategies_in_use.intel_flags.sse++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse2") == 0) kvz_g_strategies_in_use.intel_flags.sse2++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse3") == 0) kvz_g_strategies_in_use.intel_flags.sse3++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse41") == 0) kvz_g_strategies_in_use.intel_flags.sse41++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse42") == 0) kvz_g_strategies_in_use.intel_flags.sse42++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "ssse3") == 0) kvz_g_strategies_in_use.intel_flags.ssse3++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "altivec") == 0) kvz_g_strategies_in_use.powerpc_flags.altivec++; if (strcmp(strategies->strategies[max_priority_i].strategy_name, "neon") == 0) kvz_g_strategies_in_use.arm_flags.neon++; return strategies->strategies[max_priority_i].fptr; } #if COMPILE_INTEL typedef struct { unsigned int eax; unsigned int ebx; unsigned int ecx; unsigned int edx; } cpuid_t; // CPUID adapters for different compilers. # if defined(__GNUC__) #include static INLINE int get_cpuid(unsigned level, unsigned sublevel, cpuid_t *cpu_info) { if (__get_cpuid_max(level & 0x80000000, NULL) < level) return 0; __cpuid_count(level, sublevel, cpu_info->eax, cpu_info->ebx, cpu_info->ecx, cpu_info->edx); return 1; } # elif defined(_MSC_VER) #include static INLINE int get_cpuid(unsigned level, unsigned sublevel, cpuid_t *cpu_info) { int vendor_info[4] = { 0, 0, 0, 0 }; __cpuidex(vendor_info, 0, 0); // Check highest supported function. if (level > vendor_info[0]) return 0; int ms_cpu_info[4] = { cpu_info->eax, cpu_info->ebx, cpu_info->ecx, cpu_info->edx }; __cpuidex(ms_cpu_info, level, sublevel); cpu_info->eax = ms_cpu_info[0]; cpu_info->ebx = ms_cpu_info[1]; cpu_info->ecx = ms_cpu_info[2]; cpu_info->edx = ms_cpu_info[3]; return 1; } # else static INLINE int get_cpuid(unsigned level, unsigned sublevel, cpuid_t *cpu_info) { return 0; } # endif #endif // COMPILE_INTEL #if COMPILE_POWERPC # if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD__ >= 12) #ifdef __linux__ #include #else #include #endif #include static int altivec_available(void) { unsigned long hwcap = 0; #ifdef __linux__ hwcap = getauxval(AT_HWCAP); #else elf_aux_info(AT_HWCAP, &hwcap, sizeof(hwcap)); #endif return !!(hwcap & PPC_FEATURE_HAS_ALTIVEC); } # elif defined(__FreeBSD__) #include #include #include static int altivec_available(void) { u_long cpu_features = 0; size_t len = sizeof(cpu_features); sysctlbyname("hw.cpu_features", &cpu_features, &len, NULL, 0); return !!(cpu_features & PPC_FEATURE_HAS_ALTIVEC); } # elif defined(__APPLE__) || defined(__NetBSD__) || defined(__OpenBSD__) #include #include #ifndef __APPLE__ #include #endif static int altivec_available(void) { int cpu_altivec = 0; size_t len = sizeof(cpu_altivec); #ifdef HW_VECTORUNIT int mib[] = { CTL_HW, HW_VECTORUNIT }; #else int mib[] = { CTL_MACHDEP, CPU_ALTIVEC }; #endif sysctl(mib, sizeof(mib)/sizeof(mib[0]), &cpu_altivec, &len, NULL, 0); return cpu_altivec; } # else static int altivec_available(void) { #if COMPILE_POWERPC_ALTIVEC return 1; #else return 0; #endif } # endif #endif //COMPILE_POWERPC static void set_hardware_flags(int32_t cpuid) { FILL(kvz_g_hardware_flags, 0); #if COMPILE_INTEL if (cpuid) { cpuid_t cpuid1 = { 0, 0, 0, 0 }; /* CPU feature bits */ enum { CPUID1_EDX_MMX = 1 << 23, CPUID1_EDX_SSE = 1 << 25, CPUID1_EDX_SSE2 = 1 << 26, CPUID1_EDX_HYPER_THREADING = 1 << 28, }; enum { CPUID1_ECX_SSE3 = 1 << 0, CPUID1_ECX_SSSE3 = 1 << 9, CPUID1_ECX_SSE41 = 1 << 19, CPUID1_ECX_SSE42 = 1 << 20, CPUID1_ECX_XSAVE = 1 << 26, CPUID1_ECX_OSXSAVE = 1 << 27, CPUID1_ECX_AVX = 1 << 28, }; enum { CPUID7_EBX_AVX2 = 1 << 5, }; enum { XGETBV_XCR0_XMM = 1 << 1, XGETBV_XCR0_YMM = 1 << 2, }; // Dig CPU features with cpuid get_cpuid(1, 0, &cpuid1); #ifdef _WIN32 SYSTEM_INFO systeminfo; GetSystemInfo(&systeminfo); kvz_g_hardware_flags.logical_cpu_count = systeminfo.dwNumberOfProcessors; #else kvz_g_hardware_flags.logical_cpu_count = sysconf(_SC_NPROCESSORS_ONLN); #endif kvz_g_hardware_flags.physical_cpu_count = kvz_g_hardware_flags.logical_cpu_count; kvz_g_hardware_flags.intel_flags.hyper_threading = cpuid1.edx & CPUID1_EDX_HYPER_THREADING; if (kvz_g_hardware_flags.intel_flags.hyper_threading) { kvz_g_hardware_flags.physical_cpu_count /= 2; } // EDX if (cpuid1.edx & CPUID1_EDX_MMX) kvz_g_hardware_flags.intel_flags.mmx = 1; if (cpuid1.edx & CPUID1_EDX_SSE) kvz_g_hardware_flags.intel_flags.sse = 1; if (cpuid1.edx & CPUID1_EDX_SSE2) kvz_g_hardware_flags.intel_flags.sse2 = 1; // ECX if (cpuid1.ecx & CPUID1_ECX_SSE3) kvz_g_hardware_flags.intel_flags.sse3 = 1;; if (cpuid1.ecx & CPUID1_ECX_SSSE3) kvz_g_hardware_flags.intel_flags.ssse3 = 1; if (cpuid1.ecx & CPUID1_ECX_SSE41) kvz_g_hardware_flags.intel_flags.sse41 = 1; if (cpuid1.ecx & CPUID1_ECX_SSE42) kvz_g_hardware_flags.intel_flags.sse42 = 1; // Check hardware and OS support for xsave and xgetbv. if (cpuid1.ecx & (CPUID1_ECX_XSAVE | CPUID1_ECX_OSXSAVE)) { uint64_t xcr0 = 0; // Use _XCR_XFEATURE_ENABLED_MASK to check if _xgetbv intrinsic is // supported by the compiler. #ifdef _XCR_XFEATURE_ENABLED_MASK xcr0 = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); #elif defined(__GNUC__) unsigned eax = 0, edx = 0; asm("xgetbv" : "=a"(eax), "=d"(edx) : "c" (0)); xcr0 = (uint64_t)edx << 32 | eax; #endif bool avx_support = cpuid1.ecx & CPUID1_ECX_AVX || false; bool xmm_support = xcr0 & XGETBV_XCR0_XMM || false; bool ymm_support = xcr0 & XGETBV_XCR0_YMM || false; if (avx_support && xmm_support && ymm_support) { kvz_g_hardware_flags.intel_flags.avx = 1; } if (kvz_g_hardware_flags.intel_flags.avx) { cpuid_t cpuid7 = { 0, 0, 0, 0 }; get_cpuid(7, 0, &cpuid7); if (cpuid7.ebx & CPUID7_EBX_AVX2) kvz_g_hardware_flags.intel_flags.avx2 = 1; } } } fprintf(stderr, "Compiled: INTEL, flags:"); #if COMPILE_INTEL_MMX fprintf(stderr, " MMX"); #endif #if COMPILE_INTEL_SSE fprintf(stderr, " SSE"); #endif #if COMPILE_INTEL_SSE2 fprintf(stderr, " SSE2"); #endif #if COMPILE_INTEL_SSE3 fprintf(stderr, " SSE3"); #endif #if COMPILE_INTEL_SSSE3 fprintf(stderr, " SSSE3"); #endif #if COMPILE_INTEL_SSE41 fprintf(stderr, " SSE41"); #endif #if COMPILE_INTEL_SSE42 fprintf(stderr, " SSE42"); #endif #if COMPILE_INTEL_AVX fprintf(stderr, " AVX"); #endif #if COMPILE_INTEL_AVX2 fprintf(stderr, " AVX2"); #endif fprintf(stderr, "\nDetected: INTEL, flags:"); if (kvz_g_hardware_flags.intel_flags.mmx) fprintf(stderr, " MMX"); if (kvz_g_hardware_flags.intel_flags.sse) fprintf(stderr, " SSE"); if (kvz_g_hardware_flags.intel_flags.sse2) fprintf(stderr, " SSE2"); if (kvz_g_hardware_flags.intel_flags.sse3) fprintf(stderr, " SSE3"); if (kvz_g_hardware_flags.intel_flags.ssse3) fprintf(stderr, " SSSE3"); if (kvz_g_hardware_flags.intel_flags.sse41) fprintf(stderr, " SSE41"); if (kvz_g_hardware_flags.intel_flags.sse42) fprintf(stderr, " SSE42"); if (kvz_g_hardware_flags.intel_flags.avx) fprintf(stderr, " AVX"); if (kvz_g_hardware_flags.intel_flags.avx2) fprintf(stderr, " AVX2"); fprintf(stderr, "\n"); #endif //COMPILE_INTEL #if COMPILE_POWERPC if (cpuid) { kvz_g_hardware_flags.powerpc_flags.altivec = altivec_available(); } fprintf(stderr, "Compiled: PowerPC, flags:"); #if COMPILE_POWERPC_ALTIVEC fprintf(stderr, " AltiVec"); #endif fprintf(stderr, "\nDetected: PowerPC, flags:"); if (kvz_g_hardware_flags.powerpc_flags.altivec) fprintf(stderr, " AltiVec"); fprintf(stderr, "\n"); #endif }