/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "transform.h" #include "image.h" #include "kvazaar.h" #include "rdo.h" #include "strategies/strategies-dct.h" #include "strategies/strategies-quant.h" #include "strategies/strategies-picture.h" #include "tables.h" /** * \brief RDPCM direction. */ typedef enum rdpcm_dir { RDPCM_VER = 0, // vertical RDPCM_HOR = 1, // horizontal } rdpcm_dir; ////////////////////////////////////////////////////////////////////////// // INITIALIZATIONS // const uint8_t kvz_g_chroma_scale[58]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16, 17,18,19,20,21,22,23,24,25,26,27,28,29,29,30,31,32, 33,33,34,34,35,35,36,36,37,37,38,39,40,41,42,43,44, 45,46,47,48,49,50,51 }; ////////////////////////////////////////////////////////////////////////// // FUNCTIONS // /** * \brief Bypass transform and quantization. * * Copies the reference pixels directly to reconstruction and the residual * directly to coefficients. Used when cu_transquant_bypass_flag is set. * Parameters pred_in and rec_out may be aliased. * * \param width Transform width. * \param in_stride Stride for ref_in and pred_in * \param out_stride Stride for rec_out. * \param ref_in Reference pixels. * \param pred_in Predicted pixels. * \param rec_out Returns the reconstructed pixels. * \param coeff_out Returns the coefficients used for reconstruction of rec_out. * * \returns Whether coeff_out contains any non-zero coefficients. */ static bool bypass_transquant(const int width, const int in_stride, const int out_stride, const kvz_pixel *const ref_in, const kvz_pixel *const pred_in, kvz_pixel *rec_out, coeff_t *coeff_out) { bool nonzero_coeffs = false; for (int y = 0; y < width; ++y) { for (int x = 0; x < width; ++x) { int32_t in_idx = x + y * in_stride; int32_t out_idx = x + y * out_stride; int32_t coeff_idx = x + y * width; // The residual must be computed before writing to rec_out because // pred_in and rec_out may point to the same array. coeff_t coeff = (coeff_t)(ref_in[in_idx] - pred_in[in_idx]); coeff_out[coeff_idx] = coeff; rec_out[out_idx] = ref_in[in_idx]; nonzero_coeffs |= (coeff != 0); } } return nonzero_coeffs; } /** * Apply DPCM to residual. * * \param width width of the block * \param dir RDPCM direction * \param coeff coefficients (residual) to filter */ static void rdpcm(const int width, const rdpcm_dir dir, coeff_t *coeff) { const int offset = (dir == RDPCM_HOR) ? 1 : width; const int min_x = (dir == RDPCM_HOR) ? 1 : 0; const int min_y = (dir == RDPCM_HOR) ? 0 : 1; for (int y = width - 1; y >= min_y; y--) { for (int x = width - 1; x >= min_x; x--) { const int index = x + y * width; coeff[index] -= coeff[index - offset]; } } } /** * \brief Get scaled QP used in quantization * */ int32_t kvz_get_scaled_qp(int8_t type, int8_t qp, int8_t qp_offset) { int32_t qp_scaled = 0; if(type == 0) { qp_scaled = qp + qp_offset; } else { qp_scaled = CLIP(-qp_offset, 57, qp); if(qp_scaled < 0) { qp_scaled = qp_scaled + qp_offset; } else { qp_scaled = kvz_g_chroma_scale[qp_scaled] + qp_offset; } } return qp_scaled; } /** * \brief NxN inverse transform (2D) * \param coeff input data (transform coefficients) * \param block output data (residual) * \param block_size input data (width of transform) */ void kvz_transformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size) { uint32_t log2_tr_size = kvz_g_convert_to_bit[block_size] + 2; int32_t shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; int32_t j,k; for (j = 0; j < block_size; j++) { for(k = 0; k < block_size; k ++) { coeff[j * block_size + k] = block[j * block_size + k] << shift; } } } /** * \brief inverse transform skip * \param coeff input data (transform coefficients) * \param block output data (residual) * \param block_size width of transform */ void kvz_itransformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size) { uint32_t log2_tr_size = kvz_g_convert_to_bit[block_size] + 2; int32_t shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; int32_t j,k; int32_t offset; offset = (1 << (shift -1)); // For rounding for ( j = 0; j < block_size; j++ ) { for(k = 0; k < block_size; k ++) { block[j * block_size + k] = (coeff[j * block_size + k] + offset) >> shift; } } } /** * \brief forward transform (2D) * \param block input residual * \param coeff transform coefficients * \param block_size width of transform */ void kvz_transform2d(const encoder_control_t * const encoder, int16_t *block, int16_t *coeff, int8_t block_size, color_t color, cu_type_t type) { dct_func *dct_func = kvz_get_dct_func(block_size, color, type); dct_func(encoder->bitdepth, block, coeff); } void kvz_itransform2d(const encoder_control_t * const encoder, int16_t *block, int16_t *coeff, int8_t block_size, color_t color, cu_type_t type) { dct_func *idct_func = kvz_get_idct_func(block_size, color, type); idct_func(encoder->bitdepth, coeff, block); } /** * \brief Like kvz_quantize_residual except that this uses trskip if that is better. * * Using this function saves one step of quantization and inverse quantization * compared to doing the decision separately from the actual operation. * * \param width Transform width. * \param color Color. * \param scan_order Coefficient scan order. * \param trskip_out Whether transform skip is used. * \param stride Stride for ref_in, pred_in and rec_out. * \param ref_in Reference pixels. * \param pred_in Predicted pixels. * \param rec_out Reconstructed pixels. * \param coeff_out Coefficients used for reconstruction of rec_out. * * \returns Whether coeff_out contains any non-zero coefficients. */ int kvz_quantize_residual_trskip( encoder_state_t *const state, const cu_info_t *const cur_cu, const int width, const color_t color, const coeff_scan_order_t scan_order, int8_t *trskip_out, const int in_stride, const int out_stride, const kvz_pixel *const ref_in, const kvz_pixel *const pred_in, kvz_pixel *rec_out, coeff_t *coeff_out) { struct { kvz_pixel rec[4*4]; coeff_t coeff[4*4]; uint32_t cost; int has_coeffs; } skip, noskip, *best; const int bit_cost = (int)(state->lambda + 0.5); noskip.has_coeffs = kvz_quantize_residual( state, cur_cu, width, color, scan_order, 0, in_stride, 4, ref_in, pred_in, noskip.rec, noskip.coeff); noskip.cost = kvz_pixels_calc_ssd(ref_in, noskip.rec, in_stride, 4, 4); noskip.cost += kvz_get_coeff_cost(state, noskip.coeff, 4, 0, scan_order) * bit_cost; skip.has_coeffs = kvz_quantize_residual( state, cur_cu, width, color, scan_order, 1, in_stride, 4, ref_in, pred_in, skip.rec, skip.coeff); skip.cost = kvz_pixels_calc_ssd(ref_in, skip.rec, in_stride, 4, 4); skip.cost += kvz_get_coeff_cost(state, skip.coeff, 4, 0, scan_order) * bit_cost; if (noskip.cost <= skip.cost) { *trskip_out = 0; best = &noskip; } else { *trskip_out = 1; best = &skip; } if (best->has_coeffs || rec_out != pred_in) { // If there is no residual and reconstruction is already in rec_out, // we can skip this. kvz_pixels_blit(best->rec, rec_out, width, width, 4, out_stride); } copy_coeffs(best->coeff, coeff_out, width); return best->has_coeffs; } /** * Calculate the residual coefficients for a single TU. */ static void quantize_tr_residual(encoder_state_t * const state, const color_t color, const int32_t x, const int32_t y, const uint8_t depth, cu_info_t *cur_pu, lcu_t* lcu) { const kvz_config *cfg = &state->encoder_control->cfg; const int32_t shift = color == COLOR_Y ? 0 : 1; const vector2d_t lcu_px = { SUB_SCU(x) >> shift, SUB_SCU(y) >> shift }; // If luma is 4x4, do chroma for the 8x8 luma area when handling the top // left PU because the coordinates are correct. bool handled_elsewhere = color != COLOR_Y && depth > MAX_DEPTH && (lcu_px.x % 4 != 0 || lcu_px.y % 4 != 0); if (handled_elsewhere) { return; } // Clear coded block flag structures for depths lower than current depth. // This should ensure that the CBF data doesn't get corrupted if this function // is called more than once. cbf_clear(&cur_pu->cbf, depth, color); int32_t tr_width; if (color == COLOR_Y) { tr_width = LCU_WIDTH >> depth; } else { const int chroma_depth = (depth == MAX_PU_DEPTH ? depth - 1 : depth); tr_width = LCU_WIDTH_C >> chroma_depth; } const int32_t lcu_width = LCU_WIDTH >> shift; const int8_t mode = (color == COLOR_Y) ? cur_pu->intra.mode : cur_pu->intra.mode_chroma; const coeff_scan_order_t scan_idx = kvz_get_scan_order(cur_pu->type, mode, depth); const int offset = lcu_px.x + lcu_px.y * lcu_width; const int z_index = xy_to_zorder(lcu_width, lcu_px.x, lcu_px.y); // Pointers to current location in arrays with prediction. The // reconstruction will be written to this array. kvz_pixel *pred = NULL; // Pointers to current location in arrays with reference. const kvz_pixel *ref = NULL; // Pointers to current location in arrays with quantized coefficients. coeff_t *coeff = NULL; switch (color) { case COLOR_Y: pred = &lcu->rec.y[offset]; ref = &lcu->ref.y[offset]; coeff = &lcu->coeff.y[z_index]; break; case COLOR_U: pred = &lcu->rec.u[offset]; ref = &lcu->ref.u[offset]; coeff = &lcu->coeff.u[z_index]; break; case COLOR_V: pred = &lcu->rec.v[offset]; ref = &lcu->ref.v[offset]; coeff = &lcu->coeff.v[z_index]; break; } const bool can_use_trskip = tr_width == 4 && color == COLOR_Y && cfg->trskip_enable; bool has_coeffs; if (cfg->lossless) { has_coeffs = bypass_transquant(tr_width, lcu_width, // in stride lcu_width, // out stride ref, pred, pred, coeff); if (cfg->implicit_rdpcm && cur_pu->type == CU_INTRA) { // implicit rdpcm for horizontal and vertical intra modes if (mode == 18) { rdpcm(tr_width, RDPCM_HOR, coeff); } else if (mode == 50) { rdpcm(tr_width, RDPCM_VER, coeff); } } } else if (can_use_trskip) { int8_t tr_skip = 0; // Try quantization with trskip and use it if it's better. has_coeffs = kvz_quantize_residual_trskip(state, cur_pu, tr_width, color, scan_idx, &tr_skip, lcu_width, lcu_width, ref, pred, pred, coeff); cur_pu->tr_skip = tr_skip; } else { has_coeffs = kvz_quantize_residual(state, cur_pu, tr_width, color, scan_idx, false, // tr skip lcu_width, lcu_width, ref, pred, pred, coeff); } if (has_coeffs) { cbf_set(&cur_pu->cbf, depth, color); } } /** * This function calculates the residual coefficients for a region of the LCU * (defined by x, y and depth) and updates the reconstruction with the * kvantized residual. Processes the TU tree recursively. * * Inputs are: * - lcu->rec pixels after prediction for the area * - lcu->ref reference pixels for the area * - lcu->cu for the area * * Outputs are: * - lcu->rec reconstruction after quantized residual * - lcu->coeff quantized coefficients for the area * - lcu->cbf coded block flags for the area * - lcu->cu.intra.tr_skip tr skip flags for the area (in case of luma) */ void kvz_quantize_lcu_residual(encoder_state_t * const state, const bool luma, const bool chroma, const int32_t x, const int32_t y, const uint8_t depth, cu_info_t *cur_pu, lcu_t* lcu) { const int32_t width = LCU_WIDTH >> depth; const vector2d_t lcu_px = { SUB_SCU(x), SUB_SCU(y) }; if (cur_pu == NULL) { cur_pu = LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y); } // Tell clang-analyzer what is up. For some reason it can't figure out from // asserting just depth. assert(width == 4 || width == 8 || width == 16 || width == 32 || width == 64); if (depth == 0 || cur_pu->tr_depth > depth) { // Split transform and increase depth const int offset = width / 2; const int32_t x2 = x + offset; const int32_t y2 = y + offset; kvz_quantize_lcu_residual(state, luma, chroma, x, y, depth + 1, NULL, lcu); kvz_quantize_lcu_residual(state, luma, chroma, x2, y, depth + 1, NULL, lcu); kvz_quantize_lcu_residual(state, luma, chroma, x, y2, depth + 1, NULL, lcu); kvz_quantize_lcu_residual(state, luma, chroma, x2, y2, depth + 1, NULL, lcu); // Propagate coded block flags from child CUs to parent CU. uint16_t child_cbfs[3] = { LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y )->cbf, LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y + offset)->cbf, LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y + offset)->cbf, }; if (depth <= MAX_DEPTH) { cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_Y); cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_U); cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_V); } } else { // Process a leaf TU. if (luma) { quantize_tr_residual(state, COLOR_Y, x, y, depth, cur_pu, lcu); } if (chroma) { quantize_tr_residual(state, COLOR_U, x, y, depth, cur_pu, lcu); quantize_tr_residual(state, COLOR_V, x, y, depth, cur_pu, lcu); } } }