/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "transform.h" #include #include #include #include #include "config.h" #include "nal.h" #include "rdo.h" #include "strategies/strategies-dct.h" ////////////////////////////////////////////////////////////////////////// // INITIALIZATIONS // const uint8_t kvz_g_chroma_scale[58]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16, 17,18,19,20,21,22,23,24,25,26,27,28,29,29,30,31,32, 33,33,34,34,35,35,36,36,37,37,38,39,40,41,42,43,44, 45,46,47,48,49,50,51 }; ////////////////////////////////////////////////////////////////////////// // FUNCTIONS // /** * \brief Get scaled QP used in quantization * */ int32_t kvz_get_scaled_qp(int8_t type, int8_t qp, int8_t qp_offset) { int32_t qp_scaled = 0; if(type == 0) { qp_scaled = qp + qp_offset; } else { qp_scaled = CLIP(-qp_offset, 57, qp); if(qp_scaled < 0) { qp_scaled = qp_scaled + qp_offset; } else { qp_scaled = kvz_g_chroma_scale[qp_scaled] + qp_offset; } } return qp_scaled; } /** * \brief NxN inverse transform (2D) * \param coeff input data (transform coefficients) * \param block output data (residual) * \param block_size input data (width of transform) */ void kvz_transformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size) { uint32_t log2_tr_size = kvz_g_convert_to_bit[block_size] + 2; int32_t shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; int32_t j,k; for (j = 0; j < block_size; j++) { for(k = 0; k < block_size; k ++) { coeff[j * block_size + k] = block[j * block_size + k] << shift; } } } /** * \brief inverse transform skip * \param coeff input data (transform coefficients) * \param block output data (residual) * \param block_size width of transform */ void kvz_itransformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size) { uint32_t log2_tr_size = kvz_g_convert_to_bit[block_size] + 2; int32_t shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; int32_t j,k; int32_t offset; offset = (1 << (shift -1)); // For rounding for ( j = 0; j < block_size; j++ ) { for(k = 0; k < block_size; k ++) { block[j * block_size + k] = (coeff[j * block_size + k] + offset) >> shift; } } } /** * \brief forward transform (2D) * \param block input residual * \param coeff transform coefficients * \param block_size width of transform */ void kvz_transform2d(const encoder_control_t * const encoder, int16_t *block, int16_t *coeff, int8_t block_size, int32_t mode) { dct_func *dct_func = kvz_get_dct_func(block_size, mode); dct_func(encoder->bitdepth, block, coeff); } void kvz_itransform2d(const encoder_control_t * const encoder, int16_t *block, int16_t *coeff, int8_t block_size, int32_t mode) { dct_func *idct_func = kvz_get_idct_func(block_size, mode); idct_func(encoder->bitdepth, coeff, block); } #define QUANT_SHIFT 14 /** * \brief quantize transformed coefficents * */ void kvz_quant(const encoder_state_t * const state, coeff_t *coef, coeff_t *q_coef, int32_t width, int32_t height, int8_t type, int8_t scan_idx, int8_t block_type ) { const encoder_control_t * const encoder = state->encoder_control; const uint32_t log2_block_size = kvz_g_convert_to_bit[ width ] + 2; const uint32_t * const scan = kvz_g_sig_last_scan[ scan_idx ][ log2_block_size - 1 ]; int32_t qp_scaled = kvz_get_scaled_qp(type, state->global->QP, (encoder->bitdepth-8)*6); const uint32_t log2_tr_size = kvz_g_convert_to_bit[ width ] + 2; const int32_t scalinglist_type = (block_type == CU_INTRA ? 0 : 3) + (int8_t)("\0\3\1\2"[type]); const int32_t *quant_coeff = encoder->scaling_list.quant_coeff[log2_tr_size-2][scalinglist_type][qp_scaled%6]; const int32_t transform_shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; //!< Represents scaling through forward transform const int32_t q_bits = QUANT_SHIFT + qp_scaled/6 + transform_shift; const int32_t add = ((state->global->slicetype == KVZ_SLICE_I) ? 171 : 85) << (q_bits - 9); const int32_t q_bits8 = q_bits - 8; uint32_t ac_sum = 0; for (int32_t n = 0; n < width * height; n++) { int32_t level; int32_t sign; level = coef[n]; sign = (level < 0 ? -1: 1); level = ((int64_t)abs(level) * quant_coeff[n] + add) >> q_bits; ac_sum += level; level *= sign; q_coef[n] = (coeff_t)(CLIP( -32768, 32767, level)); } if (!(encoder->sign_hiding && ac_sum >= 2)) return; int32_t delta_u[LCU_WIDTH*LCU_WIDTH >> 2]; for (int32_t n = 0; n < width * height; n++) { int32_t level; level = coef[n]; level = ((int64_t)abs(level) * quant_coeff[n] + add) >> q_bits; delta_u[n] = (int32_t)(((int64_t)abs(coef[n]) * quant_coeff[n] - (level << q_bits)) >> q_bits8); } if(ac_sum >= 2) { #define SCAN_SET_SIZE 16 #define LOG2_SCAN_SET_SIZE 4 int32_t n,last_cg = -1, abssum = 0, subset, subpos; for(subset = (width*height - 1)>>LOG2_SCAN_SET_SIZE; subset >= 0; subset--) { int32_t first_nz_pos_in_cg = SCAN_SET_SIZE, last_nz_pos_in_cg=-1; subpos = subset<= 0; n--) { if (q_coef[scan[n + subpos]]) { last_nz_pos_in_cg = n; break; } } // First coeff pos for (n = 0; n = 0 && last_cg == -1) { last_cg = 1; } if(last_nz_pos_in_cg - first_nz_pos_in_cg >= 4) { int32_t signbit = (q_coef[scan[subpos + first_nz_pos_in_cg]] > 0 ? 0 : 1) ; if(signbit != (abssum&0x1)) { // compare signbit with sum_parity int32_t min_cost_inc = 0x7fffffff, min_pos =-1, cur_cost=0x7fffffff; int16_t final_change = 0, cur_change=0; for(n = (last_cg == 1 ? last_nz_pos_in_cg : SCAN_SET_SIZE - 1); n >= 0; n--) { uint32_t blkPos = scan[n + subpos]; if(q_coef[blkPos] != 0) { if(delta_u[blkPos] > 0) { cur_cost = -delta_u[blkPos]; cur_change=1; } else if(n == first_nz_pos_in_cg && abs(q_coef[blkPos]) == 1) { cur_cost=0x7fffffff; } else { cur_cost = delta_u[blkPos]; cur_change =-1; } } else if(n < first_nz_pos_in_cg && ((coef[blkPos] >= 0)?0:1) != signbit) { cur_cost = 0x7fffffff; } else { cur_cost = -delta_u[blkPos]; cur_change = 1; } if(cur_cost < min_cost_inc) { min_cost_inc = cur_cost; final_change = cur_change; min_pos = blkPos; } } // CG loop if(q_coef[min_pos] == 32767 || q_coef[min_pos] == -32768) { final_change = -1; } if(coef[min_pos] >= 0) q_coef[min_pos] += final_change; else q_coef[min_pos] -= final_change; } // Hide } if (last_cg == 1) last_cg=0; } #undef SCAN_SET_SIZE #undef LOG2_SCAN_SET_SIZE } } /** * \brief inverse quantize transformed and quantized coefficents * */ void kvz_dequant(const encoder_state_t * const state, coeff_t *q_coef, coeff_t *coef, int32_t width, int32_t height,int8_t type, int8_t block_type) { const encoder_control_t * const encoder = state->encoder_control; int32_t shift,add,coeff_q; int32_t n; int32_t transform_shift = 15 - encoder->bitdepth - (kvz_g_convert_to_bit[ width ] + 2); int32_t qp_scaled = kvz_get_scaled_qp(type, state->global->QP, (encoder->bitdepth-8)*6); shift = 20 - QUANT_SHIFT - transform_shift; if (encoder->scaling_list.enable) { uint32_t log2_tr_size = kvz_g_convert_to_bit[ width ] + 2; int32_t scalinglist_type = (block_type == CU_INTRA ? 0 : 3) + (int8_t)("\0\3\1\2"[type]); const int32_t *dequant_coef = encoder->scaling_list.de_quant_coeff[log2_tr_size-2][scalinglist_type][qp_scaled%6]; shift += 4; if (shift >qp_scaled / 6) { add = 1 << (shift - qp_scaled/6 - 1); for (n = 0; n < width * height; n++) { coeff_q = ((q_coef[n] * dequant_coef[n]) + add ) >> (shift - qp_scaled/6); coef[n] = (coeff_t)CLIP(-32768,32767,coeff_q); } } else { for (n = 0; n < width * height; n++) { // Clip to avoid possible overflow in following shift left operation coeff_q = CLIP(-32768, 32767, q_coef[n] * dequant_coef[n]); coef[n] = (coeff_t)CLIP(-32768, 32767, coeff_q << (qp_scaled/6 - shift)); } } } else { int32_t scale = kvz_g_inv_quant_scales[qp_scaled%6] << (qp_scaled/6); add = 1 << (shift-1); for (n = 0; n < width*height; n++) { coeff_q = (q_coef[n] * scale + add) >> shift; coef[n] = (coeff_t)CLIP(-32768, 32767, coeff_q); } } } /** * \brief Quantize residual and get both the reconstruction and coeffs. * * \param width Transform width. * \param color Color. * \param scan_order Coefficient scan order. * \param use_trskip Whether transform skip is used. * \param stride Stride for ref_in, pred_in rec_out and coeff_out. * \param ref_in Reference pixels. * \param pred_in Predicted pixels. * \param rec_out Reconstructed pixels. * \param coeff_out Coefficients used for reconstruction of rec_out. * * \returns Whether coeff_out contains any non-zero coefficients. */ int kvz_quantize_residual(encoder_state_t *const state, const cu_info_t *const cur_cu, const int width, const color_t color, const coeff_scan_order_t scan_order, const int use_trskip, const int in_stride, const int out_stride, const kvz_pixel *const ref_in, const kvz_pixel *const pred_in, kvz_pixel *rec_out, coeff_t *coeff_out) { // Temporary arrays to pass data to and from kvz_quant and transform functions. int16_t residual[TR_MAX_WIDTH * TR_MAX_WIDTH]; coeff_t quant_coeff[TR_MAX_WIDTH * TR_MAX_WIDTH]; coeff_t coeff[TR_MAX_WIDTH * TR_MAX_WIDTH]; int has_coeffs = 0; assert(width <= TR_MAX_WIDTH); assert(width >= TR_MIN_WIDTH); // Get residual. (ref_in - pred_in -> residual) { int y, x; for (y = 0; y < width; ++y) { for (x = 0; x < width; ++x) { residual[x + y * width] = (int16_t)(ref_in[x + y * in_stride] - pred_in[x + y * in_stride]); } } } // Transform residual. (residual -> coeff) if (use_trskip) { kvz_transformskip(state->encoder_control, residual, coeff, width); } else { kvz_transform2d(state->encoder_control, residual, coeff, width, (color == COLOR_Y ? 0 : 65535)); } // Quantize coeffs. (coeff -> quant_coeff) if (state->encoder_control->rdoq_enable) { int8_t tr_depth = cur_cu->tr_depth - cur_cu->depth; tr_depth += (cur_cu->part_size == SIZE_NxN ? 1 : 0); kvz_rdoq(state, coeff, quant_coeff, width, width, (color == COLOR_Y ? 0 : 2), scan_order, cur_cu->type, tr_depth); } else { kvz_quant(state, coeff, quant_coeff, width, width, (color == COLOR_Y ? 0 : 2), scan_order, cur_cu->type); } // Check if there are any non-zero coefficients. { int i; for (i = 0; i < width * width; ++i) { if (quant_coeff[i] != 0) { has_coeffs = 1; break; } } } // Copy coefficients to coeff_out. kvz_coefficients_blit(quant_coeff, coeff_out, width, width, width, out_stride); // Do the inverse quantization and transformation and the reconstruction to // rec_out. if (has_coeffs) { int y, x; // Get quantized residual. (quant_coeff -> coeff -> residual) kvz_dequant(state, quant_coeff, coeff, width, width, (color == COLOR_Y ? 0 : (color == COLOR_U ? 2 : 3)), cur_cu->type); if (use_trskip) { kvz_itransformskip(state->encoder_control, residual, coeff, width); } else { kvz_itransform2d(state->encoder_control, residual, coeff, width, (color == COLOR_Y ? 0 : 65535)); } // Get quantized reconstruction. (residual + pred_in -> rec_out) for (y = 0; y < width; ++y) { for (x = 0; x < width; ++x) { int16_t val = residual[x + y * width] + pred_in[x + y * in_stride]; rec_out[x + y * out_stride] = (kvz_pixel)CLIP(0, PIXEL_MAX, val); } } } else if (rec_out != pred_in) { // With no coeffs and rec_out == pred_int we skip copying the coefficients // because the reconstruction is just the prediction. int y, x; for (y = 0; y < width; ++y) { for (x = 0; x < width; ++x) { rec_out[x + y * out_stride] = pred_in[x + y * in_stride]; } } } return has_coeffs; } /** * \brief Like kvz_quantize_residual except that this uses trskip if that is better. * * Using this function saves one step of quantization and inverse quantization * compared to doing the decision separately from the actual operation. * * \param width Transform width. * \param color Color. * \param scan_order Coefficient scan order. * \param trskip_out Whether transform skip is used. * \param stride Stride for ref_in, pred_in rec_out and coeff_out. * \param ref_in Reference pixels. * \param pred_in Predicted pixels. * \param rec_out Reconstructed pixels. * \param coeff_out Coefficients used for reconstruction of rec_out. * * \returns Whether coeff_out contains any non-zero coefficients. */ int kvz_quantize_residual_trskip( encoder_state_t *const state, const cu_info_t *const cur_cu, const int width, const color_t color, const coeff_scan_order_t scan_order, int8_t *trskip_out, const int in_stride, const int out_stride, const kvz_pixel *const ref_in, const kvz_pixel *const pred_in, kvz_pixel *rec_out, coeff_t *coeff_out) { struct { kvz_pixel rec[4*4]; coeff_t coeff[4*4]; uint32_t cost; int has_coeffs; } skip, noskip, *best; const int bit_cost = (int)(state->global->cur_lambda_cost+0.5); noskip.has_coeffs = kvz_quantize_residual( state, cur_cu, width, color, scan_order, 0, in_stride, 4, ref_in, pred_in, noskip.rec, noskip.coeff); noskip.cost = kvz_pixels_calc_ssd(ref_in, noskip.rec, in_stride, 4, 4); noskip.cost += kvz_get_coeff_cost(state, noskip.coeff, 4, 0, scan_order) * bit_cost; skip.has_coeffs = kvz_quantize_residual( state, cur_cu, width, color, scan_order, 1, in_stride, 4, ref_in, pred_in, skip.rec, skip.coeff); skip.cost = kvz_pixels_calc_ssd(ref_in, skip.rec, in_stride, 4, 4); skip.cost += kvz_get_coeff_cost(state, skip.coeff, 4, 0, scan_order) * bit_cost; if (noskip.cost <= skip.cost) { *trskip_out = 0; best = &noskip; } else { *trskip_out = 1; best = &skip; } if (best->has_coeffs || rec_out != pred_in) { // If there is no residual and reconstruction is already in rec_out, // we can skip this. kvz_pixels_blit(best->rec, rec_out, width, width, 4, out_stride); } kvz_coefficients_blit(best->coeff, coeff_out, width, width, 4, out_stride); return best->has_coeffs; } /** * This function calculates the residual coefficients for a region of the LCU * (defined by x, y and depth) and updates the reconstruction with the * kvantized residual. * * It handles recursion for transform split, but that is currently only work * for 64x64 inter to 32x32 transform blocks. * * Inputs are: * - lcu->rec pixels after prediction for the area * - lcu->ref reference pixels for the area * - lcu->cu for the area * * Outputs are: * - lcu->rec reconstruction after quantized residual * - lcu->coeff quantized coefficients for the area * - lcu->cbf coded block flags for the area * - lcu->cu.intra[].tr_skip for the area */ void kvz_quantize_lcu_luma_residual(encoder_state_t * const state, int32_t x, int32_t y, const uint8_t depth, cu_info_t *cur_cu, lcu_t* lcu) { // we have 64>>depth transform size const vector2d_t lcu_px = {x & 0x3f, y & 0x3f}; const int pu_index = PU_INDEX(lcu_px.x / 4, lcu_px.y / 4); if (cur_cu == NULL) { cur_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x >> 3) + (lcu_px.y >> 3)*LCU_T_CU_WIDTH]; } const int8_t width = LCU_WIDTH>>depth; // Tell clang-analyzer what is up. For some reason it can't figure out from // asserting just depth. assert(width == 4 || width == 8 || width == 16 || width == 32 || width == 64); // Split transform and increase depth if (depth == 0 || cur_cu->tr_depth > depth) { int offset = width / 2; kvz_quantize_lcu_luma_residual(state, x, y, depth+1, NULL, lcu); kvz_quantize_lcu_luma_residual(state, x + offset, y, depth+1, NULL, lcu); kvz_quantize_lcu_luma_residual(state, x, y + offset, depth+1, NULL, lcu); kvz_quantize_lcu_luma_residual(state, x + offset, y + offset, depth+1, NULL, lcu); // Propagate coded block flags from child CUs to parent CU. if (depth < MAX_DEPTH) { cu_info_t *cu_a = &lcu->cu[LCU_CU_OFFSET + ((lcu_px.x + offset) >> 3) + (lcu_px.y >> 3) *LCU_T_CU_WIDTH]; cu_info_t *cu_b = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x >> 3) + ((lcu_px.y + offset) >> 3)*LCU_T_CU_WIDTH]; cu_info_t *cu_c = &lcu->cu[LCU_CU_OFFSET + ((lcu_px.x + offset) >> 3) + ((lcu_px.y + offset) >> 3)*LCU_T_CU_WIDTH]; if (cbf_is_set(cu_a->cbf.y, depth+1) || cbf_is_set(cu_b->cbf.y, depth+1) || cbf_is_set(cu_c->cbf.y, depth+1)) { cbf_set(&cur_cu->cbf.y, depth); } } return; } { const int luma_offset = lcu_px.x + lcu_px.y * LCU_WIDTH; // Pointers to current location in arrays with prediction. kvz_pixel *recbase_y = &lcu->rec.y[luma_offset]; // Pointers to current location in arrays with reference. const kvz_pixel *base_y = &lcu->ref.y[luma_offset]; // Pointers to current location in arrays with kvantized coefficients. coeff_t *orig_coeff_y = &lcu->coeff.y[luma_offset]; coeff_scan_order_t scan_idx_luma = kvz_get_scan_order(cur_cu->type, cur_cu->intra[pu_index].mode, depth); #if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD uint32_t residual_sum = 0; #endif // Clear coded block flag structures for depths lower than current depth. // This should ensure that the CBF data doesn't get corrupted if this function // is called more than once. cbf_clear(&cur_cu->cbf.y, depth + pu_index); if (width == 4 && state->encoder_control->trskip_enable) { // Try quantization with trskip and use it if it's better. int has_coeffs = kvz_quantize_residual_trskip( state, cur_cu, width, COLOR_Y, scan_idx_luma, &cur_cu->intra[pu_index].tr_skip, LCU_WIDTH, LCU_WIDTH, base_y, recbase_y, recbase_y, orig_coeff_y ); if (has_coeffs) { cbf_set(&cur_cu->cbf.y, depth + pu_index); } } else { int has_coeffs = kvz_quantize_residual( state, cur_cu, width, COLOR_Y, scan_idx_luma, 0, LCU_WIDTH, LCU_WIDTH, base_y, recbase_y, recbase_y, orig_coeff_y ); if (has_coeffs) { cbf_set(&cur_cu->cbf.y, depth + pu_index); } } } } void kvz_quantize_lcu_chroma_residual(encoder_state_t * const state, int32_t x, int32_t y, const uint8_t depth, cu_info_t *cur_cu, lcu_t* lcu) { // we have 64>>depth transform size const vector2d_t lcu_px = {x & 0x3f, y & 0x3f}; const int pu_index = PU_INDEX(lcu_px.x / 4, lcu_px.y / 4); const int8_t width = LCU_WIDTH>>depth; if (cur_cu == NULL) { cur_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x >> 3) + (lcu_px.y >> 3)*LCU_T_CU_WIDTH]; } // Tell clang-analyzer what is up. For some reason it can't figure out from // asserting just depth. assert(width == 4 || width == 8 || width == 16 || width == 32 || width == 64); // Split transform and increase depth if (depth == 0 || cur_cu->tr_depth > depth) { int offset = width / 2; kvz_quantize_lcu_chroma_residual(state, x, y, depth+1, NULL, lcu); kvz_quantize_lcu_chroma_residual(state, x + offset, y, depth+1, NULL, lcu); kvz_quantize_lcu_chroma_residual(state, x, y + offset, depth+1, NULL, lcu); kvz_quantize_lcu_chroma_residual(state, x + offset, y + offset, depth+1, NULL, lcu); // Propagate coded block flags from child CUs to parent CU. if (depth < MAX_DEPTH) { cu_info_t *cu_a = &lcu->cu[LCU_CU_OFFSET + ((lcu_px.x + offset) >> 3) + (lcu_px.y >> 3) *LCU_T_CU_WIDTH]; cu_info_t *cu_b = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x >> 3) + ((lcu_px.y + offset) >> 3)*LCU_T_CU_WIDTH]; cu_info_t *cu_c = &lcu->cu[LCU_CU_OFFSET + ((lcu_px.x + offset) >> 3) + ((lcu_px.y + offset) >> 3)*LCU_T_CU_WIDTH]; if (cbf_is_set(cu_a->cbf.u, depth+1) || cbf_is_set(cu_b->cbf.u, depth+1) || cbf_is_set(cu_c->cbf.u, depth+1)) { cbf_set(&cur_cu->cbf.u, depth); } if (cbf_is_set(cu_a->cbf.v, depth+1) || cbf_is_set(cu_b->cbf.v, depth+1) || cbf_is_set(cu_c->cbf.v, depth+1)) { cbf_set(&cur_cu->cbf.v, depth); } } return; } // If luma is 4x4, do chroma for the 8x8 luma area when handling the top // left PU because the coordinates are correct. if (depth <= MAX_DEPTH || pu_index == 0) { cbf_clear(&cur_cu->cbf.u, depth); cbf_clear(&cur_cu->cbf.v, depth); const int chroma_offset = lcu_px.x / 2 + lcu_px.y / 2 * LCU_WIDTH_C; kvz_pixel *recbase_u = &lcu->rec.u[chroma_offset]; kvz_pixel *recbase_v = &lcu->rec.v[chroma_offset]; const kvz_pixel *base_u = &lcu->ref.u[chroma_offset]; const kvz_pixel *base_v = &lcu->ref.v[chroma_offset]; coeff_t *orig_coeff_u = &lcu->coeff.u[chroma_offset]; coeff_t *orig_coeff_v = &lcu->coeff.v[chroma_offset]; coeff_scan_order_t scan_idx_chroma; int tr_skip = 0; int chroma_depth = (depth == MAX_PU_DEPTH ? depth - 1 : depth); int chroma_width = LCU_WIDTH_C >> chroma_depth; scan_idx_chroma = kvz_get_scan_order(cur_cu->type, cur_cu->intra[0].mode_chroma, depth); if (kvz_quantize_residual(state, cur_cu, chroma_width, COLOR_U, scan_idx_chroma, tr_skip, LCU_WIDTH_C, LCU_WIDTH_C, base_u, recbase_u, recbase_u, orig_coeff_u)) { cbf_set(&cur_cu->cbf.u, depth); } if (kvz_quantize_residual(state, cur_cu, chroma_width, COLOR_V, scan_idx_chroma, tr_skip, LCU_WIDTH_C, LCU_WIDTH_C, base_v, recbase_v, recbase_v, orig_coeff_v)) { cbf_set(&cur_cu->cbf.v, depth); } } }