/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "encoderstate.h" #include #include #include #include #include "tables.h" #include "cabac.h" #include "image.h" #include "nal.h" #include "context.h" #include "transform.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "search.h" #include "sao.h" #include "rdo.h" #include "rate_control.h" #include "strategies/strategies-picture.h" int kvz_encoder_state_match_children_of_previous_frame(encoder_state_t * const state) { int i; for (i = 0; state->children[i].encoder_control; ++i) { //Child should also exist for previous encoder assert(state->previous_encoder_state->children[i].encoder_control); state->children[i].previous_encoder_state = &state->previous_encoder_state->children[i]; kvz_encoder_state_match_children_of_previous_frame(&state->children[i]); } return 1; } static void encoder_state_recdata_to_bufs(encoder_state_t * const state, const lcu_order_element_t * const lcu, yuv_t * const hor_buf, yuv_t * const ver_buf) { videoframe_t* const frame = state->tile->frame; if (hor_buf) { const int rdpx = lcu->position_px.x; const int rdpy = lcu->position_px.y + lcu->size.y - 1; const int by = lcu->position.y; //Copy the bottom row of this LCU to the horizontal buffer kvz_pixels_blit(&frame->rec->y[rdpy * frame->rec->stride + rdpx], &hor_buf->y[lcu->position_px.x + by * frame->width], lcu->size.x, 1, frame->rec->stride, frame->width); kvz_pixels_blit(&frame->rec->u[(rdpy/2) * frame->rec->stride/2 + (rdpx/2)], &hor_buf->u[lcu->position_px.x / 2 + by * frame->width / 2], lcu->size.x / 2, 1, frame->rec->stride / 2, frame->width / 2); kvz_pixels_blit(&frame->rec->v[(rdpy/2) * frame->rec->stride/2 + (rdpx/2)], &hor_buf->v[lcu->position_px.x / 2 + by * frame->width / 2], lcu->size.x / 2, 1, frame->rec->stride / 2, frame->width / 2); } if (ver_buf) { const int rdpx = lcu->position_px.x + lcu->size.x - 1; const int rdpy = lcu->position_px.y; const int bx = lcu->position.x; //Copy the right row of this LCU to the vertical buffer. kvz_pixels_blit(&frame->rec->y[rdpy * frame->rec->stride + rdpx], &ver_buf->y[lcu->position_px.y + bx * frame->height], 1, lcu->size.y, frame->rec->stride, 1); kvz_pixels_blit(&frame->rec->u[(rdpy/2) * frame->rec->stride/2 + (rdpx/2)], &ver_buf->u[lcu->position_px.y / 2 + bx * frame->height / 2], 1, lcu->size.y / 2, frame->rec->stride / 2, 1); kvz_pixels_blit(&frame->rec->v[(rdpy/2) * frame->rec->stride/2 + (rdpx/2)], &ver_buf->v[lcu->position_px.y / 2 + bx * frame->height / 2], 1, lcu->size.y / 2, frame->rec->stride / 2, 1); } } static void encode_sao_color(encoder_state_t * const state, sao_info_t *sao, color_t color_i) { cabac_data_t * const cabac = &state->cabac; sao_eo_cat i; int offset_index = (color_i == COLOR_V) ? 5 : 0; // Skip colors with no SAO. //FIXME: for now, we always have SAO for all channels if (color_i == COLOR_Y && 0) return; if (color_i != COLOR_Y && 0) return; /// sao_type_idx_luma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass} /// sao_type_idx_chroma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass} // Encode sao_type_idx for Y and U+V. if (color_i != COLOR_V) { cabac->cur_ctx = &(cabac->ctx.sao_type_idx_model); CABAC_BIN(cabac, sao->type != SAO_TYPE_NONE, "sao_type_idx"); if (sao->type == SAO_TYPE_BAND) { CABAC_BIN_EP(cabac, 0, "sao_type_idx_ep"); } else if (sao->type == SAO_TYPE_EDGE) { CABAC_BIN_EP(cabac, 1, "sao_type_idx_ep"); } } if (sao->type == SAO_TYPE_NONE) return; /// sao_offset_abs[][][][]: TR, cMax = (1 << (Min(bitDepth, 10) - 5)) - 1, /// cRiceParam = 0, bins = {bypass x N} for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) { kvz_cabac_write_unary_max_symbol_ep(cabac, abs(sao->offsets[i + offset_index]), SAO_ABS_OFFSET_MAX); } /// sao_offset_sign[][][][]: FL, cMax = 1, bins = {bypass} /// sao_band_position[][][]: FL, cMax = 31, bins = {bypass x N} /// sao_eo_class_luma: FL, cMax = 3, bins = {bypass x 3} /// sao_eo_class_chroma: FL, cMax = 3, bins = {bypass x 3} if (sao->type == SAO_TYPE_BAND) { for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) { // Positive sign is coded as 0. if (sao->offsets[i + offset_index] != 0) { CABAC_BIN_EP(cabac, sao->offsets[i + offset_index] < 0 ? 1 : 0, "sao_offset_sign"); } } // TODO: sao_band_position // FL cMax=31 (5 bits) CABAC_BINS_EP(cabac, sao->band_position[color_i == COLOR_V ? 1:0], 5, "sao_band_position"); } else if (color_i != COLOR_V) { CABAC_BINS_EP(cabac, sao->eo_class, 2, "sao_eo_class"); } } static void encode_sao_merge_flags(encoder_state_t * const state, sao_info_t *sao, unsigned x_ctb, unsigned y_ctb) { cabac_data_t * const cabac = &state->cabac; // SAO merge flags are not present for the first row and column. if (x_ctb > 0) { cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model); CABAC_BIN(cabac, sao->merge_left_flag, "sao_merge_left_flag"); } if (y_ctb > 0 && !sao->merge_left_flag) { cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model); CABAC_BIN(cabac, sao->merge_up_flag, "sao_merge_up_flag"); } } /** * \brief Encode SAO information. */ static void encode_sao(encoder_state_t * const state, unsigned x_lcu, uint16_t y_lcu, sao_info_t *sao_luma, sao_info_t *sao_chroma) { // TODO: transmit merge flags outside sao_info encode_sao_merge_flags(state, sao_luma, x_lcu, y_lcu); // If SAO is merged, nothing else needs to be coded. if (!sao_luma->merge_left_flag && !sao_luma->merge_up_flag) { encode_sao_color(state, sao_luma, COLOR_Y); encode_sao_color(state, sao_chroma, COLOR_U); encode_sao_color(state, sao_chroma, COLOR_V); } } static void encoder_state_worker_encode_lcu(void * opaque) { const lcu_order_element_t * const lcu = opaque; encoder_state_t *state = lcu->encoder_state; const encoder_control_t * const encoder = state->encoder_control; videoframe_t* const frame = state->tile->frame; //This part doesn't write to bitstream, it's only search, deblock and sao kvz_search_lcu(state, lcu->position_px.x, lcu->position_px.y, state->tile->hor_buf_search, state->tile->ver_buf_search); encoder_state_recdata_to_bufs(state, lcu, state->tile->hor_buf_search, state->tile->ver_buf_search); if (encoder->deblock_enable) { kvz_filter_deblock_lcu(state, lcu->position_px.x, lcu->position_px.y); } if (encoder->sao_enable) { kvz_sao_search_lcu(state, lcu->position.x, lcu->position.y); } // Copy LCU cu_array to main states cu_array, because that is the only one // which is given to the next frame through image_list_t. { PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME); encoder_state_t *main_state = state; while (main_state->parent) main_state = main_state->parent; assert(main_state != state); unsigned child_width_in_scu = state->tile->frame->width_in_lcu << MAX_DEPTH; unsigned main_width_in_scu = main_state->tile->frame->width_in_lcu << MAX_DEPTH; unsigned tile_x = state->tile->lcu_offset_x << MAX_DEPTH; unsigned tile_y = state->tile->lcu_offset_y << MAX_DEPTH; unsigned x = lcu->position.x << MAX_DEPTH; unsigned y = lcu->position.y << MAX_DEPTH; for (unsigned lcu_row = 0; lcu_row < 8; ++lcu_row) { cu_info_t *main_row = &main_state->tile->frame->cu_array->data[x + tile_x + (y + tile_y + lcu_row) * main_width_in_scu]; cu_info_t *child_row = &state->tile->frame->cu_array->data[x + (y + lcu_row) * child_width_in_scu]; memcpy(main_row, child_row, sizeof(cu_info_t) * 8); } PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, state->encoder_control->threadqueue, "type=copy_cuinfo,frame=%d,tile=%d", state->global->frame, state->tile->id); } //Now write data to bitstream (required to have a correct CABAC state) //First LCU, and we are in a slice. We need a slice header if (state->type == ENCODER_STATE_TYPE_SLICE && lcu->index == 0) { kvz_encoder_state_write_bitstream_slice_header(state); kvz_bitstream_add_rbsp_trailing_bits(&state->stream); } //Encode SAO if (encoder->sao_enable) { encode_sao(state, lcu->position.x, lcu->position.y, &frame->sao_luma[lcu->position.y * frame->width_in_lcu + lcu->position.x], &frame->sao_chroma[lcu->position.y * frame->width_in_lcu + lcu->position.x]); } //Encode coding tree kvz_encode_coding_tree(state, lcu->position.x << MAX_DEPTH, lcu->position.y << MAX_DEPTH, 0); //Terminator if (lcu->index < state->lcu_order_count - 1) { //Since we don't handle slice segments, end of slice segment == end of slice //Always 0 since otherwise it would be split kvz_cabac_encode_bin_trm(&state->cabac, 0); // end_of_slice_segment_flag } //Wavefronts need the context to be copied to the next row if (state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW && lcu->index == 1) { int j; //Find next encoder (next row) for (j=0; state->parent->children[j].encoder_control; ++j) { if (state->parent->children[j].wfrow->lcu_offset_y == state->wfrow->lcu_offset_y + 1) { //And copy context kvz_context_copy(&state->parent->children[j], state); } } } if (encoder->sao_enable && lcu->above) { //If we're not the first in the row if (lcu->above->left) { encoder_state_recdata_to_bufs(state, lcu->above->left, state->tile->hor_buf_before_sao, NULL); } //Latest LCU in the row, copy the data from the one above also if (!lcu->right) { encoder_state_recdata_to_bufs(state, lcu->above, state->tile->hor_buf_before_sao, NULL); } } } static void encoder_state_encode_leaf(encoder_state_t * const state) { assert(state->is_leaf); assert(state->lcu_order_count > 0); const kvz_config *cfg = state->encoder_control->cfg; // Select whether to encode the frame/tile in current thread or to define // wavefront jobs for other threads to handle. bool wavefront = state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW; bool use_parallel_encoding = (wavefront && state->parent->children[1].encoder_control); if (!use_parallel_encoding) { // Encode every LCU in order and perform SAO reconstruction after every // frame is encoded. Deblocking and SAO search is done during LCU encoding. for (int i = 0; i < state->lcu_order_count; ++i) { PERFORMANCE_MEASURE_START(KVZ_PERF_LCU); encoder_state_worker_encode_lcu(&state->lcu_order[i]); #ifdef KVZ_DEBUG { const lcu_order_element_t * const lcu = &state->lcu_order[i]; PERFORMANCE_MEASURE_END(KVZ_PERF_LCU, state->encoder_control->threadqueue, "type=encode_lcu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", state->global->frame, state->tile->id, state->slice->id, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH + lcu->size.x - 1, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH + lcu->size.y - 1); } #endif //KVZ_DEBUG } if (state->encoder_control->sao_enable) { PERFORMANCE_MEASURE_START(KVZ_PERF_SAOREC); kvz_sao_reconstruct_frame(state); PERFORMANCE_MEASURE_END(KVZ_PERF_SAOREC, state->encoder_control->threadqueue, "type=kvz_sao_reconstruct_frame,frame=%d,tile=%d,slice=%d,row=%d-%d,px_x=%d-%d,px_y=%d-%d", state->global->frame, state->tile->id, state->slice->id, state->lcu_order[0].position.y + state->tile->lcu_offset_y, state->lcu_order[state->lcu_order_count - 1].position.y + state->tile->lcu_offset_y, state->tile->lcu_offset_x * LCU_WIDTH, state->tile->frame->width + state->tile->lcu_offset_x * LCU_WIDTH - 1, state->tile->lcu_offset_y * LCU_WIDTH, state->tile->frame->height + state->tile->lcu_offset_y * LCU_WIDTH - 1 ); } } else { // Add each LCU in the wavefront row as it's own job to the queue. // Select which frame dependancies should be set to. const encoder_state_t * ref_state = NULL; if (cfg->gop_lowdelay && cfg->gop_len > 0 && state->previous_encoder_state != state) { // For LP-gop, depend on the state of the first reference. int ref_neg = cfg->gop[(state->global->poc - 1) % cfg->gop_len].ref_neg[0]; if (ref_neg > state->encoder_control->owf) { // If frame is not within OWF range, it's already done. ref_state = NULL; } else { ref_state = state->previous_encoder_state; while (ref_neg > 1) { ref_neg -= 1; ref_state = ref_state->previous_encoder_state; } } } else { // Otherwise, depend on the previous frame. ref_state = state->previous_encoder_state; } for (int i = 0; i < state->lcu_order_count; ++i) { const lcu_order_element_t * const lcu = &state->lcu_order[i]; #ifdef KVZ_DEBUG char job_description[256]; sprintf(job_description, "type=encode_lcu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", state->global->frame, state->tile->id, state->slice->id, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH + lcu->size.x - 1, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH + lcu->size.y - 1); #else char* job_description = NULL; #endif state->tile->wf_jobs[lcu->id] = kvz_threadqueue_submit(state->encoder_control->threadqueue, encoder_state_worker_encode_lcu, (void*)lcu, 1, job_description); // If job object was returned, add dependancies and allow it to run. if (state->tile->wf_jobs[lcu->id]) { // Add inter frame dependancies when ecoding more than one frame at // once. The added dependancy is for the first LCU of each wavefront // row to depend on the reconstruction status of the row below in the // previous frame. if (ref_state != NULL && state->previous_encoder_state->tqj_recon_done && state->global->slicetype != KVZ_SLICE_I) { if (!lcu->left) { const lcu_order_element_t * const ref_lcu = &ref_state->lcu_order[i]; if (lcu->below) { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], ref_lcu->below->encoder_state->tqj_recon_done); } else { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], ref_lcu->encoder_state->tqj_recon_done); } } } // Add local WPP dependancy to the LCU on the left. if (lcu->left) { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - 1]); } // Add local WPP dependancy to the LCU on the top right. if (lcu->above) { if (lcu->above->right) { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - state->tile->frame->width_in_lcu + 1]); } else { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - state->tile->frame->width_in_lcu]); } } kvz_threadqueue_job_unwait_job(state->encoder_control->threadqueue, state->tile->wf_jobs[lcu->id]); } // In the case where SAO is not enabled, the wavefront row is // done when the last LCU in the row is done. if (!state->encoder_control->sao_enable && i + 1 == state->lcu_order_count) { assert(!state->tqj_recon_done); state->tqj_recon_done = state->tile->wf_jobs[lcu->id]; } } } } static void encoder_state_encode(encoder_state_t * const main_state); static void encoder_state_worker_encode_children(void * opaque) { encoder_state_t *sub_state = opaque; encoder_state_encode(sub_state); if (sub_state->is_leaf) { if (sub_state->type != ENCODER_STATE_TYPE_WAVEFRONT_ROW) { PERFORMANCE_MEASURE_START(KVZ_PERF_BSLEAF); kvz_encoder_state_write_bitstream_leaf(sub_state); PERFORMANCE_MEASURE_END(KVZ_PERF_BSLEAF, sub_state->encoder_control->threadqueue, "type=encoder_state_write_bitstream_leaf,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", sub_state->global->frame, sub_state->tile->id, sub_state->slice->id, sub_state->lcu_order[0].position_px.x + sub_state->tile->lcu_offset_x * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count - 1].position_px.x + sub_state->lcu_order[sub_state->lcu_order_count - 1].size.x + sub_state->tile->lcu_offset_x * LCU_WIDTH - 1, sub_state->lcu_order[0].position_px.y + sub_state->tile->lcu_offset_y * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count - 1].position_px.y + sub_state->lcu_order[sub_state->lcu_order_count - 1].size.y + sub_state->tile->lcu_offset_y * LCU_WIDTH - 1); } else { threadqueue_job_t *job; #ifdef KVZ_DEBUG char job_description[256]; sprintf(job_description, "type=encoder_state_write_bitstream_leaf,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", sub_state->global->frame, sub_state->tile->id, sub_state->slice->id, sub_state->lcu_order[0].position_px.x + sub_state->tile->lcu_offset_x * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count-1].position_px.x + sub_state->lcu_order[sub_state->lcu_order_count-1].size.x + sub_state->tile->lcu_offset_x * LCU_WIDTH - 1, sub_state->lcu_order[0].position_px.y + sub_state->tile->lcu_offset_y * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count-1].position_px.y + sub_state->lcu_order[sub_state->lcu_order_count-1].size.y + sub_state->tile->lcu_offset_y * LCU_WIDTH - 1); #else char* job_description = NULL; #endif job = kvz_threadqueue_submit(sub_state->encoder_control->threadqueue, kvz_encoder_state_worker_write_bitstream_leaf, sub_state, 1, job_description); kvz_threadqueue_job_dep_add(job, sub_state->tile->wf_jobs[sub_state->wfrow->lcu_offset_y * sub_state->tile->frame->width_in_lcu + sub_state->lcu_order_count - 1]); kvz_threadqueue_job_unwait_job(sub_state->encoder_control->threadqueue, job); assert(!sub_state->tqj_bitstream_written); //Bitstream is written for the row, if we're at the last LCU sub_state->tqj_bitstream_written = job; return; } } } typedef struct { int y; const encoder_state_t * encoder_state; } worker_sao_reconstruct_lcu_data; static void encoder_state_worker_sao_reconstruct_lcu(void *opaque) { worker_sao_reconstruct_lcu_data *data = opaque; videoframe_t * const frame = data->encoder_state->tile->frame; unsigned stride = frame->width_in_lcu; int x; //TODO: copy only needed data kvz_pixel *new_y_data = MALLOC(kvz_pixel, frame->width * frame->height); kvz_pixel *new_u_data = MALLOC(kvz_pixel, (frame->width * frame->height) >> 2); kvz_pixel *new_v_data = MALLOC(kvz_pixel, (frame->width * frame->height) >> 2); const int offset = frame->width * (data->y*LCU_WIDTH); const int offset_c = frame->width/2 * (data->y*LCU_WIDTH_C); int num_pixels = frame->width * (LCU_WIDTH + 2); if (num_pixels + offset > frame->width * frame->height) { num_pixels = frame->width * frame->height - offset; } memcpy(&new_y_data[offset], &frame->rec->y[offset], sizeof(kvz_pixel) * num_pixels); memcpy(&new_u_data[offset_c], &frame->rec->u[offset_c], sizeof(kvz_pixel) * num_pixels >> 2); memcpy(&new_v_data[offset_c], &frame->rec->v[offset_c], sizeof(kvz_pixel) * num_pixels >> 2); if (data->y>0) { //copy first row from buffer memcpy(&new_y_data[frame->width * (data->y*LCU_WIDTH-1)], &data->encoder_state->tile->hor_buf_before_sao->y[frame->width * (data->y-1)], frame->width * sizeof(kvz_pixel)); memcpy(&new_u_data[frame->width/2 * (data->y*LCU_WIDTH_C-1)], &data->encoder_state->tile->hor_buf_before_sao->u[frame->width/2 * (data->y-1)], frame->width/2 * sizeof(kvz_pixel)); memcpy(&new_v_data[frame->width/2 * (data->y*LCU_WIDTH_C-1)], &data->encoder_state->tile->hor_buf_before_sao->v[frame->width/2 * (data->y-1)], frame->width/2 * sizeof(kvz_pixel)); } for (x = 0; x < frame->width_in_lcu; x++) { // sao_do_rdo(encoder, lcu.x, lcu.y, sao_luma, sao_chroma); sao_info_t *sao_luma = &frame->sao_luma[data->y * stride + x]; sao_info_t *sao_chroma = &frame->sao_chroma[data->y * stride + x]; kvz_sao_reconstruct(data->encoder_state->encoder_control, frame, new_y_data, x, data->y, sao_luma, COLOR_Y); kvz_sao_reconstruct(data->encoder_state->encoder_control, frame, new_u_data, x, data->y, sao_chroma, COLOR_U); kvz_sao_reconstruct(data->encoder_state->encoder_control, frame, new_v_data, x, data->y, sao_chroma, COLOR_V); } free(new_y_data); free(new_u_data); free(new_v_data); free(opaque); } static int encoder_state_tree_is_a_chain(const encoder_state_t * const state) { if (!state->children[0].encoder_control) return 1; if (state->children[1].encoder_control) return 0; return encoder_state_tree_is_a_chain(&state->children[0]); } static void encoder_state_encode(encoder_state_t * const main_state) { //If we have children, encode at child level if (main_state->children[0].encoder_control) { int i=0; //If we have only one child, than it cannot be the last split in tree int node_is_the_last_split_in_tree = (main_state->children[1].encoder_control != 0); for (i=0; main_state->children[i].encoder_control; ++i) { encoder_state_t *sub_state = &(main_state->children[i]); if (sub_state->tile != main_state->tile) { const int offset_x = sub_state->tile->lcu_offset_x * LCU_WIDTH; const int offset_y = sub_state->tile->lcu_offset_y * LCU_WIDTH; const int width = MIN(sub_state->tile->frame->width_in_lcu * LCU_WIDTH, main_state->tile->frame->width - offset_x); const int height = MIN(sub_state->tile->frame->height_in_lcu * LCU_WIDTH, main_state->tile->frame->height - offset_y); if (sub_state->tile->frame->source) { kvz_image_free(sub_state->tile->frame->source); sub_state->tile->frame->source = NULL; } if (sub_state->tile->frame->rec) { kvz_image_free(sub_state->tile->frame->rec); sub_state->tile->frame->rec = NULL; } assert(!sub_state->tile->frame->source); assert(!sub_state->tile->frame->rec); sub_state->tile->frame->source = kvz_image_make_subimage(main_state->tile->frame->source, offset_x, offset_y, width, height); sub_state->tile->frame->rec = kvz_image_make_subimage(main_state->tile->frame->rec, offset_x, offset_y, width, height); } //To be the last split, we require that every child is a chain node_is_the_last_split_in_tree = node_is_the_last_split_in_tree && encoder_state_tree_is_a_chain(&main_state->children[i]); } //If it's the latest split point if (node_is_the_last_split_in_tree) { for (i=0; main_state->children[i].encoder_control; ++i) { //If we don't have wavefronts, parallelize encoding of children. if (main_state->children[i].type != ENCODER_STATE_TYPE_WAVEFRONT_ROW) { #ifdef KVZ_DEBUG char job_description[256]; switch (main_state->children[i].type) { case ENCODER_STATE_TYPE_TILE: sprintf(job_description, "type=encode_child,frame=%d,tile=%d,row=%d-%d,px_x=%d-%d,px_y=%d-%d", main_state->children[i].global->frame, main_state->children[i].tile->id, main_state->children[i].lcu_order[0].position.y + main_state->children[i].tile->lcu_offset_y, main_state->children[i].lcu_order[0].position.y + main_state->children[i].tile->lcu_offset_y, main_state->children[i].lcu_order[0].position_px.x + main_state->children[i].tile->lcu_offset_x * LCU_WIDTH, main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].position_px.x + main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].size.x + main_state->children[i].tile->lcu_offset_x * LCU_WIDTH - 1, main_state->children[i].lcu_order[0].position_px.y + main_state->children[i].tile->lcu_offset_y * LCU_WIDTH, main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].position_px.y + main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].size.y + main_state->children[i].tile->lcu_offset_y * LCU_WIDTH - 1); break; case ENCODER_STATE_TYPE_SLICE: sprintf(job_description, "type=encode_child,frame=%d,slice=%d,start_in_ts=%d", main_state->children[i].global->frame, main_state->children[i].slice->id, main_state->children[i].slice->start_in_ts); break; default: sprintf(job_description, "type=encode_child,frame=%d,invalid", main_state->children[i].global->frame); break; } #else char* job_description = NULL; #endif main_state->children[i].tqj_recon_done = kvz_threadqueue_submit(main_state->encoder_control->threadqueue, encoder_state_worker_encode_children, &(main_state->children[i]), 1, job_description); if (main_state->children[i].previous_encoder_state != &main_state->children[i] && main_state->children[i].previous_encoder_state->tqj_recon_done && !main_state->children[i].global->is_idr_frame) { #if 0 // Disabled due to non-determinism. if (main_state->encoder_control->cfg->mv_constraint == KVZ_MV_CONSTRAIN_FRAME_AND_TILE_MARGIN) { // When MV's don't cross tile boundaries, add dependancy only to the same tile. kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[i].previous_encoder_state->tqj_recon_done); } else #endif { // Add dependancy to each child in the previous frame. for (int child_id = 0; main_state->children[child_id].encoder_control; ++child_id) { kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[child_id].previous_encoder_state->tqj_recon_done); } } } kvz_threadqueue_job_unwait_job(main_state->encoder_control->threadqueue, main_state->children[i].tqj_recon_done); } else { //Wavefront rows have parallelism at LCU level, so we should not launch multiple threads here! //FIXME: add an assert: we can only have wavefront children encoder_state_worker_encode_children(&(main_state->children[i])); } } //If children are wavefront, we need to reconstruct SAO if (main_state->encoder_control->sao_enable && main_state->children[0].type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) { int y; videoframe_t * const frame = main_state->tile->frame; threadqueue_job_t *previous_job = NULL; for (y = 0; y < frame->height_in_lcu; ++y) { worker_sao_reconstruct_lcu_data *data = MALLOC(worker_sao_reconstruct_lcu_data, 1); threadqueue_job_t *job; #ifdef KVZ_DEBUG char job_description[256]; sprintf(job_description, "type=sao,frame=%d,tile=%d,px_x=%d-%d,px_y=%d-%d", main_state->global->frame, main_state->tile->id, main_state->tile->lcu_offset_x * LCU_WIDTH, main_state->tile->lcu_offset_x * LCU_WIDTH + main_state->tile->frame->width - 1, (main_state->tile->lcu_offset_y + y) * LCU_WIDTH, MIN(main_state->tile->lcu_offset_y * LCU_WIDTH + main_state->tile->frame->height, (main_state->tile->lcu_offset_y + y + 1) * LCU_WIDTH)-1); #else char* job_description = NULL; #endif data->y = y; data->encoder_state = main_state; job = kvz_threadqueue_submit(main_state->encoder_control->threadqueue, encoder_state_worker_sao_reconstruct_lcu, data, 1, job_description); if (previous_job) { kvz_threadqueue_job_dep_add(job, previous_job); } previous_job = job; if (y < frame->height_in_lcu - 1) { //Not last row: depend on the last LCU of the row below kvz_threadqueue_job_dep_add(job, main_state->tile->wf_jobs[(y + 1) * frame->width_in_lcu + frame->width_in_lcu - 1]); } else { //Last row: depend on the last LCU of the row kvz_threadqueue_job_dep_add(job, main_state->tile->wf_jobs[(y + 0) * frame->width_in_lcu + frame->width_in_lcu - 1]); } kvz_threadqueue_job_unwait_job(main_state->encoder_control->threadqueue, job); //Set wfrow recon job main_state->children[y].tqj_recon_done = job; if (y == frame->height_in_lcu - 1) { assert(!main_state->tqj_recon_done); main_state->tqj_recon_done = job; } } } } else { for (i=0; main_state->children[i].encoder_control; ++i) { encoder_state_worker_encode_children(&(main_state->children[i])); } } } else { switch (main_state->type) { case ENCODER_STATE_TYPE_TILE: case ENCODER_STATE_TYPE_SLICE: case ENCODER_STATE_TYPE_WAVEFRONT_ROW: encoder_state_encode_leaf(main_state); break; default: fprintf(stderr, "Unsupported leaf type %c!\n", main_state->type); assert(0); } } } static void encoder_ref_insertion_sort(int reflist[16], int length) { for (uint8_t i = 1; i < length; ++i) { const int16_t cur_poc = reflist[i]; int16_t j = i; while (j > 0 && cur_poc < reflist[j - 1]) { reflist[j] = reflist[j - 1]; --j; } reflist[j] = cur_poc; } } /** * \brief Return reference picture lists. * * \param state main encoder state * \param ref_list_len_out Returns the lengths of the reference lists. * \param ref_list_poc_out Returns two lists of POCs of the reference pictures. */ void kvz_encoder_get_ref_lists(const encoder_state_t *const state, int ref_list_len_out[2], int ref_list_poc_out[2][16]) { FILL_ARRAY(ref_list_len_out, 0, 2); // List all pocs of lists int j = 0; for (j = 0; j < state->global->ref->used_size; j++) { if (state->global->ref->pocs[j] < state->global->poc) { ref_list_poc_out[0][ref_list_len_out[0]] = state->global->ref->pocs[j]; ref_list_len_out[0]++; } else { ref_list_poc_out[1][ref_list_len_out[1]] = state->global->ref->pocs[j]; ref_list_len_out[1]++; } } // Fill the rest of ref_list_poc_out array with -1s. for (; j < 16; j++) { ref_list_poc_out[0][j] = -1; ref_list_poc_out[1][j] = -1; } encoder_ref_insertion_sort(ref_list_poc_out[0], ref_list_len_out[0]); encoder_ref_insertion_sort(ref_list_poc_out[1], ref_list_len_out[1]); } static void encoder_state_ref_sort(encoder_state_t *state) { int ref_list_len[2]; int ref_list_poc[2][16]; kvz_encoder_get_ref_lists(state, ref_list_len, ref_list_poc); for (int j = 0; j < state->global->ref->used_size; j++) { if (state->global->ref->pocs[j] < state->global->poc) { for (int ref_idx = 0; ref_idx < ref_list_len[0]; ref_idx++) { if (ref_list_poc[0][ref_idx] == state->global->ref->pocs[j]) { state->global->refmap[j].idx = ref_list_len[0] - ref_idx - 1; break; } } state->global->refmap[j].list = 1; } else { for (int ref_idx = 0; ref_idx < ref_list_len[1]; ref_idx++) { if (ref_list_poc[1][ref_idx] == state->global->ref->pocs[j]) { state->global->refmap[j].idx = ref_idx; break; } } state->global->refmap[j].list = 2; } state->global->refmap[j].poc = state->global->ref->pocs[j]; } } static void encoder_state_remove_refs(encoder_state_t *state) { const encoder_control_t * const encoder = state->encoder_control; int8_t refnumber = encoder->cfg->ref_frames; int8_t check_refs = 0; if (encoder->cfg->gop_len) { refnumber = encoder->cfg->gop[state->global->gop_offset].ref_neg_count + encoder->cfg->gop[state->global->gop_offset].ref_pos_count; check_refs = 1; } else if (state->global->slicetype == KVZ_SLICE_I) { refnumber = 0; } // Remove the ref pic (if present) while (check_refs || state->global->ref->used_size > (uint32_t)refnumber) { int8_t ref_to_remove = state->global->ref->used_size - 1; if (encoder->cfg->gop_len) { for (int ref = 0; ref < state->global->ref->used_size; ref++) { uint8_t found = 0; for (int i = 0; i < encoder->cfg->gop[state->global->gop_offset].ref_neg_count; i++) { if (state->global->ref->pocs[ref] == state->global->poc - encoder->cfg->gop[state->global->gop_offset].ref_neg[i]) { found = 1; break; } } if (found) continue; for (int i = 0; i < encoder->cfg->gop[state->global->gop_offset].ref_pos_count; i++) { if (state->global->ref->pocs[ref] == state->global->poc + encoder->cfg->gop[state->global->gop_offset].ref_pos[i]) { found = 1; break; } } if (!found) { kvz_image_list_rem(state->global->ref, ref); ref--; } } check_refs = 0; } else kvz_image_list_rem(state->global->ref, ref_to_remove); } } static void encoder_state_reset_poc(encoder_state_t *state) { int i; state->global->poc = 0; kvz_videoframe_set_poc(state->tile->frame, 0); for (i=0; state->children[i].encoder_control; ++i) { encoder_state_t *sub_state = &(state->children[i]); encoder_state_reset_poc(sub_state); } } static void encoder_state_new_frame(encoder_state_t * const state) { int i; //FIXME Move this somewhere else! if (state->type == ENCODER_STATE_TYPE_MAIN) { const encoder_control_t * const encoder = state->encoder_control; if (state->global->frame == 0) { state->global->is_idr_frame = true; } else if (encoder->cfg->gop_len) { // Closed GOP / CRA is not yet supported. state->global->is_idr_frame = false; // Calculate POC according to the global frame counter and GOP structure int32_t poc = state->global->frame - 1; int32_t poc_offset = encoder->cfg->gop[state->global->gop_offset].poc_offset; state->global->poc = poc - poc % encoder->cfg->gop_len + poc_offset; kvz_videoframe_set_poc(state->tile->frame, state->global->poc); } else { bool is_i_idr = (encoder->cfg->intra_period == 1 && state->global->frame % 2 == 0); bool is_p_idr = (encoder->cfg->intra_period > 1 && (state->global->frame % encoder->cfg->intra_period) == 0); state->global->is_idr_frame = is_i_idr || is_p_idr; } if (state->global->is_idr_frame) { encoder_state_reset_poc(state); state->global->slicetype = KVZ_SLICE_I; state->global->pictype = KVZ_NAL_IDR_W_RADL; } else { state->global->slicetype = encoder->cfg->intra_period==1 ? KVZ_SLICE_I : (state->encoder_control->cfg->gop_len?KVZ_SLICE_B:KVZ_SLICE_P); // Use P-slice for lowdelay. if (state->global->slicetype == KVZ_SLICE_B && encoder->cfg->gop_lowdelay) { state->global->slicetype = KVZ_SLICE_P; } state->global->pictype = KVZ_NAL_TRAIL_R; if (state->encoder_control->cfg->gop_len) { if (encoder->cfg->intra_period > 1 && (state->global->poc % encoder->cfg->intra_period) == 0) { state->global->slicetype = KVZ_SLICE_I; } } } encoder_state_remove_refs(state); encoder_state_ref_sort(state); double lambda; if (encoder->cfg->target_bitrate > 0) { // Rate control enabled. lambda = kvz_select_picture_lambda(state); state->global->QP = kvz_lambda_to_QP(lambda); } else { if (encoder->cfg->gop_len > 0 && state->global->slicetype != KVZ_SLICE_I) { kvz_gop_config const * const gop = encoder->cfg->gop + state->global->gop_offset; state->global->QP = encoder->cfg->qp + gop->qp_offset; state->global->QP_factor = gop->qp_factor; } else { state->global->QP = encoder->cfg->qp; } lambda = kvz_select_picture_lambda_from_qp(state); } state->global->cur_lambda_cost = lambda; state->global->cur_lambda_cost_sqrt = sqrt(lambda); } kvz_bitstream_clear(&state->stream); if (state->is_leaf) { //Leaf states have cabac and context kvz_cabac_start(&state->cabac); kvz_init_contexts(state, state->global->QP, state->global->slicetype); } //Clear the jobs state->tqj_bitstream_written = NULL; state->tqj_recon_done = NULL; for (i = 0; state->children[i].encoder_control; ++i) { encoder_state_new_frame(&state->children[i]); } } static void _encode_one_frame_add_bitstream_deps(const encoder_state_t * const state, threadqueue_job_t * const job) { int i; for (i = 0; state->children[i].encoder_control; ++i) { _encode_one_frame_add_bitstream_deps(&state->children[i], job); } if (state->tqj_bitstream_written) { kvz_threadqueue_job_dep_add(job, state->tqj_bitstream_written); } if (state->tqj_recon_done) { kvz_threadqueue_job_dep_add(job, state->tqj_recon_done); } } void kvz_encode_one_frame(encoder_state_t * const state) { { PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME); encoder_state_new_frame(state); PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, state->encoder_control->threadqueue, "type=new_frame,frame=%d,poc=%d", state->global->frame, state->global->poc); } { PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME); encoder_state_encode(state); PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, state->encoder_control->threadqueue, "type=encode,frame=%d", state->global->frame); } //kvz_threadqueue_flush(main_state->encoder_control->threadqueue); { threadqueue_job_t *job; #ifdef KVZ_DEBUG char job_description[256]; sprintf(job_description, "type=write_bitstream,frame=%d", state->global->frame); #else char* job_description = NULL; #endif job = kvz_threadqueue_submit(state->encoder_control->threadqueue, kvz_encoder_state_worker_write_bitstream, (void*) state, 1, job_description); _encode_one_frame_add_bitstream_deps(state, job); if (state->previous_encoder_state != state && state->previous_encoder_state->tqj_bitstream_written) { //We need to depend on previous bitstream generation kvz_threadqueue_job_dep_add(job, state->previous_encoder_state->tqj_bitstream_written); } kvz_threadqueue_job_unwait_job(state->encoder_control->threadqueue, job); assert(!state->tqj_bitstream_written); state->tqj_bitstream_written = job; } state->frame_done = 0; //kvz_threadqueue_flush(main_state->encoder_control->threadqueue); } void kvz_encoder_next_frame(encoder_state_t *state) { const encoder_control_t * const encoder = state->encoder_control; // The previous frame must be done before the next one is started. assert(state->frame_done); if (state->global->frame == -1) { //We're at the first frame, so don't care about all this stuff; state->global->frame = 0; state->global->poc = 0; assert(!state->tile->frame->source); assert(!state->tile->frame->rec); state->tile->frame->rec = kvz_image_alloc(state->tile->frame->width, state->tile->frame->height); assert(state->tile->frame->rec); state->prepared = 1; return; } if (state->previous_encoder_state != state) { encoder_state_t *prev_state = state->previous_encoder_state; //We have a "real" previous encoder state->global->frame = prev_state->global->frame + 1; state->global->poc = prev_state->global->poc + 1; kvz_cu_array_free(state->tile->frame->cu_array); kvz_image_free(state->tile->frame->source); state->tile->frame->source = NULL; kvz_image_free(state->tile->frame->rec); state->tile->frame->rec = kvz_image_alloc(state->tile->frame->width, state->tile->frame->height); assert(state->tile->frame->rec); { // Allocate height_in_scu x width_in_scu x sizeof(CU_info) unsigned height_in_scu = state->tile->frame->height_in_lcu << MAX_DEPTH; unsigned width_in_scu = state->tile->frame->width_in_lcu << MAX_DEPTH; state->tile->frame->cu_array = kvz_cu_array_alloc(width_in_scu, height_in_scu); } kvz_videoframe_set_poc(state->tile->frame, state->global->poc); kvz_image_list_copy_contents(state->global->ref, prev_state->global->ref); if (!encoder->cfg->gop_len || !prev_state->global->poc || encoder->cfg->gop[prev_state->global->gop_offset].is_ref) { kvz_image_list_add(state->global->ref, prev_state->tile->frame->rec, prev_state->tile->frame->cu_array, prev_state->global->poc); } state->prepared = 1; return; } if (!encoder->cfg->gop_len || !state->global->poc || encoder->cfg->gop[state->global->gop_offset].is_ref) { // Add current reconstructed picture as reference kvz_image_list_add(state->global->ref, state->tile->frame->rec, state->tile->frame->cu_array, state->global->poc); } state->global->frame++; state->global->poc++; // Remove current source picture. kvz_image_free(state->tile->frame->source); state->tile->frame->source = NULL; // Remove current reconstructed picture, and alloc a new one kvz_image_free(state->tile->frame->rec); state->tile->frame->rec = kvz_image_alloc(state->tile->frame->width, state->tile->frame->height); assert(state->tile->frame->rec); kvz_videoframe_set_poc(state->tile->frame, state->global->poc); state->prepared = 1; } static void encode_part_mode(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int depth) { // Binarization from Table 9-34 of the HEVC spec: // // | log2CbSize > | log2CbSize == // | MinCbLog2SizeY | MinCbLog2SizeY // -------+-------+----------+---------+-----------+---------- // pred | part | AMP | AMP | | // mode | mode | disabled | enabled | size == 8 | size > 8 // -------+-------+----------+---------+-----------+---------- // intra | 2Nx2N | - - | 1 1 // | NxN | - - | 0 0 // -------+-------+--------------------+---------------------- // inter | 2Nx2N | 1 1 | 1 1 // | 2NxN | 01 011 | 01 01 // | Nx2N | 00 001 | 00 001 // | NxN | - - | - 000 // | 2NxnU | - 0100 | - - // | 2NxnD | - 0101 | - - // | nLx2N | - 0000 | - - // | nRx2N | - 0001 | - - // -------+-------+--------------------+---------------------- // // // Context indices from Table 9-37 of the HEVC spec: // // binIdx // | 0 1 2 3 // ------------------------------+------------------ // log2CbSize == MinCbLog2SizeY | 0 1 2 bypass // log2CbSize > MinCbLog2SizeY | 0 1 3 bypass // ------------------------------+------------------ if (cur_cu->type == CU_INTRA) { if (depth == MAX_DEPTH) { cabac->cur_ctx = &(cabac->ctx.part_size_model[0]); if (cur_cu->part_size == SIZE_2Nx2N) { CABAC_BIN(cabac, 1, "part_mode 2Nx2N"); } else { CABAC_BIN(cabac, 0, "part_mode NxN"); } } } else { cabac->cur_ctx = &(cabac->ctx.part_size_model[0]); if (cur_cu->part_size == SIZE_2Nx2N) { CABAC_BIN(cabac, 1, "part_mode 2Nx2N"); return; } CABAC_BIN(cabac, 0, "part_mode split"); cabac->cur_ctx = &(cabac->ctx.part_size_model[1]); if (cur_cu->part_size == SIZE_2NxN || cur_cu->part_size == SIZE_2NxnU || cur_cu->part_size == SIZE_2NxnD) { CABAC_BIN(cabac, 1, "part_mode vertical"); } else { CABAC_BIN(cabac, 0, "part_mode horizontal"); } if (state->encoder_control->cfg->amp_enable) { if (depth == MAX_DEPTH) { cabac->cur_ctx = &(cabac->ctx.part_size_model[2]); } else { cabac->cur_ctx = &(cabac->ctx.part_size_model[3]); } if (cur_cu->part_size == SIZE_2NxN || cur_cu->part_size == SIZE_Nx2N) { CABAC_BIN(cabac, 1, "part_mode SMP"); return; } CABAC_BIN(cabac, 0, "part_mode AMP"); if (cur_cu->part_size == SIZE_2NxnU || cur_cu->part_size == SIZE_nLx2N) { CABAC_BINS_EP(cabac, 0, 1, "part_mode AMP"); } else { CABAC_BINS_EP(cabac, 1, 1, "part_mode AMP"); } } } } static void encode_inter_prediction_unit(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int x_ctb, int y_ctb, int depth) { // Mergeflag int16_t num_cand = 0; cabac->cur_ctx = &(cabac->ctx.cu_merge_flag_ext_model); CABAC_BIN(cabac, cur_cu->merged, "MergeFlag"); num_cand = MRG_MAX_NUM_CANDS; if (cur_cu->merged) { //merge if (num_cand > 1) { int32_t ui; for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model); CABAC_BIN(cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(cabac,symbol,"MergeIndex"); } if (symbol == 0) break; } } } else { uint32_t ref_list_idx; uint32_t j; int ref_list[2] = { 0, 0 }; for (j = 0; j < state->global->ref->used_size; j++) { if (state->global->ref->pocs[j] < state->global->poc) { ref_list[0]++; } else { ref_list[1]++; } } // Void TEncSbac::codeInterDir( TComDataCU* pcCU, UInt uiAbsPartIdx ) if (state->global->slicetype == KVZ_SLICE_B) { // Code Inter Dir uint8_t inter_dir = cur_cu->inter.mv_dir-1; uint8_t ctx = depth; if (cur_cu->part_size == SIZE_2Nx2N || (LCU_WIDTH >> depth) != 8) { cabac->cur_ctx = &(cabac->ctx.inter_dir[ctx]); CABAC_BIN(cabac, (inter_dir == 2), "inter_pred_idc"); } if (inter_dir < 2) { cabac->cur_ctx = &(cabac->ctx.inter_dir[4]); CABAC_BIN(cabac, inter_dir, "inter_pred_idc"); } } for (ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) { if (cur_cu->inter.mv_dir & (1 << ref_list_idx)) { if (ref_list[ref_list_idx] > 1) { // parseRefFrmIdx int32_t ref_frame = cur_cu->inter.mv_ref_coded[ref_list_idx]; cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[0]); CABAC_BIN(cabac, (ref_frame != 0), "ref_idx_lX"); if (ref_frame > 0) { int32_t i; int32_t ref_num = ref_list[ref_list_idx] - 2; cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[1]); ref_frame--; for (i = 0; i < ref_num; ++i) { const uint32_t symbol = (i == ref_frame) ? 0 : 1; if (i == 0) { CABAC_BIN(cabac, symbol, "ref_idx_lX"); } else { CABAC_BIN_EP(cabac, symbol, "ref_idx_lX"); } if (symbol == 0) break; } } } if (!(/*pcCU->getSlice()->getMvdL1ZeroFlag() &&*/ state->global->ref_list == REF_PIC_LIST_1 && cur_cu->inter.mv_dir == 3)) { const int32_t mvd_hor = cur_cu->inter.mvd[ref_list_idx][0]; const int32_t mvd_ver = cur_cu->inter.mvd[ref_list_idx][1]; const int8_t hor_abs_gr0 = mvd_hor != 0; const int8_t ver_abs_gr0 = mvd_ver != 0; const uint32_t mvd_hor_abs = abs(mvd_hor); const uint32_t mvd_ver_abs = abs(mvd_ver); cabac->cur_ctx = &(cabac->ctx.cu_mvd_model[0]); CABAC_BIN(cabac, (mvd_hor != 0), "abs_mvd_greater0_flag_hor"); CABAC_BIN(cabac, (mvd_ver != 0), "abs_mvd_greater0_flag_ver"); cabac->cur_ctx = &(cabac->ctx.cu_mvd_model[1]); if (hor_abs_gr0) { CABAC_BIN(cabac, (mvd_hor_abs>1), "abs_mvd_greater1_flag_hor"); } if (ver_abs_gr0) { CABAC_BIN(cabac, (mvd_ver_abs>1), "abs_mvd_greater1_flag_ver"); } if (hor_abs_gr0) { if (mvd_hor_abs > 1) { kvz_cabac_write_ep_ex_golomb(cabac,mvd_hor_abs-2, 1); } CABAC_BIN_EP(cabac, (mvd_hor>0)?0:1, "mvd_sign_flag_hor"); } if (ver_abs_gr0) { if (mvd_ver_abs > 1) { kvz_cabac_write_ep_ex_golomb(cabac,mvd_ver_abs-2, 1); } CABAC_BIN_EP(cabac, (mvd_ver>0)?0:1, "mvd_sign_flag_ver"); } } // Signal which candidate MV to use kvz_cabac_write_unary_max_symbol(cabac, cabac->ctx.mvp_idx_model, cur_cu->inter.mv_cand[ref_list_idx], 1, AMVP_MAX_NUM_CANDS - 1); } } // for ref_list } // if !merge } static void encode_intra_coding_unit(encoder_state_t * const state, cabac_data_t * const cabac, const cu_info_t * const cur_cu, int x_ctb, int y_ctb, int depth) { const videoframe_t * const frame = state->tile->frame; uint8_t intra_pred_mode[4] = { cur_cu->intra[0].mode, cur_cu->intra[1].mode, cur_cu->intra[2].mode, cur_cu->intra[3].mode }; uint8_t intra_pred_mode_chroma = cur_cu->intra[0].mode_chroma; int8_t intra_preds[4][3] = {{-1, -1, -1},{-1, -1, -1},{-1, -1, -1},{-1, -1, -1}}; int8_t mpm_preds[4] = {-1, -1, -1, -1}; int i, j; uint32_t flag[4]; int num_pred_units = (cur_cu->part_size == SIZE_2Nx2N ? 1 : 4); #if ENABLE_PCM == 1 // Code must start after variable initialization kvz_cabac_encode_bin_trm(cabac, 0); // IPCMFlag == 0 #endif // PREDINFO CODING // If intra prediction mode is found from the predictors, // it can be signaled with two EP's. Otherwise we can send // 5 EP bins with the full predmode for (j = 0; j < num_pred_units; ++j) { static const vector2d_t offset[4] = {{0,0},{1,0},{0,1},{1,1}}; const cu_info_t *left_cu = NULL; const cu_info_t *above_cu = NULL; if (x_ctb > 0) { left_cu = kvz_videoframe_get_cu_const(frame, x_ctb - 1, y_ctb); } // Don't take the above CU across the LCU boundary. if (y_ctb > 0 && (y_ctb & 7) != 0) { above_cu = kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb - 1); } kvz_intra_get_dir_luma_predictor((x_ctb<<3) + (offset[j].x<<2), (y_ctb<<3) + (offset[j].y<<2), intra_preds[j], cur_cu, left_cu, above_cu); for (i = 0; i < 3; i++) { if (intra_preds[j][i] == intra_pred_mode[j]) { mpm_preds[j] = (int8_t)i; break; } } flag[j] = (mpm_preds[j] == -1) ? 0 : 1; } cabac->cur_ctx = &(cabac->ctx.intra_mode_model); for (j = 0; j < num_pred_units; ++j) { CABAC_BIN(cabac, flag[j], "prev_intra_luma_pred_flag"); } for (j = 0; j < num_pred_units; ++j) { // Signal index of the prediction mode in the prediction list. if (flag[j]) { CABAC_BIN_EP(cabac, (mpm_preds[j] == 0 ? 0 : 1), "mpm_idx"); if (mpm_preds[j] != 0) { CABAC_BIN_EP(cabac, (mpm_preds[j] == 1 ? 0 : 1), "mpm_idx"); } } else { // Signal the actual prediction mode. int32_t tmp_pred = intra_pred_mode[j]; // Sort prediction list from lowest to highest. if (intra_preds[j][0] > intra_preds[j][1]) SWAP(intra_preds[j][0], intra_preds[j][1], int8_t); if (intra_preds[j][0] > intra_preds[j][2]) SWAP(intra_preds[j][0], intra_preds[j][2], int8_t); if (intra_preds[j][1] > intra_preds[j][2]) SWAP(intra_preds[j][1], intra_preds[j][2], int8_t); // Reduce the index of the signaled prediction mode according to the // prediction list, as it has been already signaled that it's not one // of the prediction modes. for (i = 2; i >= 0; i--) { tmp_pred = (tmp_pred > intra_preds[j][i] ? tmp_pred - 1 : tmp_pred); } CABAC_BINS_EP(cabac, tmp_pred, 5, "rem_intra_luma_pred_mode"); } } { // start intra chroma pred mode coding unsigned pred_mode = 5; unsigned chroma_pred_modes[4] = {0, 26, 10, 1}; if (intra_pred_mode_chroma == intra_pred_mode[0]) { pred_mode = 4; } else if (intra_pred_mode_chroma == 34) { // Angular 34 mode is possible only if intra pred mode is one of the // possible chroma pred modes, in which case it is signaled with that // duplicate mode. for (i = 0; i < 4; ++i) { if (intra_pred_mode[0] == chroma_pred_modes[i]) pred_mode = i; } } else { for (i = 0; i < 4; ++i) { if (intra_pred_mode_chroma == chroma_pred_modes[i]) pred_mode = i; } } // pred_mode == 5 mean intra_pred_mode_chroma is something that can't // be coded. assert(pred_mode != 5); /** * Table 9-35 - Binarization for intra_chroma_pred_mode * intra_chroma_pred_mode bin_string * 4 0 * 0 100 * 1 101 * 2 110 * 3 111 * Table 9-37 - Assignment of ctxInc to syntax elements with context coded bins * intra_chroma_pred_mode[][] = 0, bypass, bypass */ cabac->cur_ctx = &(cabac->ctx.chroma_pred_model[0]); if (pred_mode == 4) { CABAC_BIN(cabac, 0, "intra_chroma_pred_mode"); } else { CABAC_BIN(cabac, 1, "intra_chroma_pred_mode"); CABAC_BINS_EP(cabac, pred_mode, 2, "intra_chroma_pred_mode"); } } // end intra chroma pred mode coding kvz_encode_transform_coeff(state, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0); } void kvz_encode_coding_tree(encoder_state_t * const state, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { cabac_data_t * const cabac = &state->cabac; const videoframe_t * const frame = state->tile->frame; const cu_info_t *cur_cu = kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb); uint8_t split_flag = GET_SPLITDATA(cur_cu, depth); uint8_t split_model = 0; //Absolute ctb uint16_t abs_x_ctb = x_ctb + (state->tile->lcu_offset_x * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH); uint16_t abs_y_ctb = y_ctb + (state->tile->lcu_offset_y * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH); // Check for slice border FIXME uint8_t border_x = ((state->encoder_control->in.width) < (abs_x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_y = ((state->encoder_control->in.height) < (abs_y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_split_x = ((state->encoder_control->in.width) < ((abs_x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border_split_y = ((state->encoder_control->in.height) < ((abs_y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border = border_x | border_y; /*!< are we in any border CU */ // When not in MAX_DEPTH, insert split flag and split the blocks if needed if (depth != MAX_DEPTH) { // Implisit split flag when on border if (!border) { // Get left and top block split_flags and if they are present and true, increase model number if (x_ctb > 0 && GET_SPLITDATA(kvz_videoframe_get_cu_const(frame, x_ctb - 1, y_ctb), depth) == 1) { split_model++; } if (y_ctb > 0 && GET_SPLITDATA(kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb - 1), depth) == 1) { split_model++; } cabac->cur_ctx = &(cabac->ctx.split_flag_model[split_model]); CABAC_BIN(cabac, split_flag, "SplitFlag"); } if (split_flag || border) { // Split blocks and remember to change x and y block positions uint8_t change = 1<<(MAX_DEPTH-1-depth); kvz_encode_coding_tree(state, x_ctb, y_ctb, depth + 1); // x,y // TODO: fix when other half of the block would not be completely over the border if (!border_x || border_split_x) { kvz_encode_coding_tree(state, x_ctb + change, y_ctb, depth + 1); } if (!border_y || border_split_y) { kvz_encode_coding_tree(state, x_ctb, y_ctb + change, depth + 1); } if (!border || (border_split_x && border_split_y)) { kvz_encode_coding_tree(state, x_ctb + change, y_ctb + change, depth + 1); } return; } } // Encode skip flag if (state->global->slicetype != KVZ_SLICE_I) { int8_t ctx_skip = 0; // uiCtxSkip = aboveskipped + leftskipped; int ui; int16_t num_cand = MRG_MAX_NUM_CANDS; // Get left and top skipped flags and if they are present and true, increase context number if (x_ctb > 0 && (kvz_videoframe_get_cu_const(frame, x_ctb - 1, y_ctb))->skipped) { ctx_skip++; } if (y_ctb > 0 && (kvz_videoframe_get_cu_const(frame, x_ctb, y_ctb - 1))->skipped) { ctx_skip++; } cabac->cur_ctx = &(cabac->ctx.cu_skip_flag_model[ctx_skip]); CABAC_BIN(cabac, cur_cu->skipped, "SkipFlag"); // IF SKIP if (cur_cu->skipped) { if (num_cand > 1) { for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model); CABAC_BIN(cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(cabac,symbol,"MergeIndex"); } if (symbol == 0) { break; } } } return; } } // ENDIF SKIP // Prediction mode if (state->global->slicetype != KVZ_SLICE_I) { cabac->cur_ctx = &(cabac->ctx.cu_pred_mode_model); CABAC_BIN(cabac, (cur_cu->type == CU_INTRA), "PredMode"); } // part_mode encode_part_mode(state, cabac, cur_cu, depth); if (cur_cu->type == CU_INTER) { const int num_pu = kvz_part_mode_num_parts[cur_cu->part_size]; const int cu_width_scu = LCU_CU_WIDTH >> depth; for (int i = 0; i < num_pu; ++i) { const int pu_x_scu = PU_GET_X(cur_cu->part_size, cu_width_scu, x_ctb, i); const int pu_y_scu = PU_GET_Y(cur_cu->part_size, cu_width_scu, y_ctb, i); const cu_info_t *cur_pu = kvz_videoframe_get_cu_const(frame, pu_x_scu, pu_y_scu); encode_inter_prediction_unit(state, cabac, cur_pu, pu_x_scu, pu_y_scu, depth); } { int cbf = (cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth)); // Only need to signal coded block flag if not skipped or merged // skip = no coded residual, merge = coded residual if (cur_cu->part_size != SIZE_2Nx2N || !cur_cu->merged) { cabac->cur_ctx = &(cabac->ctx.cu_qt_root_cbf_model); CABAC_BIN(cabac, cbf, "rqt_root_cbf"); } // Code (possible) coeffs to bitstream if (cbf) { kvz_encode_transform_coeff(state, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0); } } } else if (cur_cu->type == CU_INTRA) { encode_intra_coding_unit(state, cabac, cur_cu, x_ctb, y_ctb, depth); } #if ENABLE_PCM == 1 // Code IPCM block if (cur_cu->type == CU_PCM) { kvz_cabac_encode_bin_trm(cabac, 1); // IPCMFlag == 1 kvz_cabac_finish(cabac); kvz_bitstream_add_rbsp_trailing_bits(cabac.stream); // PCM sample { unsigned y, x; pixel *base_y = &cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width]; pixel *base_u = &cur_pic->u_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)]; pixel *base_v = &cur_pic->v_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)]; // Luma for (y = 0; y < LCU_WIDTH >> depth; y++) { for (x = 0; x < LCU_WIDTH >> depth; x++) { kvz_bitstream_put(cabac.stream, base_y[x + y * encoder->in.width], 8); } } // Chroma if (encoder->in.video_format != FORMAT_400) { for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { kvz_bitstream_put(cabac.stream, base_u[x + y * (encoder->in.width >> 1)], 8); } } for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { kvz_bitstream_put(cabac.stream, base_v[x + y * (encoder->in.width >> 1)], 8); } } } } // end PCM sample kvz_cabac_start(cabac); } // end Code IPCM block #endif /* END ENABLE_PCM */ else { /* Should not happend */ printf("UNHANDLED TYPE!\r\n"); assert(0); exit(1); } /* end prediction unit */ /* end coding_unit */ } coeff_scan_order_t kvz_get_scan_order(int8_t cu_type, int intra_mode, int depth) { // Scan mode is diagonal, except for 4x4+8x8 luma and 4x4 chroma, where: // - angular 6-14 = vertical // - angular 22-30 = horizontal if (cu_type == CU_INTRA && depth >= 3) { if (intra_mode >= 6 && intra_mode <= 14) { return SCAN_VER; } else if (intra_mode >= 22 && intra_mode <= 30) { return SCAN_HOR; } } return SCAN_DIAG; } static void encode_transform_unit(encoder_state_t * const state, int x_pu, int y_pu, int depth) { assert(depth >= 1 && depth <= MAX_PU_DEPTH); const videoframe_t * const frame = state->tile->frame; uint8_t width = LCU_WIDTH >> depth; uint8_t width_c = (depth == MAX_PU_DEPTH ? width : width / 2); int x_cu = x_pu / 2; int y_cu = y_pu / 2; const cu_info_t *cur_cu = kvz_videoframe_get_cu_const(frame, x_cu, y_cu); coeff_t coeff_y[LCU_WIDTH*LCU_WIDTH+1]; coeff_t coeff_u[LCU_WIDTH*LCU_WIDTH>>2]; coeff_t coeff_v[LCU_WIDTH*LCU_WIDTH>>2]; int32_t coeff_stride = frame->width; int8_t scan_idx = kvz_get_scan_order(cur_cu->type, cur_cu->intra[PU_INDEX(x_pu, y_pu)].mode, depth); int cbf_y = cbf_is_set(cur_cu->cbf.y, depth + PU_INDEX(x_pu, y_pu)); if (cbf_y) { int x = x_pu * (LCU_WIDTH >> MAX_PU_DEPTH); int y = y_pu * (LCU_WIDTH >> MAX_PU_DEPTH); coeff_t *orig_pos = &frame->coeff_y[x + y * frame->width]; for (y = 0; y < width; y++) { for (x = 0; x < width; x++) { coeff_y[x+y*width] = orig_pos[x]; } orig_pos += coeff_stride; } } // CoeffNxN // Residual Coding if (cbf_y) { kvz_encode_coeff_nxn(state, coeff_y, width, 0, scan_idx, cur_cu->intra[PU_INDEX(x_pu, y_pu)].tr_skip); } if (depth == MAX_DEPTH + 1 && !(x_pu % 2 && y_pu % 2)) { // For size 4x4 luma transform the corresponding chroma transforms are // also of size 4x4 covering 8x8 luma pixels. The residual is coded // in the last transform unit so for the other ones, don't do anything. return; } if (cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth)) { int x, y; coeff_t *orig_pos_u, *orig_pos_v; if (depth <= MAX_DEPTH) { x = x_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1)); y = y_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1)); } else { // for 4x4 select top left pixel of the CU. x = x_cu * (LCU_WIDTH >> (MAX_DEPTH + 1)); y = y_cu * (LCU_WIDTH >> (MAX_DEPTH + 1)); } orig_pos_u = &frame->coeff_u[x + y * (frame->width >> 1)]; orig_pos_v = &frame->coeff_v[x + y * (frame->width >> 1)]; for (y = 0; y < (width_c); y++) { for (x = 0; x < (width_c); x++) { coeff_u[x+y*(width_c)] = orig_pos_u[x]; coeff_v[x+y*(width_c)] = orig_pos_v[x]; } orig_pos_u += coeff_stride>>1; orig_pos_v += coeff_stride>>1; } scan_idx = kvz_get_scan_order(cur_cu->type, cur_cu->intra[0].mode_chroma, depth); if (cbf_is_set(cur_cu->cbf.u, depth)) { kvz_encode_coeff_nxn(state, coeff_u, width_c, 2, scan_idx, 0); } if (cbf_is_set(cur_cu->cbf.v, depth)) { kvz_encode_coeff_nxn(state, coeff_v, width_c, 2, scan_idx, 0); } } } /** * \param encoder * \param x_pu Prediction units' x coordinate. * \param y_pu Prediction units' y coordinate. * \param depth Depth from LCU. * \param tr_depth Depth from last CU. * \param parent_coeff_u What was signaled at previous level for cbf_cb. * \param parent_coeff_v What was signlaed at previous level for cbf_cr. */ void kvz_encode_transform_coeff(encoder_state_t * const state, int32_t x_pu,int32_t y_pu, int8_t depth, int8_t tr_depth, uint8_t parent_coeff_u, uint8_t parent_coeff_v) { cabac_data_t * const cabac = &state->cabac; int32_t x_cu = x_pu / 2; int32_t y_cu = y_pu / 2; const videoframe_t * const frame = state->tile->frame; const cu_info_t *cur_cu = kvz_videoframe_get_cu_const(frame, x_cu, y_cu); // NxN signifies implicit transform split at the first transform level. // There is a similar implicit split for inter, but it is only used when // transform hierarchy is not in use. int intra_split_flag = (cur_cu->type == CU_INTRA && cur_cu->part_size == SIZE_NxN); // The implicit split by intra NxN is not counted towards max_tr_depth. int tr_depth_intra = state->encoder_control->tr_depth_intra; int max_tr_depth = (cur_cu->type == CU_INTRA ? tr_depth_intra + intra_split_flag : TR_DEPTH_INTER); int8_t split = (cur_cu->tr_depth > depth); const int cb_flag_y = cbf_is_set(cur_cu->cbf.y, depth + PU_INDEX(x_pu, y_pu)); const int cb_flag_u = cbf_is_set(cur_cu->cbf.u, depth); const int cb_flag_v = cbf_is_set(cur_cu->cbf.v, depth); // The split_transform_flag is not signaled when: // - transform size is greater than 32 (depth == 0) // - transform size is 4 (depth == MAX_PU_DEPTH) // - transform depth is max // - cu is intra NxN and it's the first split if (depth > 0 && depth < MAX_PU_DEPTH && tr_depth < max_tr_depth && !(intra_split_flag && tr_depth == 0)) { cabac->cur_ctx = &(cabac->ctx.trans_subdiv_model[5 - ((kvz_g_convert_to_bit[LCU_WIDTH] + 2) - depth)]); CABAC_BIN(cabac, split, "split_transform_flag"); } // Chroma cb flags are not signaled when one of the following: // - transform size is 4 (2x2 chroma transform doesn't exist) // - they have already been signaled to 0 previously // When they are not present they are inferred to be 0, except for size 4 // when the flags from previous level are used. if (depth < MAX_PU_DEPTH) { cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_chroma[tr_depth]); if (tr_depth == 0 || parent_coeff_u) { CABAC_BIN(cabac, cb_flag_u, "cbf_cb"); } if (tr_depth == 0 || parent_coeff_v) { CABAC_BIN(cabac, cb_flag_v, "cbf_cr"); } } if (split) { uint8_t pu_offset = 1 << (MAX_PU_DEPTH - (depth + 1)); kvz_encode_transform_coeff(state, x_pu, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); kvz_encode_transform_coeff(state, x_pu + pu_offset, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); kvz_encode_transform_coeff(state, x_pu, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); kvz_encode_transform_coeff(state, x_pu + pu_offset, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); return; } // Luma coded block flag is signaled when one of the following: // - prediction mode is intra // - transform depth > 0 // - we have chroma coefficients at this level // When it is not present, it is inferred to be 1. if(cur_cu->type == CU_INTRA || tr_depth > 0 || cb_flag_u || cb_flag_v) { cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_luma[!tr_depth]); CABAC_BIN(cabac, cb_flag_y, "cbf_luma"); } if (cb_flag_y | cb_flag_u | cb_flag_v) { encode_transform_unit(state, x_pu, y_pu, depth); } } void kvz_encode_coeff_nxn(encoder_state_t * const state, coeff_t *coeff, uint8_t width, uint8_t type, int8_t scan_mode, int8_t tr_skip) { const encoder_control_t * const encoder = state->encoder_control; cabac_data_t * const cabac = &state->cabac; int c1 = 1; uint8_t last_coeff_x = 0; uint8_t last_coeff_y = 0; int32_t i; uint32_t sig_coeffgroup_flag[8 * 8] = { 0 }; int8_t be_valid = encoder->sign_hiding; int32_t scan_pos_sig; uint32_t go_rice_param = 0; uint32_t blk_pos, pos_y, pos_x, sig, ctx_sig; // CONSTANTS const uint32_t num_blk_side = width >> TR_MIN_LOG2_SIZE; const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2; const uint32_t *scan = kvz_g_sig_last_scan[scan_mode][log2_block_size - 1]; const uint32_t *scan_cg = g_sig_last_scan_cg[log2_block_size - 2][scan_mode]; // Init base contexts according to block type cabac_ctx_t *base_coeff_group_ctx = &(cabac->ctx.cu_sig_coeff_group_model[type]); cabac_ctx_t *baseCtx = (type == 0) ? &(cabac->ctx.cu_sig_model_luma[0]) : &(cabac->ctx.cu_sig_model_chroma[0]); // Scan all coeff groups to find out which of them have coeffs. // Populate sig_coeffgroup_flag with that info. unsigned sig_cg_cnt = 0; for (int cg_y = 0; cg_y < width / 4; ++cg_y) { for (int cg_x = 0; cg_x < width / 4; ++cg_x) { unsigned cg_pos = cg_y * width * 4 + cg_x * 4; for (int coeff_row = 0; coeff_row < 4; ++coeff_row) { // Load four 16-bit coeffs and see if any of them are non-zero. unsigned coeff_pos = cg_pos + coeff_row * width; uint64_t four_coeffs = *(uint64_t*)(&coeff[coeff_pos]); if (four_coeffs) { ++sig_cg_cnt; unsigned cg_pos_y = (cg_pos >> log2_block_size) >> TR_MIN_LOG2_SIZE; unsigned cg_pos_x = (cg_pos & (width - 1)) >> TR_MIN_LOG2_SIZE; sig_coeffgroup_flag[cg_pos_x + cg_pos_y * num_blk_side] = 1; break; } } } } // Rest of the code assumes at least one non-zero coeff. assert(sig_cg_cnt > 0); // Find the last coeff group by going backwards in scan order. unsigned scan_cg_last = num_blk_side * num_blk_side - 1; while (!sig_coeffgroup_flag[scan_cg[scan_cg_last]]) { --scan_cg_last; } // Find the last coeff by going backwards in scan order. unsigned scan_pos_last = scan_cg_last * 16 + 15; while (!coeff[scan[scan_pos_last]]) { --scan_pos_last; } int pos_last = scan[scan_pos_last]; // transform skip flag if(width == 4 && encoder->trskip_enable) { cabac->cur_ctx = (type == 0) ? &(cabac->ctx.transform_skip_model_luma) : &(cabac->ctx.transform_skip_model_chroma); CABAC_BIN(cabac, tr_skip, "transform_skip_flag"); } last_coeff_x = pos_last & (width - 1); last_coeff_y = (uint8_t)(pos_last >> log2_block_size); // Code last_coeff_x and last_coeff_y kvz_encode_last_significant_xy(state, last_coeff_x, last_coeff_y, width, width, type, scan_mode); scan_pos_sig = scan_pos_last; // significant_coeff_flag for (i = scan_cg_last; i >= 0; i--) { int32_t sub_pos = i << 4; // LOG2_SCAN_SET_SIZE; int32_t abs_coeff[16]; int32_t cg_blk_pos = scan_cg[i]; int32_t cg_pos_y = cg_blk_pos / num_blk_side; int32_t cg_pos_x = cg_blk_pos - (cg_pos_y * num_blk_side); uint32_t coeff_signs = 0; int32_t last_nz_pos_in_cg = -1; int32_t first_nz_pos_in_cg = 16; int32_t num_non_zero = 0; go_rice_param = 0; if (scan_pos_sig == scan_pos_last) { abs_coeff[0] = abs(coeff[pos_last]); coeff_signs = (coeff[pos_last] < 0); num_non_zero = 1; last_nz_pos_in_cg = scan_pos_sig; first_nz_pos_in_cg = scan_pos_sig; scan_pos_sig--; } if (i == scan_cg_last || i == 0) { sig_coeffgroup_flag[cg_blk_pos] = 1; } else { uint32_t sig_coeff_group = (sig_coeffgroup_flag[cg_blk_pos] != 0); uint32_t ctx_sig = kvz_context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); cabac->cur_ctx = &base_coeff_group_ctx[ctx_sig]; CABAC_BIN(cabac, sig_coeff_group, "coded_sub_block_flag"); } if (sig_coeffgroup_flag[cg_blk_pos]) { int32_t pattern_sig_ctx = kvz_context_calc_pattern_sig_ctx(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); for (; scan_pos_sig >= sub_pos; scan_pos_sig--) { blk_pos = scan[scan_pos_sig]; pos_y = blk_pos >> log2_block_size; pos_x = blk_pos - (pos_y << log2_block_size); sig = (coeff[blk_pos] != 0) ? 1 : 0; if (scan_pos_sig > sub_pos || i == 0 || num_non_zero) { ctx_sig = kvz_context_get_sig_ctx_inc(pattern_sig_ctx, scan_mode, pos_x, pos_y, log2_block_size, type); cabac->cur_ctx = &baseCtx[ctx_sig]; CABAC_BIN(cabac, sig, "sig_coeff_flag"); } if (sig) { abs_coeff[num_non_zero] = abs(coeff[blk_pos]); coeff_signs = 2 * coeff_signs + (coeff[blk_pos] < 0); num_non_zero++; if (last_nz_pos_in_cg == -1) { last_nz_pos_in_cg = scan_pos_sig; } first_nz_pos_in_cg = scan_pos_sig; } } } else { scan_pos_sig = sub_pos - 1; } if (num_non_zero > 0) { int8_t sign_hidden = (last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 /*SBH_THRESHOLD*/) ? 1 : 0; uint32_t ctx_set = (i > 0 && type == 0) ? 2 : 0; cabac_ctx_t *base_ctx_mod; int32_t num_c1_flag, first_c2_flag_idx, idx, first_coeff2; if (c1 == 0) { ctx_set++; } c1 = 1; base_ctx_mod = (type == 0) ? &(cabac->ctx.cu_one_model_luma[4 * ctx_set]) : &(cabac->ctx.cu_one_model_chroma[4 * ctx_set]); num_c1_flag = MIN(num_non_zero, C1FLAG_NUMBER); first_c2_flag_idx = -1; for (idx = 0; idx < num_c1_flag; idx++) { uint32_t symbol = (abs_coeff[idx] > 1) ? 1 : 0; cabac->cur_ctx = &base_ctx_mod[c1]; CABAC_BIN(cabac, symbol, "coeff_abs_level_greater1_flag"); if (symbol) { c1 = 0; if (first_c2_flag_idx == -1) { first_c2_flag_idx = idx; } } else if ((c1 < 3) && (c1 > 0)) { c1++; } } if (c1 == 0) { base_ctx_mod = (type == 0) ? &(cabac->ctx.cu_abs_model_luma[ctx_set]) : &(cabac->ctx.cu_abs_model_chroma[ctx_set]); if (first_c2_flag_idx != -1) { uint8_t symbol = (abs_coeff[first_c2_flag_idx] > 2) ? 1 : 0; cabac->cur_ctx = &base_ctx_mod[0]; CABAC_BIN(cabac, symbol, "coeff_abs_level_greater2_flag"); } } if (be_valid && sign_hidden) { CABAC_BINS_EP(cabac, (coeff_signs >> 1), (num_non_zero - 1), "coeff_sign_flag"); } else { CABAC_BINS_EP(cabac, coeff_signs, num_non_zero, "coeff_sign_flag"); } if (c1 == 0 || num_non_zero > C1FLAG_NUMBER) { first_coeff2 = 1; for (idx = 0; idx < num_non_zero; idx++) { int32_t base_level = (idx < C1FLAG_NUMBER) ? (2 + first_coeff2) : 1; if (abs_coeff[idx] >= base_level) { kvz_cabac_write_coeff_remain(cabac, abs_coeff[idx] - base_level, go_rice_param); if (abs_coeff[idx] > 3 * (1 << go_rice_param)) { go_rice_param = MIN(go_rice_param + 1, 4); } } if (abs_coeff[idx] >= 2) { first_coeff2 = 0; } } } } } } /*! \brief Encode (X,Y) position of the last significant coefficient \param lastpos_x X component of last coefficient \param lastpos_y Y component of last coefficient \param width Block width \param height Block height \param type plane type / luminance or chrominance \param scan scan type (diag, hor, ver) This method encodes the X and Y component within a block of the last significant coefficient. */ void kvz_encode_last_significant_xy(encoder_state_t * const state, uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan) { cabac_data_t * const cabac = &state->cabac; uint8_t offset_x = type?0:((TOBITS(width)*3) + ((TOBITS(width)+1)>>2)),offset_y = offset_x; uint8_t shift_x = type?(TOBITS(width)):((TOBITS(width)+3)>>2), shift_y = shift_x; int group_idx_x; int group_idx_y; int last_x,last_y,i; cabac_ctx_t *base_ctx_x = (type ? cabac->ctx.cu_ctx_last_x_chroma : cabac->ctx.cu_ctx_last_x_luma); cabac_ctx_t *base_ctx_y = (type ? cabac->ctx.cu_ctx_last_y_chroma : cabac->ctx.cu_ctx_last_y_luma); if (scan == SCAN_VER) { SWAP( lastpos_x, lastpos_y,uint8_t ); } group_idx_x = g_group_idx[lastpos_x]; group_idx_y = g_group_idx[lastpos_y]; // Last X binarization for (last_x = 0; last_x < group_idx_x ; last_x++) { cabac->cur_ctx = &base_ctx_x[offset_x + (last_x >> shift_x)]; CABAC_BIN(cabac,1,"last_sig_coeff_x_prefix"); } if (group_idx_x < g_group_idx[width - 1]) { cabac->cur_ctx = &base_ctx_x[offset_x + (last_x >> shift_x)]; CABAC_BIN(cabac,0,"last_sig_coeff_x_prefix"); } // Last Y binarization for (last_y = 0; last_y < group_idx_y ; last_y++) { cabac->cur_ctx = &base_ctx_y[offset_y + (last_y >> shift_y)]; CABAC_BIN(cabac,1,"last_sig_coeff_y_prefix"); } if (group_idx_y < g_group_idx[height - 1]) { cabac->cur_ctx = &base_ctx_y[offset_y + (last_y >> shift_y)]; CABAC_BIN(cabac,0,"last_sig_coeff_y_prefix"); } // Last X if (group_idx_x > 3) { lastpos_x -= g_min_in_group[group_idx_x]; for (i = ((group_idx_x - 2) >> 1) - 1; i >= 0; i--) { CABAC_BIN_EP(cabac,(lastpos_x>>i) & 1,"last_sig_coeff_x_suffix"); } } // Last Y if (group_idx_y > 3) { lastpos_y -= g_min_in_group[group_idx_y]; for (i = ((group_idx_y - 2) >> 1) - 1; i >= 0; i--) { CABAC_BIN_EP(cabac,(lastpos_y>>i) & 1,"last_sig_coeff_y_suffix"); } } // end LastSignificantXY }