/***************************************************************************** * This file is part of uvg266 VVC encoder. * * Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS ****************************************************************************/ #include "search.h" #include #include #include "cabac.h" #include "encoder.h" #include "encode_coding_tree.h" #include "imagelist.h" #include "inter.h" #include "intra.h" #include "kvazaar.h" #include "rdo.h" #include "search_inter.h" #include "search_intra.h" #include "threadqueue.h" #include "transform.h" #include "videoframe.h" #include "strategies/strategies-picture.h" #include "strategies/strategies-quant.h" #include "reshape.h" #define IN_FRAME(x, y, width, height, block_width, block_height) \ ((x) >= 0 && (y) >= 0 \ && (x) + (block_width) <= (width) \ && (y) + (block_height) <= (height)) // Cost threshold for doing intra search in inter frames with --rd=0. static const int INTRA_THRESHOLD = 8; static INLINE void copy_cu_info(int x_local, int y_local, int width, lcu_t *from, lcu_t *to) { for (int y = y_local; y < y_local + width; y += SCU_WIDTH) { for (int x = x_local; x < x_local + width; x += SCU_WIDTH) { *LCU_GET_CU_AT_PX(to, x, y) = *LCU_GET_CU_AT_PX(from, x, y); } } } static INLINE void copy_cu_pixels(int x_local, int y_local, int width, lcu_t *from, lcu_t *to) { const int luma_index = x_local + y_local * LCU_WIDTH; const int chroma_index = (x_local / 2) + (y_local / 2) * (LCU_WIDTH / 2); kvz_pixels_blit(&from->rec.y[luma_index], &to->rec.y[luma_index], width, width, LCU_WIDTH, LCU_WIDTH); if (from->rec.chroma_format != KVZ_CSP_400) { kvz_pixels_blit(&from->rec.u[chroma_index], &to->rec.u[chroma_index], width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); kvz_pixels_blit(&from->rec.v[chroma_index], &to->rec.v[chroma_index], width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } static INLINE void copy_cu_coeffs(int x_local, int y_local, int width, lcu_t *from, lcu_t *to, bool joint) { const int luma_z = xy_to_zorder(LCU_WIDTH, x_local, y_local); copy_coeffs(&from->coeff.y[luma_z], &to->coeff.y[luma_z], width); if (from->rec.chroma_format != KVZ_CSP_400) { const int chroma_z = xy_to_zorder(LCU_WIDTH_C, x_local >> 1, y_local >> 1); copy_coeffs(&from->coeff.u[chroma_z], &to->coeff.u[chroma_z], width >> 1); copy_coeffs(&from->coeff.v[chroma_z], &to->coeff.v[chroma_z], width >> 1); if (joint) { copy_coeffs(&from->coeff.joint_uv[chroma_z], &to->coeff.joint_uv[chroma_z], width >> 1); } } } /** * Copy all non-reference CU data from next level to current level. */ static void work_tree_copy_up(int x_local, int y_local, int depth, lcu_t *work_tree, bool joint) { const int width = LCU_WIDTH >> depth; copy_cu_info (x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]); copy_cu_pixels(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]); copy_cu_coeffs(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth], joint); } /** * Copy all non-reference CU data from current level to all lower levels. */ static void work_tree_copy_down(int x_local, int y_local, int depth, lcu_t *work_tree) { const int width = LCU_WIDTH >> depth; for (int i = depth + 1; i <= MAX_PU_DEPTH; i++) { copy_cu_info (x_local, y_local, width, &work_tree[depth], &work_tree[i]); copy_cu_pixels(x_local, y_local, width, &work_tree[depth], &work_tree[i]); } } void kvz_lcu_fill_trdepth(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth) { const int x_local = SUB_SCU(x_px); const int y_local = SUB_SCU(y_px); const int width = LCU_WIDTH >> depth; for (unsigned y = 0; y < width; y += SCU_WIDTH) { for (unsigned x = 0; x < width; x += SCU_WIDTH) { LCU_GET_CU_AT_PX(lcu, x_local + x, y_local + y)->tr_depth = tr_depth; } } } static void lcu_fill_cu_info(lcu_t *lcu, int x_local, int y_local, int width, int height, cu_info_t *cu) { // Set mode in every CU covered by part_mode in this depth. for (int y = y_local; y < y_local + height; y += SCU_WIDTH) { for (int x = x_local; x < x_local + width; x += SCU_WIDTH) { cu_info_t *to = LCU_GET_CU_AT_PX(lcu, x, y); to->type = cu->type; to->depth = cu->depth; to->part_size = cu->part_size; to->qp = cu->qp; //to->tr_idx = cu->tr_idx; if (cu->type == CU_INTRA) { to->intra.mode = cu->intra.mode; to->intra.mode_chroma = cu->intra.mode_chroma; to->intra.multi_ref_idx = cu->intra.multi_ref_idx; to->intra.mip_flag = cu->intra.mip_flag; to->intra.mip_is_transposed = cu->intra.mip_is_transposed; } else { to->skipped = cu->skipped; to->merged = cu->merged; to->merge_idx = cu->merge_idx; to->inter = cu->inter; } } } } static void lcu_fill_inter(lcu_t *lcu, int x_local, int y_local, int cu_width) { const part_mode_t part_mode = LCU_GET_CU_AT_PX(lcu, x_local, y_local)->part_size; const int num_pu = kvz_part_mode_num_parts[part_mode]; for (int i = 0; i < num_pu; ++i) { const int x_pu = PU_GET_X(part_mode, cu_width, x_local, i); const int y_pu = PU_GET_Y(part_mode, cu_width, y_local, i); const int width_pu = PU_GET_W(part_mode, cu_width, i); const int height_pu = PU_GET_H(part_mode, cu_width, i); cu_info_t *pu = LCU_GET_CU_AT_PX(lcu, x_pu, y_pu); pu->type = CU_INTER; lcu_fill_cu_info(lcu, x_pu, y_pu, width_pu, height_pu, pu); } } static void lcu_fill_cbf(lcu_t *lcu, int x_local, int y_local, int width, cu_info_t *cur_cu) { const uint32_t tr_split = cur_cu->tr_depth - cur_cu->depth; const uint32_t mask = ~((width >> tr_split)-1); // Set coeff flags in every CU covered by part_mode in this depth. for (uint32_t y = y_local; y < y_local + width; y += SCU_WIDTH) { for (uint32_t x = x_local; x < x_local + width; x += SCU_WIDTH) { // Use TU top-left CU to propagate coeff flags cu_info_t *cu_from = LCU_GET_CU_AT_PX(lcu, x & mask, y & mask); cu_info_t *cu_to = LCU_GET_CU_AT_PX(lcu, x, y); if (cu_from != cu_to) { // Chroma and luma coeff data is needed for deblocking cbf_copy(&cu_to->cbf, cu_from->cbf, COLOR_Y); cbf_copy(&cu_to->cbf, cu_from->cbf, COLOR_U); cbf_copy(&cu_to->cbf, cu_from->cbf, COLOR_V); } } } } //Calculates cost for all zero coeffs static double cu_zero_coeff_cost(const encoder_state_t *state, lcu_t *work_tree, const int x, const int y, const int depth) { int x_local = SUB_SCU(x); int y_local = SUB_SCU(y); int cu_width = LCU_WIDTH >> depth; lcu_t *const lcu = &work_tree[depth]; const int luma_index = y_local * LCU_WIDTH + x_local; const int chroma_index = (y_local / 2) * LCU_WIDTH_C + (x_local / 2); double ssd = 0.0; ssd += KVZ_LUMA_MULT * kvz_pixels_calc_ssd( &lcu->ref.y[luma_index], &lcu->rec.y[luma_index], LCU_WIDTH, LCU_WIDTH, cu_width ); if (x % 8 == 0 && y % 8 == 0 && state->encoder_control->chroma_format != KVZ_CSP_400) { ssd += KVZ_CHROMA_MULT * kvz_pixels_calc_ssd( &lcu->ref.u[chroma_index], &lcu->rec.u[chroma_index], LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2 ); ssd += KVZ_CHROMA_MULT * kvz_pixels_calc_ssd( &lcu->ref.v[chroma_index], &lcu->rec.v[chroma_index], LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2 ); } // Save the pixels at a lower level of the working tree. copy_cu_pixels(x_local, y_local, cu_width, lcu, &work_tree[depth + 1]); return ssd; } static void downsample_cclm_rec(encoder_state_t *state, int x, int y, int width, int height, kvz_pixel *y_rec, kvz_pixel extra_pixel) { if (!state->encoder_control->cfg.cclm) return; int x_scu = SUB_SCU(x); int y_scu = SUB_SCU(y); y_rec += x_scu + y_scu * LCU_WIDTH; const int stride = state->tile->frame->rec->stride; const int stride2 = (((state->tile->frame->width + 7) & ~7) + FRAME_PADDING_LUMA); for (int y_ = 0; y_ < height && y_ * 2 + y < state->encoder_control->cfg.height; y_++) { for (int x_ = 0; x_ < width; x_++) { int s = 4; s += y_rec[2 * x_] * 2; s += y_rec[2 * x_ + 1]; // If we are at the edge of the CTU read the pixel from the frame reconstruct buffer, // *except* when we are also at the edge of the frame, in which case we want to duplicate // the edge pixel s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + (y + y_ * 2) * stride] : y_rec[2 * x_ - ((x_ + x) > 0)]; s += y_rec[2 * x_ + LCU_WIDTH] * 2; s += y_rec[2 * x_ + 1 + LCU_WIDTH]; s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + (y + y_ * 2 + 1) * stride] : y_rec[2 * x_ - ((x_ + x) > 0) + LCU_WIDTH]; int index = x / 2 + x_ + (y / 2 + y_ )* stride2 / 2; state->tile->frame->cclm_luma_rec[index] = s >> 3; } y_rec += LCU_WIDTH * 2; } if((y + height * 2) % 64 == 0) { int line = y / 64 * stride2 / 2; y_rec -= LCU_WIDTH; for (int i = 0; i < width; ++i) { int s = 2; s += y_rec[i * 2] * 2; s += y_rec[i * 2 + 1]; s += !x_scu && !i && x ? extra_pixel : y_rec[i * 2 - ((i + x) > 0)] ; state->tile->frame->cclm_luma_rec_top_line[i + x / 2 + line] = s >> 2; } } } /** * Calculate RD cost for a Coding Unit. * \return Cost of block * \param ref_cu CU used for prediction parameters. * * Calculates the RDO cost of a single CU that will not be split further. * Takes into account SSD of reconstruction and the cost of encoding whatever * prediction unit data needs to be coded. */ double kvz_cu_rd_cost_luma(const encoder_state_t *const state, const int x_px, const int y_px, const int depth, const cu_info_t *const pred_cu, lcu_t *const lcu) { const int width = LCU_WIDTH >> depth; const int skip_residual_coding = pred_cu->skipped || (pred_cu->type == CU_INTER && pred_cu->cbf == 0); cabac_data_t* cabac = (cabac_data_t *)&state->search_cabac; // cur_cu is used for TU parameters. cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px); double coeff_bits = 0; double tr_tree_bits = 0; // Check that lcu is not in assert(x_px >= 0 && x_px < LCU_WIDTH); assert(y_px >= 0 && y_px < LCU_WIDTH); const uint8_t tr_depth = tr_cu->tr_depth - depth; if (tr_depth > 0) { int offset = width / 2; double sum = 0; sum += kvz_cu_rd_cost_luma(state, x_px, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_luma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu); return sum + tr_tree_bits * state->lambda; } if (cabac->update && tr_cu->tr_depth == tr_cu->depth && !skip_residual_coding) { // Because these need to be coded before the luma cbf they also need to be counted // before the cabac state changes. However, since this branch is only executed when // calculating the last RD cost it is not problem to include the chroma cbf costs in // luma, because the chroma cost is calculated right after the luma cost. // However, if we have different tr_depth, the bits cannot be written in correct // order anyways so do not touch the chroma cbf here. if (state->encoder_control->chroma_format != KVZ_CSP_400) { cabac_ctx_t* cr_ctx = &(cabac->ctx.qt_cbf_model_cb[0]); cabac->cur_ctx = cr_ctx; int u_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_U); int v_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_V); CABAC_FBITS_UPDATE(cabac, cr_ctx, u_is_set, tr_tree_bits, "cbf_cb_search"); cr_ctx = &(cabac->ctx.qt_cbf_model_cr[u_is_set]); CABAC_FBITS_UPDATE(cabac, cr_ctx, v_is_set, tr_tree_bits, "cbf_cb_search"); } } // Add transform_tree cbf_luma bit cost. const int is_tr_split = tr_cu->tr_depth - tr_cu->depth; if (pred_cu->type == CU_INTRA || is_tr_split || cbf_is_set(tr_cu->cbf, depth, COLOR_U) || cbf_is_set(tr_cu->cbf, depth, COLOR_V)) { cabac_ctx_t *ctx = &(cabac->ctx.qt_cbf_model_luma[0]); int is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_Y); CABAC_FBITS_UPDATE(cabac, ctx, is_set, tr_tree_bits, "cbf_y_search"); } // SSD between reconstruction and original int ssd = 0; if (!state->encoder_control->cfg.lossless) { int index = y_px * LCU_WIDTH + x_px; ssd = kvz_pixels_calc_ssd(&lcu->ref.y[index], &lcu->rec.y[index], LCU_WIDTH, LCU_WIDTH, width); } if (!skip_residual_coding) { int8_t luma_scan_mode = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode, depth); const coeff_t *coeffs = &lcu->coeff.y[xy_to_zorder(LCU_WIDTH, x_px, y_px)]; coeff_bits += kvz_get_coeff_cost(state, coeffs, width, 0, luma_scan_mode, pred_cu->tr_idx == MTS_SKIP); } double bits = tr_tree_bits + coeff_bits; return (double)ssd * KVZ_LUMA_MULT + bits * state->lambda; } double kvz_cu_rd_cost_chroma(const encoder_state_t *const state, const int x_px, const int y_px, const int depth, cu_info_t *const pred_cu, lcu_t *const lcu) { const vector2d_t lcu_px = { (x_px & ~7) / 2, (y_px & ~7) / 2 }; const int width = (depth < MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth; cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px); const int skip_residual_coding = pred_cu->skipped || (pred_cu->type == CU_INTER && pred_cu->cbf == 0); double tr_tree_bits = 0; double coeff_bits = 0; assert(x_px >= 0 && x_px < LCU_WIDTH); assert(y_px >= 0 && y_px < LCU_WIDTH); if (depth == 4 && (x_px % 8 == 0 || y_px % 8 == 0)) { // For MAX_PU_DEPTH calculate chroma for previous depth for the first // block and return 0 cost for all others. return 0; } // See luma for why the second condition if (depth < MAX_PU_DEPTH && (!state->search_cabac.update || tr_cu->tr_depth != tr_cu->depth) && !skip_residual_coding) { const int tr_depth = depth - pred_cu->depth; cabac_data_t* cabac = (cabac_data_t*)&state->search_cabac; cabac_ctx_t *ctx = &(cabac->ctx.qt_cbf_model_cb[0]); cabac->cur_ctx = ctx; if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_U)) { int u_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_U); CABAC_FBITS_UPDATE(cabac, ctx, u_is_set, tr_tree_bits, "cbf_cb_search"); } int is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_U); ctx = &(cabac->ctx.qt_cbf_model_cr[is_set]); if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_V)) { int v_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_V); CABAC_FBITS_UPDATE(cabac, ctx, v_is_set, tr_tree_bits, "cbf_cb_search"); } } if (tr_cu->tr_depth > depth) { int offset = LCU_WIDTH >> (depth + 1); double sum = 0; sum += kvz_cu_rd_cost_chroma(state, x_px, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_chroma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu); return sum + tr_tree_bits * state->lambda; } if (state->encoder_control->cfg.jccr) { int cbf_mask = cbf_is_set(pred_cu->cbf, depth, COLOR_U) * 2 + cbf_is_set(pred_cu->cbf, depth, COLOR_V) - 1; const cabac_ctx_t* ctx = NULL; if (cbf_mask != -1) { ctx = &(state->cabac.ctx.joint_cb_cr[cbf_mask]); tr_tree_bits += CTX_ENTROPY_FBITS(ctx, 0); } } // Chroma SSD int ssd = 0; if (!state->encoder_control->cfg.lossless) { int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x; int ssd_u = kvz_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.u[index], LCU_WIDTH_C, LCU_WIDTH_C, width); int ssd_v = kvz_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.v[index], LCU_WIDTH_C, LCU_WIDTH_C, width); ssd = ssd_u + ssd_v; } if (!skip_residual_coding) { int8_t scan_order = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode_chroma, depth); const int index = xy_to_zorder(LCU_WIDTH_C, lcu_px.x, lcu_px.y); coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.u[index], width, 2, scan_order, 0); coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.v[index], width, 2, scan_order, 0); } double bits = tr_tree_bits + coeff_bits; return (double)ssd * KVZ_CHROMA_MULT + bits * state->c_lambda; } static double cu_rd_cost_tr_split_accurate(const encoder_state_t* const state, const int x_px, const int y_px, const int depth, const cu_info_t* const pred_cu, lcu_t* const lcu) { const int width = LCU_WIDTH >> depth; const int skip_residual_coding = pred_cu->skipped || (pred_cu->type == CU_INTER && pred_cu->cbf == 0); // cur_cu is used for TU parameters. cu_info_t* const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px); double coeff_bits = 0; double tr_tree_bits = 0; // Check that lcu is not in assert(x_px >= 0 && x_px < LCU_WIDTH); assert(y_px >= 0 && y_px < LCU_WIDTH); const uint8_t tr_depth = tr_cu->tr_depth - depth; const int cb_flag_u = cbf_is_set(tr_cu->cbf, depth, COLOR_U); const int cb_flag_v = cbf_is_set(tr_cu->cbf, depth, COLOR_V); cabac_data_t* cabac = (cabac_data_t*)&state->search_cabac; { int cbf = cbf_is_set_any(pred_cu->cbf, depth); // Only need to signal coded block flag if not skipped or merged // skip = no coded residual, merge = coded residual if (pred_cu->type == CU_INTER && (pred_cu->part_size != SIZE_2Nx2N || !pred_cu->merged)) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_qt_root_cbf_model), cbf, tr_tree_bits, "rqt_root_cbf"); } } if(state->encoder_control->chroma_format != KVZ_CSP_400 && !skip_residual_coding) { if(tr_cu->depth == depth || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_U)) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.qt_cbf_model_cb[0]), cb_flag_u, tr_tree_bits, "cbf_cb"); } if(tr_cu->depth == depth || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_V)) { CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.qt_cbf_model_cr[cb_flag_u]), cb_flag_v, tr_tree_bits, "cbf_cr"); } } if (tr_depth > 0) { int offset = LCU_WIDTH >> (depth + 1); double sum = 0; sum += cu_rd_cost_tr_split_accurate(state, x_px, y_px, depth + 1, pred_cu, lcu); sum += cu_rd_cost_tr_split_accurate(state, x_px + offset, y_px, depth + 1, pred_cu, lcu); sum += cu_rd_cost_tr_split_accurate(state, x_px, y_px + offset, depth + 1, pred_cu, lcu); sum += cu_rd_cost_tr_split_accurate(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu); return sum + tr_tree_bits * state->lambda; } const int cb_flag_y = cbf_is_set(tr_cu->cbf, depth, COLOR_Y) ; // Add transform_tree cbf_luma bit cost. const int is_tr_split = depth - tr_cu->depth; if ((pred_cu->type == CU_INTRA || is_tr_split || cb_flag_u || cb_flag_v) && !skip_residual_coding) { cabac_ctx_t* ctx = &(cabac->ctx.qt_cbf_model_luma[!is_tr_split]); CABAC_FBITS_UPDATE(cabac, ctx, cb_flag_y, tr_tree_bits, "cbf_y_search"); } if (cb_flag_y | cb_flag_u | cb_flag_v) { // TODO qp_delta_sign_flag if ((cb_flag_u | cb_flag_v) && x_px % 8 == 0 && y_px % 8 == 0 && state->encoder_control->cfg.jccr) { CABAC_FBITS_UPDATE(cabac, &cabac->ctx.joint_cb_cr[cb_flag_u * 2 + cb_flag_v - 1], tr_cu->joint_cb_cr != 0, tr_tree_bits, "tu_joint_cbcr_residual_flag"); } } // SSD between reconstruction and original unsigned luma_ssd = 0; if (!state->encoder_control->cfg.lossless) { int index = y_px * LCU_WIDTH + x_px; luma_ssd = kvz_pixels_calc_ssd(&lcu->ref.y[index], &lcu->rec.y[index], LCU_WIDTH, LCU_WIDTH, width); } { int8_t luma_scan_mode = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode, depth); const coeff_t* coeffs = &lcu->coeff.y[xy_to_zorder(LCU_WIDTH, x_px, y_px)]; coeff_bits += kvz_get_coeff_cost(state, coeffs, width, 0, luma_scan_mode, tr_cu->tr_skip); } unsigned chroma_ssd = 0; if(state->encoder_control->chroma_format != KVZ_CSP_400 && (depth != 4 || (x_px % 8 != 0 && y_px % 8 != 0))) { const vector2d_t lcu_px = { (x_px & ~7 ) / 2, (y_px & ~7) / 2 }; const int chroma_width = MAX(4, LCU_WIDTH >> (depth + 1)); int8_t scan_order = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode_chroma, depth); const unsigned index = xy_to_zorder(LCU_WIDTH_C, lcu_px.x, lcu_px.y); if(pred_cu->joint_cb_cr == 0) { if (!state->encoder_control->cfg.lossless) { int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x; unsigned ssd_u = kvz_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.u[index], LCU_WIDTH_C, LCU_WIDTH_C, chroma_width); unsigned ssd_v = kvz_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.v[index], LCU_WIDTH_C, LCU_WIDTH_C, chroma_width); chroma_ssd = ssd_u + ssd_v; } { coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.u[index], chroma_width, 2, scan_order, 0); coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.v[index], chroma_width, 2, scan_order, 0); } } else { int ssd_u_joint = kvz_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.joint_u[index], LCU_WIDTH_C, LCU_WIDTH_C, width); int ssd_v_joint = kvz_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.joint_v[index], LCU_WIDTH_C, LCU_WIDTH_C, chroma_width); chroma_ssd = ssd_u_joint + ssd_v_joint; coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.joint_uv[index], width, 2, scan_order, 0); } } double bits = tr_tree_bits + coeff_bits; return luma_ssd * KVZ_LUMA_MULT + chroma_ssd * KVZ_CHROMA_MULT + bits * state->lambda; } void kvz_select_jccr_mode( const encoder_state_t* const state, const int x_px, const int y_px, const int depth, cu_info_t* pred_cu, lcu_t* const lcu, double* cost_out) { const vector2d_t lcu_px = { (SUB_SCU(x_px) & ~7) / 2, (SUB_SCU(y_px) & ~7) / 2 }; const int width = (depth < MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth; if (pred_cu == NULL) pred_cu = LCU_GET_CU_AT_PX(lcu, lcu_px.x * 2, lcu_px.y * 2); assert(pred_cu->depth == pred_cu->tr_depth && "jccr does not support transform splitting"); if (cost_out == NULL && pred_cu->joint_cb_cr == 0) { return; } double tr_tree_bits = 0; double joint_cbcr_tr_tree_bits = 0; double coeff_bits = 0; double joint_coeff_bits = 0; assert(lcu_px.x >= 0 && lcu_px.x < LCU_WIDTH_C); assert(lcu_px.y >= 0 && lcu_px.y < LCU_WIDTH_C); if (depth == 4 && (x_px % 8 == 0 || y_px % 8 == 0)) { // For MAX_PU_DEPTH calculate chroma for previous depth for the first // block and return 0 cost for all others. return; } cabac_data_t* cabac = (cabac_data_t*)&state->search_cabac; cabac_ctx_t* ctx = &(cabac->ctx.qt_cbf_model_cb[0]); cabac->cur_ctx = ctx; int u_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_U); CABAC_FBITS_UPDATE(cabac, ctx, u_is_set, tr_tree_bits, "cbf_cb_search"); ctx = &(cabac->ctx.qt_cbf_model_cr[u_is_set]); int v_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_V); CABAC_FBITS_UPDATE(cabac, ctx, v_is_set, tr_tree_bits, "cbf_cr_search"); int cbf_mask = cbf_is_set(pred_cu->cbf, depth, COLOR_U) * 2 + cbf_is_set(pred_cu->cbf, depth, COLOR_V) - 1; if((cbf_mask != -1 && pred_cu->type == CU_INTRA) || cbf_mask == 2) CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.joint_cb_cr[cbf_mask]), 0, tr_tree_bits, "jccr_flag"); if(pred_cu->joint_cb_cr) { ctx = &(cabac->ctx.qt_cbf_model_cb[0]); CABAC_FBITS_UPDATE(cabac, ctx, pred_cu->joint_cb_cr & 1, joint_cbcr_tr_tree_bits, "cbf_cb_search"); ctx = &(cabac->ctx.qt_cbf_model_cr[pred_cu->joint_cb_cr & 1]); CABAC_FBITS_UPDATE(cabac, ctx, (pred_cu->joint_cb_cr & 2) >> 1, joint_cbcr_tr_tree_bits, "cbf_cr_search"); cbf_mask = (pred_cu->joint_cb_cr & 1) * 2 + ((pred_cu->joint_cb_cr & 2) >> 1) - 1; CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.joint_cb_cr[cbf_mask]), 1, joint_cbcr_tr_tree_bits, "jccr_flag"); } int ssd = 0; int joint_ssd = 0; if (!state->encoder_control->cfg.lossless) { int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x; int ssd_u = kvz_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.u[index], LCU_WIDTH_C, LCU_WIDTH_C, width); int ssd_v = kvz_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.v[index], LCU_WIDTH_C, LCU_WIDTH_C, width); ssd = ssd_u + ssd_v; if (pred_cu->joint_cb_cr) { int ssd_u_joint = kvz_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.joint_u[index], LCU_WIDTH_C, LCU_WIDTH_C, width); int ssd_v_joint = kvz_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.joint_v[index], LCU_WIDTH_C, LCU_WIDTH_C, width); joint_ssd = ssd_u_joint + ssd_v_joint; } } { int8_t scan_order = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode_chroma, depth); const int index = xy_to_zorder(LCU_WIDTH_C, lcu_px.x, lcu_px.y); if (u_is_set) coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.u[index], width, 2, scan_order, 0); if (v_is_set) coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.v[index], width, 2, scan_order, 0); joint_coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.joint_uv[index], width, 2, scan_order, 0); } double bits = tr_tree_bits + coeff_bits; double joint_bits = joint_cbcr_tr_tree_bits + joint_coeff_bits; double cost = (double)ssd * KVZ_CHROMA_MULT + bits * state->c_lambda; double joint_cost = (double)joint_ssd * KVZ_CHROMA_MULT + joint_bits * state->c_lambda; if ((cost < joint_cost || !pred_cu->joint_cb_cr) || !state->encoder_control->cfg.jccr) { pred_cu->joint_cb_cr = 0; if (cost_out) *cost_out += cost; return; } cbf_clear(&pred_cu->cbf, depth, COLOR_U); cbf_clear(&pred_cu->cbf, depth, COLOR_V); if (pred_cu->joint_cb_cr & 1) { cbf_set(&pred_cu->cbf, depth, COLOR_U); } if (pred_cu->joint_cb_cr & 2) { cbf_set(&pred_cu->cbf, depth, COLOR_V); } int lcu_width = LCU_WIDTH_C; const int index = lcu_px.x + lcu_px.y * lcu_width; kvz_pixels_blit(&lcu->rec.joint_u[index], &lcu->rec.u[index], width, width, lcu_width, lcu_width); kvz_pixels_blit(&lcu->rec.joint_v[index], &lcu->rec.v[index], width, width, lcu_width, lcu_width); if (cost_out) *cost_out += joint_cost; } // Return estimate of bits used to code prediction mode of cur_cu. static double calc_mode_bits(const encoder_state_t *state, const lcu_t *lcu, const cu_info_t * cur_cu, int x, int y, int depth) { assert(cur_cu->type == CU_INTRA); double mode_bits = kvz_luma_mode_bits(state, cur_cu, x, y, depth, lcu); if (((depth == 4 && x % 8 && y % 8) || (depth != 4)) && state->encoder_control->chroma_format != KVZ_CSP_400) { mode_bits += kvz_chroma_mode_bits(state, cur_cu->intra.mode_chroma, cur_cu->intra.mode); } return mode_bits; } // TODO: replace usages of this by the kvz_sort_indices_by_cost function. /** * \brief Sort modes and costs to ascending order according to costs. */ void kvz_sort_modes(int8_t *__restrict modes, double *__restrict costs, uint8_t length) { // Length for intra is always between 5 and 23, and is either 21, 17, 9 or 8 about // 60% of the time, so there should be no need for anything more complex // than insertion sort. // Length for merge is 5 or less. for (uint8_t i = 1; i < length; ++i) { const double cur_cost = costs[i]; const int8_t cur_mode = modes[i]; uint8_t j = i; while (j > 0 && cur_cost < costs[j - 1]) { costs[j] = costs[j - 1]; modes[j] = modes[j - 1]; --j; } costs[j] = cur_cost; modes[j] = cur_mode; } } /** * \brief Sort modes and costs to ascending order according to costs. */ void kvz_sort_modes_intra_luma(int8_t *__restrict modes, int8_t *__restrict trafo, double *__restrict costs, uint8_t length) { // Length for intra is always between 5 and 23, and is either 21, 17, 9 or 8 about // 60% of the time, so there should be no need for anything more complex // than insertion sort. // Length for merge is 5 or less. for (uint8_t i = 1; i < length; ++i) { const double cur_cost = costs[i]; const int8_t cur_mode = modes[i]; const int8_t cur_tr = trafo[i]; uint8_t j = i; while (j > 0 && cur_cost < costs[j - 1]) { costs[j] = costs[j - 1]; modes[j] = modes[j - 1]; trafo[j] = trafo[j - 1]; --j; } costs[j] = cur_cost; modes[j] = cur_mode; trafo[j] = cur_tr; } } /** * \brief Sort keys (indices) to ascending order according to costs. */ void kvz_sort_keys_by_cost(unit_stats_map_t *__restrict map) { // Size of sorted arrays is expected to be "small". No need for faster algorithm. for (uint8_t i = 1; i < map->size; ++i) { const int8_t cur_indx = map->keys[i]; const double cur_cost = map->cost[cur_indx]; uint8_t j = i; while (j > 0 && cur_cost < map->cost[map->keys[j - 1]]) { map->keys[j] = map->keys[j - 1]; --j; } map->keys[j] = cur_indx; } } /** * Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode. * - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH. * - Data structure work_tree is maintained such that the neighbouring SCUs * and pixels to the left and up of current CU are the final CUs decided * via the search. This is done by copying the relevant data to all * relevant levels whenever a decision is made whether to split or not. * - All the final data for the LCU gets eventually copied to depth 0, which * will be the final output of the recursion. */ static double search_cu(encoder_state_t * const state, int x, int y, int depth, lcu_t *work_tree) { const encoder_control_t* ctrl = state->encoder_control; const videoframe_t * const frame = state->tile->frame; int cu_width = LCU_WIDTH >> depth; double cost = MAX_DOUBLE; double inter_zero_coeff_cost = MAX_DOUBLE; double inter_bitcost = MAX_INT; cu_info_t *cur_cu; cabac_data_t pre_search_cabac; memcpy(&pre_search_cabac, &state->search_cabac, sizeof(pre_search_cabac)); const uint32_t ctu_row = (y >> LOG2_LCU_WIDTH); const uint32_t ctu_row_mul_five = ctu_row * MAX_NUM_HMVP_CANDS; cu_info_t hmvp_lut[MAX_NUM_HMVP_CANDS]; uint8_t hmvp_lut_size = state->tile->frame->hmvp_size[ctu_row]; // Store original HMVP lut before search and restore after, since it's modified if (state->frame->slicetype != KVZ_SLICE_I) memcpy(hmvp_lut, &state->tile->frame->hmvp_lut[ctu_row_mul_five], sizeof(cu_info_t) * MAX_NUM_HMVP_CANDS); struct { int32_t min; int32_t max; } pu_depth_inter, pu_depth_intra; lcu_t *const lcu = &work_tree[depth]; int x_local = SUB_SCU(x); int y_local = SUB_SCU(y); // Stop recursion if the CU is completely outside the frame. if (x >= frame->width || y >= frame->height) { // Return zero cost because this CU does not have to be coded. return 0; } int gop_layer = ctrl->cfg.gop_len != 0 ? ctrl->cfg.gop[state->frame->gop_offset].layer - 1 : 0; // Assign correct depth limit constraint_t* constr = state->constraint; if(constr->ml_intra_depth_ctu) { pu_depth_intra.min = constr->ml_intra_depth_ctu->_mat_upper_depth[(x_local >> 3) + (y_local >> 3) * 8]; pu_depth_intra.max = constr->ml_intra_depth_ctu->_mat_lower_depth[(x_local >> 3) + (y_local >> 3) * 8]; } else { pu_depth_intra.min = ctrl->cfg.pu_depth_intra.min[gop_layer] >= 0 ? ctrl->cfg.pu_depth_intra.min[gop_layer] : ctrl->cfg.pu_depth_intra.min[0]; pu_depth_intra.max = ctrl->cfg.pu_depth_intra.max[gop_layer] >= 0 ? ctrl->cfg.pu_depth_intra.max[gop_layer] : ctrl->cfg.pu_depth_intra.max[0]; } pu_depth_inter.min = ctrl->cfg.pu_depth_inter.min[gop_layer] >= 0 ? ctrl->cfg.pu_depth_inter.min[gop_layer] : ctrl->cfg.pu_depth_inter.min[0]; pu_depth_inter.max = ctrl->cfg.pu_depth_inter.max[gop_layer] >= 0 ? ctrl->cfg.pu_depth_inter.max[gop_layer] : ctrl->cfg.pu_depth_inter.max[0]; cur_cu = LCU_GET_CU_AT_PX(lcu, x_local, y_local); // Assign correct depth cur_cu->depth = (depth > MAX_DEPTH) ? MAX_DEPTH : depth; cur_cu->tr_depth = (depth > 0) ? depth : 1; cur_cu->type = CU_NOTSET; cur_cu->part_size = SIZE_2Nx2N; cur_cu->qp = state->qp; cur_cu->bdpcmMode = 0; cur_cu->tr_idx = 0; cur_cu->violates_mts_coeff_constraint = 0; cur_cu->mts_last_scan_pos = 0; cur_cu->joint_cb_cr = 0; // If the CU is completely inside the frame at this depth, search for // prediction modes at this depth. if (x + cu_width <= frame->width && y + cu_width <= frame->height) { int cu_width_inter_min = LCU_WIDTH >> pu_depth_inter.max; bool can_use_inter = state->frame->slicetype != KVZ_SLICE_I && depth <= MAX_DEPTH && ( WITHIN(depth, pu_depth_inter.min, pu_depth_inter.max) || // When the split was forced because the CTU is partially outside the // frame, we permit inter coding even if pu_depth_inter would // otherwise forbid it. (x & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame->width || (y & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame->height ); if (can_use_inter) { double mode_cost; double mode_bitcost; kvz_search_cu_inter(state, x, y, depth, lcu, &mode_cost, &mode_bitcost); if (mode_cost < cost) { cost = mode_cost; inter_bitcost = mode_bitcost; cur_cu->type = CU_INTER; } if (!(ctrl->cfg.early_skip && cur_cu->skipped)) { // Try SMP and AMP partitioning. static const part_mode_t mp_modes[] = { // SMP SIZE_2NxN, SIZE_Nx2N, // AMP SIZE_2NxnU, SIZE_2NxnD, SIZE_nLx2N, SIZE_nRx2N, }; const int first_mode = ctrl->cfg.smp_enable ? 0 : 2; const int last_mode = (ctrl->cfg.amp_enable && cu_width >= 16) ? 5 : 1; for (int i = first_mode; i <= last_mode; ++i) { kvz_search_cu_smp(state, x, y, depth, mp_modes[i], &work_tree[depth + 1], &mode_cost, &mode_bitcost); if (mode_cost < cost) { cost = mode_cost; inter_bitcost = mode_bitcost; // Copy inter prediction info to current level. copy_cu_info(x_local, y_local, cu_width, &work_tree[depth + 1], lcu); } } } } // Try to skip intra search in rd==0 mode. // This can be quite severe on bdrate. It might be better to do this // decision after reconstructing the inter frame. bool skip_intra = (state->encoder_control->cfg.rdo == 0 && cur_cu->type != CU_NOTSET && cost / (cu_width * cu_width) < INTRA_THRESHOLD) || (ctrl->cfg.early_skip && cur_cu->skipped); int32_t cu_width_intra_min = LCU_WIDTH >> pu_depth_intra.max; bool can_use_intra = (WITHIN(depth, pu_depth_intra.min, pu_depth_intra.max) || // When the split was forced because the CTU is partially outside // the frame, we permit intra coding even if pu_depth_intra would // otherwise forbid it. (x & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame->width || (y & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame->height) && !(state->encoder_control->cfg.force_inter && state->frame->slicetype != KVZ_SLICE_I); intra_search_data_t intra_search; if (can_use_intra && !skip_intra) { intra_search.pred_cu = *cur_cu; intra_search.pred_cu.joint_cb_cr = 4; kvz_search_cu_intra(state, x, y, depth, &intra_search, lcu); #ifdef COMPLETE_PRED_MODE_BITS // Technically counting these bits would be correct, however counting // them universally degrades quality so this block is disabled by default if(state->frame->slicetype != KVZ_SLICE_I) { double pred_mode_type_bits = 0; CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.cu_pred_mode_model, 1, pred_mode_type_bits, "pred_mode_flag"); CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.cu_skip_flag_model[kvz_get_skip_context(x, y, lcu, NULL)], 0, pred_mode_type_bits, "skip_flag"); intra_cost += pred_mode_type_bits * state->lambda; } #endif if (intra_search.cost < cost) { cost = intra_search.cost; *cur_cu = intra_search.pred_cu; cur_cu->type = CU_INTRA; } } // Reconstruct best mode because we need the reconstructed pixels for // mode search of adjacent CUs. if (cur_cu->type == CU_INTRA) { assert(cur_cu->part_size == SIZE_2Nx2N || cur_cu->part_size == SIZE_NxN); intra_search.pred_cu.intra.mode_chroma = -1; // don't reconstruct chroma before search is performed for it lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu); kvz_intra_recon_cu(state, x, y, depth, &intra_search, NULL, lcu); downsample_cclm_rec( state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y, lcu->left_ref.y[64] ); // TODO: This heavily relies to square CUs if ((depth != 4 || (x % 8 && y % 8)) && state->encoder_control->chroma_format != KVZ_CSP_400) { // There is almost no benefit to doing the chroma mode search for // rd2. Possibly because the luma mode search already takes chroma // into account, so there is less of a chanse of luma mode being // really bad for chroma. if (ctrl->cfg.rdo >= 3 && !cur_cu->intra.mip_flag) { cur_cu->intra.mode_chroma = kvz_search_cu_intra_chroma(state, x, y, depth, lcu, intra_search.cclm_parameters); lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu); } intra_search.pred_cu.intra.mode_chroma = intra_search.pred_cu.intra.mode; intra_search.pred_cu.intra.mode = -1; // skip luma intra_search.pred_cu.joint_cb_cr = 0; kvz_intra_recon_cu(state, x & ~7, y & ~7, // TODO: as does this depth, &intra_search, NULL, lcu); cur_cu->intra.mode_chroma = intra_search.pred_cu.intra.mode_chroma; cur_cu->joint_cb_cr = intra_search.pred_cu.joint_cb_cr; if(depth != 0 && state->encoder_control->cfg.jccr) { kvz_select_jccr_mode(state, x & ~7, y & ~7, depth, NULL, lcu, NULL); } } } else if (cur_cu->type == CU_INTER) { if (!cur_cu->skipped) { if (!cur_cu->merged) { if (cur_cu->inter.mv_dir & 1) kvz_round_precision(INTERNAL_MV_PREC, 2, &cur_cu->inter.mv[0][0], &cur_cu->inter.mv[0][1]); if (cur_cu->inter.mv_dir & 2) kvz_round_precision(INTERNAL_MV_PREC, 2, &cur_cu->inter.mv[1][0], &cur_cu->inter.mv[1][1]); } // Reset transform depth because intra messes with them. // This will no longer be necessary if the transform depths are not shared. int tr_depth = MAX(1, depth); if (cur_cu->part_size != SIZE_2Nx2N) { tr_depth = depth + 1; } kvz_lcu_fill_trdepth(lcu, x, y, depth, tr_depth); const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400; kvz_inter_recon_cu(state, lcu, x, y, cu_width, true, has_chroma); if (ctrl->cfg.zero_coeff_rdo && !ctrl->cfg.lossless && !ctrl->cfg.rdoq_enable) { //Calculate cost for zero coeffs inter_zero_coeff_cost = cu_zero_coeff_cost(state, work_tree, x, y, depth) + inter_bitcost * state->lambda; } kvz_quantize_lcu_residual(state, true, has_chroma, state->encoder_control->cfg.jccr, x, y, depth, NULL, lcu, false); if (cur_cu->depth == cur_cu->tr_depth && state->encoder_control->cfg.jccr && cur_cu->joint_cb_cr) { kvz_select_jccr_mode(state, x & ~7, y & ~7, depth, NULL, lcu, NULL); } int cbf = cbf_is_set_any(cur_cu->cbf, depth); if (cur_cu->merged && !cbf && cur_cu->part_size == SIZE_2Nx2N) { cur_cu->merged = 0; cur_cu->skipped = 1; // Selecting skip reduces bits needed to code the CU int skip_ctx = kvz_get_skip_context(x, y, lcu, NULL, NULL); inter_bitcost = CTX_ENTROPY_FBITS(&state->search_cabac.ctx.cu_skip_flag_model[skip_ctx], 1); inter_bitcost += CTX_ENTROPY_FBITS(&(state->search_cabac.ctx.cu_merge_idx_ext_model), cur_cu->merge_idx != 0); inter_bitcost += cur_cu->merge_idx; } } lcu_fill_inter(lcu, x_local, y_local, cu_width); lcu_fill_cbf(lcu, x_local, y_local, cu_width, cur_cu); } } if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) { double bits = 0; cabac_data_t* cabac = &state->search_cabac; cabac->update = 1; if(cur_cu->type != CU_INTRA || cur_cu->part_size == SIZE_2Nx2N) { bits += kvz_mock_encode_coding_unit( state, cabac, x, y, depth, lcu, cur_cu); } else { assert(0); } cost = bits * state->lambda; cost += cu_rd_cost_tr_split_accurate(state, x_local, y_local, depth, cur_cu, lcu); if (ctrl->cfg.zero_coeff_rdo && inter_zero_coeff_cost <= cost) { cost = inter_zero_coeff_cost; // Restore saved pixels from lower level of the working tree. copy_cu_pixels(x_local, y_local, cu_width, &work_tree[depth + 1], lcu); if (cur_cu->merged && cur_cu->part_size == SIZE_2Nx2N) { cur_cu->merged = 0; cur_cu->skipped = 1; lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu); } if (cur_cu->tr_depth != depth) { // Reset transform depth since there are no coefficients. This // ensures that CBF is cleared for the whole area of the CU. kvz_lcu_fill_trdepth(lcu, x, y, depth, depth); } cur_cu->cbf = 0; lcu_fill_cbf(lcu, x_local, y_local, cu_width, cur_cu); } cabac->update = 0; } bool can_split_cu = // If the CU is partially outside the frame, we need to split it even // if pu_depth_intra and pu_depth_inter would not permit it. cur_cu->type == CU_NOTSET || (depth < pu_depth_intra.max && !(state->encoder_control->cfg.force_inter&& state->frame->slicetype != KVZ_SLICE_I)) || (state->frame->slicetype != KVZ_SLICE_I && depth < pu_depth_inter.max); // Recursively split all the way to max search depth. if (can_split_cu) { int half_cu = cu_width / 2; double split_cost = 0.0; int cbf = cbf_is_set_any(cur_cu->cbf, depth); cabac_data_t post_seach_cabac; memcpy(&post_seach_cabac, &state->search_cabac, sizeof(post_seach_cabac)); memcpy(&state->search_cabac, &pre_search_cabac, sizeof(post_seach_cabac)); state->search_cabac.update = 1; double split_bits = 0; if (depth < MAX_DEPTH) { // Add cost of cu_split_flag. kvz_write_split_flag(state, &state->search_cabac, x > 0 ? LCU_GET_CU_AT_PX(lcu,SUB_SCU(x) -1, SUB_SCU(y)): NULL, y > 0 ? LCU_GET_CU_AT_PX(lcu, SUB_SCU(x), SUB_SCU(y) - 1) : NULL, 1, depth, cu_width, x, y, &split_bits); } state->search_cabac.update = 0; split_cost += split_bits * state->lambda; // If skip mode was selected for the block, skip further search. // Skip mode means there's no coefficients in the block, so splitting // might not give any better results but takes more time to do. // It is ok to interrupt the search as soon as it is known that // the split costs at least as much as not splitting. if (cur_cu->type == CU_NOTSET || cbf || state->encoder_control->cfg.cu_split_termination == KVZ_CU_SPLIT_TERMINATION_OFF) { if (split_cost < cost) split_cost += search_cu(state, x, y, depth + 1, work_tree); if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y, depth + 1, work_tree); if (split_cost < cost) split_cost += search_cu(state, x, y + half_cu, depth + 1, work_tree); if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y + half_cu, depth + 1, work_tree); } else { split_cost = INT_MAX; } // If no search is not performed for this depth, try just the best mode // of the top left CU from the next depth. This should ensure that 64x64 // gets used, at least in the most obvious cases, while avoiding any // searching. if (cur_cu->type == CU_NOTSET && depth < MAX_PU_DEPTH && x + cu_width <= frame->width && y + cu_width <= frame->height && state->encoder_control->cfg.combine_intra_cus) { cu_info_t *cu_d1 = LCU_GET_CU_AT_PX(&work_tree[depth + 1], x_local, y_local); // If the best CU in depth+1 is intra and the biggest it can be, try it. if (cu_d1->type == CU_INTRA && cu_d1->depth == depth + 1) { cabac_data_t temp_cabac; memcpy(&temp_cabac, &state->search_cabac, sizeof(temp_cabac)); memcpy(&state->search_cabac, &pre_search_cabac, sizeof(pre_search_cabac)); cost = 0; double bits = 0; kvz_write_split_flag(state, &state->search_cabac, x > 0 ? LCU_GET_CU_AT_PX(lcu, SUB_SCU(x) - 1, SUB_SCU(y)) : NULL, y > 0 ? LCU_GET_CU_AT_PX(lcu, SUB_SCU(x), SUB_SCU(y) - 1) : NULL, 0, depth, cu_width, x, y, & split_bits); cur_cu->intra = cu_d1->intra; cur_cu->type = CU_INTRA; cur_cu->part_size = SIZE_2Nx2N; // Disable MRL in this case cur_cu->intra.multi_ref_idx = 0; kvz_lcu_fill_trdepth(lcu, x, y, depth, cur_cu->tr_depth); lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu); const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400; const int8_t mode_chroma = has_chroma ? cur_cu->intra.mode_chroma : -1; kvz_intra_recon_cu(state, x, y, depth, NULL, NULL, lcu); double mode_bits = calc_mode_bits(state, lcu, cur_cu, x, y, depth) + bits; cost += mode_bits * state->lambda; cost += cu_rd_cost_tr_split_accurate(state, x_local, y_local, depth, cur_cu, lcu); memcpy(&post_seach_cabac, &state->search_cabac, sizeof(post_seach_cabac)); memcpy(&state->search_cabac, &temp_cabac, sizeof(temp_cabac)); } } if (split_cost < cost) { // Copy split modes to this depth. cost = split_cost; work_tree_copy_up(x_local, y_local, depth, work_tree, state->encoder_control->cfg.jccr); #if KVZ_DEBUG //debug_split = 1; #endif } else if (depth > 0) { // Copy this CU's mode all the way down for use in adjacent CUs mode // search. memcpy(&state->search_cabac, &post_seach_cabac, sizeof(post_seach_cabac)); work_tree_copy_down(x_local, y_local, depth, work_tree); downsample_cclm_rec( state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y, lcu->left_ref.y[64] ); if (state->frame->slicetype != KVZ_SLICE_I) { // Reset HMVP to the beginning of this CU level search and add this CU as the mvp memcpy(&state->tile->frame->hmvp_lut[ctu_row_mul_five], hmvp_lut, sizeof(cu_info_t) * MAX_NUM_HMVP_CANDS); state->tile->frame->hmvp_size[ctu_row] = hmvp_lut_size; kvz_hmvp_add_mv(state, x, y, cu_width, cu_width, cur_cu); } } else { downsample_cclm_rec( state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y, lcu->left_ref.y[64] ); } } else if (depth >= 0 && depth < MAX_PU_DEPTH) { // Need to copy modes down since the lower level of the work tree is used // when searching SMP and AMP blocks. work_tree_copy_down(x_local, y_local, depth, work_tree); downsample_cclm_rec( state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y, lcu->left_ref.y[64] ); if (state->frame->slicetype != KVZ_SLICE_I) { // Reset HMVP to the beginning of this CU level search and add this CU as the mvp memcpy(&state->tile->frame->hmvp_lut[ctu_row_mul_five], hmvp_lut, sizeof(cu_info_t) * MAX_NUM_HMVP_CANDS); state->tile->frame->hmvp_size[ctu_row] = hmvp_lut_size; kvz_hmvp_add_mv(state, x, y, cu_width, cu_width, cur_cu); } } assert(cur_cu->type != CU_NOTSET); return cost; } /** * Initialize lcu_t for search. * - Copy reference CUs. * - Copy reference pixels from neighbouring LCUs. * - Copy reference pixels from this LCU. */ static void init_lcu_t(const encoder_state_t * const state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf) { const videoframe_t * const frame = state->tile->frame; FILL(*lcu, 0); lcu->rec.chroma_format = state->encoder_control->chroma_format; lcu->ref.chroma_format = state->encoder_control->chroma_format; // Copy reference cu_info structs from neighbouring LCUs. // Copy top CU row. if (y > 0) { for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) { const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x + i, y - 1); cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, i, -1); memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy left CU column. if (x > 0) { for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) { const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y + i); cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, i); memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy top-left CU. if (x > 0 && y > 0) { const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y - 1); cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, -1); memcpy(to_cu, from_cu, sizeof(*to_cu)); } // Copy top-right CU, available only without WPP if (y > 0 && x + LCU_WIDTH < frame->width && !state->encoder_control->cfg.wpp) { const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x + LCU_WIDTH, y - 1); cu_info_t *to_cu = LCU_GET_TOP_RIGHT_CU(lcu); memcpy(to_cu, from_cu, sizeof(*to_cu)); } // Copy reference pixels. { const int pic_width = frame->width; // Copy top reference pixels. if (y > 0) { // hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH // number of allocated pixels left. int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x); int x_min_in_lcu = (x>0) ? 0 : 1; int luma_offset = OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu - 1); int chroma_offset = OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu - 1); int luma_bytes = (x_max + (1 - x_min_in_lcu))*sizeof(kvz_pixel); int chroma_bytes = (x_max / 2 + (1 - x_min_in_lcu))*sizeof(kvz_pixel); memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[luma_offset], luma_bytes); if (state->encoder_control->chroma_format != KVZ_CSP_400) { memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[chroma_offset], chroma_bytes); memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[chroma_offset], chroma_bytes); } } // Copy left reference pixels. if (x > 0) { int y_min_in_lcu = (y>0) ? 0 : 1; int luma_offset = OFFSET_VER_BUF(x, y, frame, y_min_in_lcu - 1); int chroma_offset = OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu - 1); int luma_bytes = (LCU_WIDTH + (1 - y_min_in_lcu)) * sizeof(kvz_pixel); int chroma_bytes = (LCU_WIDTH / 2 + (1 - y_min_in_lcu)) * sizeof(kvz_pixel); memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[luma_offset], luma_bytes); if (state->encoder_control->chroma_format != KVZ_CSP_400) { memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[chroma_offset], chroma_bytes); memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[chroma_offset], chroma_bytes); } } } // Copy LCU pixels. { const videoframe_t * const frame = state->tile->frame; int x_max = MIN(x + LCU_WIDTH, frame->width) - x; int y_max = MIN(y + LCU_WIDTH, frame->height) - y; int x_c = x / 2; int y_c = y / 2; int x_max_c = x_max / 2; int y_max_c = y_max / 2; kvz_pixel* source = NULL; if (state->tile->frame->lmcs_aps->m_sliceReshapeInfo.sliceReshaperEnableFlag) { source = frame->source_lmcs->y; } else { source = frame->source->y; } // Use LMCS pixels for luma if they are available, otherwise source_lmcs is mapped to normal source kvz_pixels_blit(&source[x + y * frame->source->stride], lcu->ref.y, x_max, y_max, frame->source->stride, LCU_WIDTH); if (state->encoder_control->chroma_format != KVZ_CSP_400) { kvz_pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride / 2], lcu->ref.u, x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2); kvz_pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride / 2], lcu->ref.v, x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2); } } } /** * Copy CU and pixel data to it's place in picture datastructure. */ static void copy_lcu_to_cu_data(const encoder_state_t * const state, int x_px, int y_px, const lcu_t *lcu) { // Copy non-reference CUs to picture. kvz_cu_array_copy_from_lcu(state->tile->frame->cu_array, x_px, y_px, lcu); // Copy pixels to picture. { videoframe_t * const pic = state->tile->frame; const int pic_width = pic->width; const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px; const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px; kvz_pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride], x_max, y_max, LCU_WIDTH, pic->rec->stride); if (state->tile->frame->lmcs_aps->m_sliceReshapeInfo.sliceReshaperEnableFlag) { kvz_pixels_blit(lcu->rec.y, &pic->rec_lmcs->y[x_px + y_px * pic->rec->stride], x_max, y_max, LCU_WIDTH, pic->rec->stride); } if (state->encoder_control->chroma_format != KVZ_CSP_400) { kvz_pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); kvz_pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); } } } /** * Search LCU for modes. * - Best mode gets copied to current picture. */ void kvz_search_lcu(encoder_state_t * const state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf, lcu_coeff_t *coeff) { memcpy(&state->search_cabac, &state->cabac, sizeof(cabac_data_t)); state->search_cabac.only_count = 1; assert(x % LCU_WIDTH == 0); assert(y % LCU_WIDTH == 0); // Initialize the same starting state to every depth. The search process // will use these as temporary storage for predictions before making // a decision on which to use, and they get updated during the search // process. lcu_t work_tree[MAX_PU_DEPTH + 1]; init_lcu_t(state, x, y, &work_tree[0], hor_buf, ver_buf); for (int depth = 1; depth <= MAX_PU_DEPTH; ++depth) { work_tree[depth] = work_tree[0]; } // If the ML depth prediction is enabled, // generate the depth prediction interval // for the current lcu constraint_t* constr = state->constraint; if (constr->ml_intra_depth_ctu) { kvz_lcu_luma_depth_pred(constr->ml_intra_depth_ctu, work_tree[0].ref.y, state->qp); } // Start search from depth 0. double cost = search_cu(state, x, y, 0, work_tree); // Save squared cost for rate control. if(state->encoder_control->cfg.rc_algorithm == KVZ_LAMBDA) { kvz_get_lcu_stats(state, x / LCU_WIDTH, y / LCU_WIDTH)->weight = cost * cost; } // The best decisions through out the LCU got propagated back to depth 0, // so copy those back to the frame. copy_lcu_to_cu_data(state, x, y, &work_tree[0]); // Copy coeffs to encoder state. copy_coeffs(work_tree[0].coeff.y, coeff->y, LCU_WIDTH); copy_coeffs(work_tree[0].coeff.u, coeff->u, LCU_WIDTH_C); copy_coeffs(work_tree[0].coeff.v, coeff->v, LCU_WIDTH_C); if (state->encoder_control->cfg.jccr) { copy_coeffs(work_tree[0].coeff.joint_uv, coeff->joint_uv, LCU_WIDTH_C); } }