/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2014 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Kvazaar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "threads.h" #include "image.h" #include "strategyselector.h" #include #include #include #include #include #include "checkpoint.h" #include "sao.h" /** * \brief Allocate new image * \return image pointer */ image *image_alloc(const int32_t width, const int32_t height, const int32_t poc) { image *im = MALLOC(image, 1); unsigned int luma_size = width * height; unsigned int chroma_size = luma_size / 4; //Assert that we have a well defined image assert((width % 2) == 0); assert((height % 2) == 0); if (!im) return NULL; im->width = width; im->height = height; im->stride = width; im->base_image = im; im->refcount = 1; //We give a reference to caller im->poc = poc; //Allocate memory im->fulldata = MALLOC(pixel, (luma_size + 2*chroma_size)); im->y = im->data[COLOR_Y] = &im->fulldata[0]; im->u = im->data[COLOR_U] = &im->fulldata[luma_size]; im->v = im->data[COLOR_V] = &im->fulldata[luma_size + chroma_size]; return im; } /** * \brief Free memory allocated to picture (if we have no reference left) * \param pic picture pointer * \return 1 on success, 0 on failure */ int image_free(image * const im) { //Either we are the base image, or we should have no references assert(im->base_image == im || im->refcount == 0); int32_t new_refcount = ATOMIC_DEC(&(im->base_image->refcount)); if (new_refcount > 0) return 1; FREE_POINTER(im->fulldata); //Just to make the program crash when using those values after the free im->y = im->u = im->v = im->data[COLOR_Y] = im->data[COLOR_U] = im->data[COLOR_V] = NULL; free(im); return 1; } image *image_make_subimage(image * const orig_image, const unsigned int x_offset, const unsigned int y_offset, const unsigned int width, const unsigned int height) { image *im = MALLOC(image, 1); if (!im) return NULL; im->base_image = orig_image->base_image; ATOMIC_INC(&(im->base_image->refcount)); assert(x_offset + width <= orig_image->width); assert(y_offset + height <= orig_image->height); //Assert that we have a well defined image assert((width % 2) == 0); assert((height % 2) == 0); assert((x_offset % 2) == 0); assert((y_offset % 2) == 0); im->stride = orig_image->stride; im->refcount = 0; //No references on subimages im->width = width; im->height = height; im->y = im->data[COLOR_Y] = &orig_image->y[x_offset + y_offset * orig_image->stride]; im->u = im->data[COLOR_U] = &orig_image->u[x_offset/2 + y_offset/2 * orig_image->stride/2]; im->v = im->data[COLOR_V] = &orig_image->v[x_offset/2 + y_offset/2 * orig_image->stride/2]; return im; } yuv_t * yuv_t_alloc(int luma_size) { // Get buffers with separate mallocs in order to take advantage of // automatic buffer overrun checks. yuv_t *yuv = (yuv_t *)malloc(sizeof(*yuv)); yuv->y = (pixel *)malloc(luma_size * sizeof(*yuv->y)); yuv->u = (pixel *)malloc(luma_size / 2 * sizeof(*yuv->u)); yuv->v = (pixel *)malloc(luma_size / 2 * sizeof(*yuv->v)); yuv->size = luma_size; return yuv; } void yuv_t_free(yuv_t * yuv) { free(yuv->y); free(yuv->u); free(yuv->v); free(yuv); } /** * \brief Diagonally interpolate SAD outside the frame. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param width Width of the pixel array. * * \returns Sum of Absolute Differences */ static unsigned cor_sad(const pixel *pic_data, const pixel *ref_data, int block_width, int block_height, unsigned pic_width) { pixel ref = *ref_data; int x, y; unsigned sad = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sad += abs(pic_data[y * pic_width + x] - ref); } } return sad; } /** * \brief Vertically interpolate SAD outside the frame. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param width Width of the pixel array. * * \returns Sum of Absolute Differences */ static unsigned ver_sad(const pixel *pic_data, const pixel *ref_data, int block_width, int block_height, unsigned pic_width) { int x, y; unsigned sad = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sad += abs(pic_data[y * pic_width + x] - ref_data[x]); } } return sad; } /** * \brief Horizontally interpolate SAD outside the frame. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param width Width of the pixel array. * * \returns Sum of Absolute Differences */ static unsigned hor_sad(const pixel *pic_data, const pixel *ref_data, int block_width, int block_height, unsigned pic_width, unsigned ref_width) { int x, y; unsigned sad = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sad += abs(pic_data[y * pic_width + x] - ref_data[y * ref_width]); } } return sad; } /** * \brief Handle special cases of comparing blocks that are not completely * inside the frame. * * \param pic First frame. * \param ref Second frame. * \param pic_x X coordinate of the first block. * \param pic_y Y coordinate of the first block. * \param ref_x X coordinate of the second block. * \param ref_y Y coordinate of the second block. * \param block_width Width of the blocks. * \param block_height Height of the blocks. */ static unsigned image_interpolated_sad(const image *pic, const image *ref, int pic_x, int pic_y, int ref_x, int ref_y, int block_width, int block_height) { pixel *pic_data, *ref_data; int left, right, top, bottom; int result = 0; // Change the movement vector to point right next to the frame. This doesn't // affect the result but removes some special cases. if (ref_x > ref->width) ref_x = ref->width; if (ref_y > ref->height) ref_y = ref->height; if (ref_x + block_width < 0) ref_x = -block_width; if (ref_y + block_height < 0) ref_y = -block_height; // These are the number of pixels by how far the movement vector points // outside the frame. They are always >= 0. If all of them are 0, the // movement vector doesn't point outside the frame. left = (ref_x < 0) ? -ref_x : 0; top = (ref_y < 0) ? -ref_y : 0; right = (ref_x + block_width > ref->width) ? ref_x + block_width - ref->width : 0; bottom = (ref_y + block_height > ref->height) ? ref_y + block_height - ref->height : 0; // Center picture to the current block and reference to the point where // movement vector is pointing to. That point might be outside the buffer, // but that is ok because we project the movement vector to the buffer // before dereferencing the pointer. pic_data = &pic->y[pic_y * pic->width + pic_x]; ref_data = &ref->y[ref_y * ref->width + ref_x]; // The handling of movement vectors that point outside the picture is done // in the following way. // - Correct the index of ref_data so that it points to the top-left // of the area we want to compare against. // - Correct the index of pic_data to point inside the current block, so // that we compare the right part of the block to the ref_data. // - Reduce block_width and block_height so that the the size of the area // being compared is correct. if (top && left) { result += cor_sad(pic_data, &ref_data[top * ref->width + left], left, top, pic->width); result += ver_sad(&pic_data[left], &ref_data[top * ref->width + left], block_width - left, top, pic->width); result += hor_sad(&pic_data[top * pic->width], &ref_data[top * ref->width + left], left, block_height - top, pic->width, ref->width); result += reg_sad(&pic_data[top * pic->width + left], &ref_data[top * ref->width + left], block_width - left, block_height - top, pic->width, ref->width); } else if (top && right) { result += ver_sad(pic_data, &ref_data[top * ref->width], block_width - right, top, pic->width); result += cor_sad(&pic_data[block_width - right], &ref_data[top * ref->width + (block_width - right - 1)], right, top, pic->width); result += reg_sad(&pic_data[top * pic->width], &ref_data[top * ref->width], block_width - right, block_height - top, pic->width, ref->width); result += hor_sad(&pic_data[top * pic->width + (block_width - right)], &ref_data[top * ref->width + (block_width - right - 1)], right, block_height - top, pic->width, ref->width); } else if (bottom && left) { result += hor_sad(pic_data, &ref_data[left], left, block_height - bottom, pic->width, ref->width); result += reg_sad(&pic_data[left], &ref_data[left], block_width - left, block_height - bottom, pic->width, ref->width); result += cor_sad(&pic_data[(block_height - bottom) * pic->width], &ref_data[(block_height - bottom - 1) * ref->width + left], left, bottom, pic->width); result += ver_sad(&pic_data[(block_height - bottom) * pic->width + left], &ref_data[(block_height - bottom - 1) * ref->width + left], block_width - left, bottom, pic->width); } else if (bottom && right) { result += reg_sad(pic_data, ref_data, block_width - right, block_height - bottom, pic->width, ref->width); result += hor_sad(&pic_data[block_width - right], &ref_data[block_width - right - 1], right, block_height - bottom, pic->width, ref->width); result += ver_sad(&pic_data[(block_height - bottom) * pic->width], &ref_data[(block_height - bottom - 1) * ref->width], block_width - right, bottom, pic->width); result += cor_sad(&pic_data[(block_height - bottom) * pic->width + block_width - right], &ref_data[(block_height - bottom - 1) * ref->width + block_width - right - 1], right, bottom, pic->width); } else if (top) { result += ver_sad(pic_data, &ref_data[top * ref->width], block_width, top, pic->width); result += reg_sad(&pic_data[top * pic->width], &ref_data[top * ref->width], block_width, block_height - top, pic->width, ref->width); } else if (bottom) { result += reg_sad(pic_data, ref_data, block_width, block_height - bottom, pic->width, ref->width); result += ver_sad(&pic_data[(block_height - bottom) * pic->width], &ref_data[(block_height - bottom - 1) * ref->width], block_width, bottom, pic->width); } else if (left) { result += hor_sad(pic_data, &ref_data[left], left, block_height, pic->width, ref->width); result += reg_sad(&pic_data[left], &ref_data[left], block_width - left, block_height, pic->width, ref->width); } else if (right) { result += reg_sad(pic_data, ref_data, block_width - right, block_height, pic->width, ref->width); result += hor_sad(&pic_data[block_width - right], &ref_data[block_width - right - 1], right, block_height, pic->width, ref->width); } else { result += reg_sad(pic_data, ref_data, block_width, block_height, pic->width, ref->width); } return result; } unsigned image_calc_sad(const image *pic, const image *ref, int pic_x, int pic_y, int ref_x, int ref_y, int block_width, int block_height) { assert(pic_x >= 0 && pic_x <= pic->width - block_width); assert(pic_y >= 0 && pic_y <= pic->height - block_height); if (ref_x >= 0 && ref_x <= ref->width - block_width && ref_y >= 0 && ref_y <= ref->height - block_height) { // Reference block is completely inside the frame, so just calculate the // SAD directly. This is the most common case, which is why it's first. const pixel *pic_data = &pic->y[pic_y * pic->width + pic_x]; const pixel *ref_data = &ref->y[ref_y * ref->width + ref_x]; return reg_sad(pic_data, ref_data, block_width, block_height, pic->width, ref->width); } else { // Call a routine that knows how to interpolate pixels outside the frame. return image_interpolated_sad(pic, ref, pic_x, pic_y, ref_x, ref_y, block_width, block_height); } } /** * \brief Calculate SATD between two 4x4 blocks inside bigger arrays. * From HM 13.0 */ static unsigned satd_16bit_4x4(const pixel *piOrg, const pixel *piCur) { int32_t k, satd = 0, diff[16], m[16], d[16]; for( k = 0; k < 16; ++k ) { diff[k] = piOrg[k] - piCur[k]; } /*===== hadamard transform =====*/ m[ 0] = diff[ 0] + diff[12]; m[ 1] = diff[ 1] + diff[13]; m[ 2] = diff[ 2] + diff[14]; m[ 3] = diff[ 3] + diff[15]; m[ 4] = diff[ 4] + diff[ 8]; m[ 5] = diff[ 5] + diff[ 9]; m[ 6] = diff[ 6] + diff[10]; m[ 7] = diff[ 7] + diff[11]; m[ 8] = diff[ 4] - diff[ 8]; m[ 9] = diff[ 5] - diff[ 9]; m[10] = diff[ 6] - diff[10]; m[11] = diff[ 7] - diff[11]; m[12] = diff[ 0] - diff[12]; m[13] = diff[ 1] - diff[13]; m[14] = diff[ 2] - diff[14]; m[15] = diff[ 3] - diff[15]; d[ 0] = m[ 0] + m[ 4]; d[ 1] = m[ 1] + m[ 5]; d[ 2] = m[ 2] + m[ 6]; d[ 3] = m[ 3] + m[ 7]; d[ 4] = m[ 8] + m[12]; d[ 5] = m[ 9] + m[13]; d[ 6] = m[10] + m[14]; d[ 7] = m[11] + m[15]; d[ 8] = m[ 0] - m[ 4]; d[ 9] = m[ 1] - m[ 5]; d[10] = m[ 2] - m[ 6]; d[11] = m[ 3] - m[ 7]; d[12] = m[12] - m[ 8]; d[13] = m[13] - m[ 9]; d[14] = m[14] - m[10]; d[15] = m[15] - m[11]; m[ 0] = d[ 0] + d[ 3]; m[ 1] = d[ 1] + d[ 2]; m[ 2] = d[ 1] - d[ 2]; m[ 3] = d[ 0] - d[ 3]; m[ 4] = d[ 4] + d[ 7]; m[ 5] = d[ 5] + d[ 6]; m[ 6] = d[ 5] - d[ 6]; m[ 7] = d[ 4] - d[ 7]; m[ 8] = d[ 8] + d[11]; m[ 9] = d[ 9] + d[10]; m[10] = d[ 9] - d[10]; m[11] = d[ 8] - d[11]; m[12] = d[12] + d[15]; m[13] = d[13] + d[14]; m[14] = d[13] - d[14]; m[15] = d[12] - d[15]; d[ 0] = m[ 0] + m[ 1]; d[ 1] = m[ 0] - m[ 1]; d[ 2] = m[ 2] + m[ 3]; d[ 3] = m[ 3] - m[ 2]; d[ 4] = m[ 4] + m[ 5]; d[ 5] = m[ 4] - m[ 5]; d[ 6] = m[ 6] + m[ 7]; d[ 7] = m[ 7] - m[ 6]; d[ 8] = m[ 8] + m[ 9]; d[ 9] = m[ 8] - m[ 9]; d[10] = m[10] + m[11]; d[11] = m[11] - m[10]; d[12] = m[12] + m[13]; d[13] = m[12] - m[13]; d[14] = m[14] + m[15]; d[15] = m[15] - m[14]; for (k=0; k<16; ++k) { satd += abs(d[k]); } satd = ((satd+1)>>1); return satd; } /** * \brief Calculate SATD between two 8x8 blocks inside bigger arrays. */ unsigned satd_16bit_8x8_general(const pixel * piOrg, const int32_t iStrideOrg, const pixel * piCur, const int32_t iStrideCur) { int32_t k, i, j, jj, sad=0; int32_t diff[64], m1[8][8], m2[8][8], m3[8][8]; for (k = 0; k < 64; k += 8) { diff[k+0] = piOrg[0] - piCur[0]; diff[k+1] = piOrg[1] - piCur[1]; diff[k+2] = piOrg[2] - piCur[2]; diff[k+3] = piOrg[3] - piCur[3]; diff[k+4] = piOrg[4] - piCur[4]; diff[k+5] = piOrg[5] - piCur[5]; diff[k+6] = piOrg[6] - piCur[6]; diff[k+7] = piOrg[7] - piCur[7]; piCur += iStrideCur; piOrg += iStrideOrg; } // horizontal for (j = 0; j < 8; ++j) { jj = j << 3; m2[j][0] = diff[jj ] + diff[jj+4]; m2[j][1] = diff[jj+1] + diff[jj+5]; m2[j][2] = diff[jj+2] + diff[jj+6]; m2[j][3] = diff[jj+3] + diff[jj+7]; m2[j][4] = diff[jj ] - diff[jj+4]; m2[j][5] = diff[jj+1] - diff[jj+5]; m2[j][6] = diff[jj+2] - diff[jj+6]; m2[j][7] = diff[jj+3] - diff[jj+7]; m1[j][0] = m2[j][0] + m2[j][2]; m1[j][1] = m2[j][1] + m2[j][3]; m1[j][2] = m2[j][0] - m2[j][2]; m1[j][3] = m2[j][1] - m2[j][3]; m1[j][4] = m2[j][4] + m2[j][6]; m1[j][5] = m2[j][5] + m2[j][7]; m1[j][6] = m2[j][4] - m2[j][6]; m1[j][7] = m2[j][5] - m2[j][7]; m2[j][0] = m1[j][0] + m1[j][1]; m2[j][1] = m1[j][0] - m1[j][1]; m2[j][2] = m1[j][2] + m1[j][3]; m2[j][3] = m1[j][2] - m1[j][3]; m2[j][4] = m1[j][4] + m1[j][5]; m2[j][5] = m1[j][4] - m1[j][5]; m2[j][6] = m1[j][6] + m1[j][7]; m2[j][7] = m1[j][6] - m1[j][7]; } // vertical for (i = 0; i < 8; ++i) { m3[0][i] = m2[0][i] + m2[4][i]; m3[1][i] = m2[1][i] + m2[5][i]; m3[2][i] = m2[2][i] + m2[6][i]; m3[3][i] = m2[3][i] + m2[7][i]; m3[4][i] = m2[0][i] - m2[4][i]; m3[5][i] = m2[1][i] - m2[5][i]; m3[6][i] = m2[2][i] - m2[6][i]; m3[7][i] = m2[3][i] - m2[7][i]; m1[0][i] = m3[0][i] + m3[2][i]; m1[1][i] = m3[1][i] + m3[3][i]; m1[2][i] = m3[0][i] - m3[2][i]; m1[3][i] = m3[1][i] - m3[3][i]; m1[4][i] = m3[4][i] + m3[6][i]; m1[5][i] = m3[5][i] + m3[7][i]; m1[6][i] = m3[4][i] - m3[6][i]; m1[7][i] = m3[5][i] - m3[7][i]; m2[0][i] = m1[0][i] + m1[1][i]; m2[1][i] = m1[0][i] - m1[1][i]; m2[2][i] = m1[2][i] + m1[3][i]; m2[3][i] = m1[2][i] - m1[3][i]; m2[4][i] = m1[4][i] + m1[5][i]; m2[5][i] = m1[4][i] - m1[5][i]; m2[6][i] = m1[6][i] + m1[7][i]; m2[7][i] = m1[6][i] - m1[7][i]; } for (i = 0; i < 64; ++i) { sad += abs(((int*)m2)[i]); } sad = (sad + 2) >> 2; return sad; } // Function macro for defining hadamard calculating functions // for fixed size blocks. They calculate hadamard for integer // multiples of 8x8 with the 8x8 hadamard function. #define SATD_NXN(n, pixel_type, suffix) \ static unsigned satd_ ## suffix ## _ ## n ## x ## n( \ const pixel_type * const block1, const pixel_type * const block2) \ { \ unsigned x, y; \ unsigned sum = 0; \ for (y = 0; y < (n); y += 8) { \ unsigned row = y * (n); \ for (x = 0; x < (n); x += 8) { \ sum += satd_16bit_8x8_general(&block1[row + x], (n), &block2[row + x], (n)); \ } \ } \ return sum; \ } // These macros define sadt_16bit_NxN for N = 8, 16, 32, 64 SATD_NXN(8, pixel, 16bit) SATD_NXN(16, pixel, 16bit) SATD_NXN(32, pixel, 16bit) SATD_NXN(64, pixel, 16bit) // Function macro for defining SAD calculating functions // for fixed size blocks. #define SAD_NXN(n, pixel_type, suffix) \ static unsigned sad_ ## suffix ## _ ## n ## x ## n( \ const pixel_type * const block1, const pixel_type * const block2) \ { \ unsigned i; \ unsigned sum = 0; \ for (i = 0; i < (n)*(n); ++i) { \ sum += abs(block1[i] - block2[i]); \ } \ return sum; \ } // These macros define sad_16bit_nxn functions for n = 4, 8, 16, 32, 64 // with function signatures of cost_16bit_nxn_func. // They are used through get_sad_16bit_nxn_func. SAD_NXN(4, pixel, 16bit) SAD_NXN(8, pixel, 16bit) SAD_NXN(16, pixel, 16bit) SAD_NXN(32, pixel, 16bit) SAD_NXN(64, pixel, 16bit) /** * \brief Get a function that calculates SATD for NxN block. * * \param n Width of the region for which SATD is calculated. * * \returns Pointer to cost_16bit_nxn_func. */ cost_16bit_nxn_func get_satd_16bit_nxn_func(unsigned n) { switch (n) { case 4: return &satd_16bit_4x4; case 8: return &satd_16bit_8x8; case 16: return &satd_16bit_16x16; case 32: return &satd_16bit_32x32; case 64: return &satd_16bit_64x64; default: return NULL; } } /** * \brief Get a function that calculates SAD for NxN block. * * \param n Width of the region for which SAD is calculated. * * \returns Pointer to cost_16bit_nxn_func. */ cost_16bit_nxn_func get_sad_16bit_nxn_func(unsigned n) { switch (n) { case 4: return &sad_16bit_4x4; case 8: return &sad_16bit_8x8; case 16: return &sad_16bit_16x16; case 32: return &sad_16bit_32x32; case 64: return &sad_16bit_64x64; default: return NULL; } } unsigned pixels_calc_ssd(const pixel *const ref, const pixel *const rec, const int ref_stride, const int rec_stride, const int width) { int ssd = 0; int y, x; for (y = 0; y < width; ++y) { for (x = 0; x < width; ++x) { int diff = ref[x + y * ref_stride] - rec[x + y * rec_stride]; ssd += diff * diff; } } return ssd; } /** * \brief BLock Image Transfer from one buffer to another. * * It's a stupidly simple loop that copies pixels. * * \param orig Start of the originating buffer. * \param dst Start of the destination buffer. * \param width Width of the copied region. * \param height Height of the copied region. * \param orig_stride Width of a row in the originating buffer. * \param dst_stride Width of a row in the destination buffer. * * This should be inlined, but it's defined here for now to see if Visual * Studios LTCG will inline it. */ void pixels_blit(const pixel * const orig, pixel * const dst, const unsigned width, const unsigned height, const unsigned orig_stride, const unsigned dst_stride) { unsigned y; //There is absolutely no reason to have a width greater than the source or the destination stride. assert(width <= orig_stride); assert(width <= dst_stride); #ifdef CHECKPOINTS for (y = 0; y < height; ++y) { char buffer[3*width]; int p; for (p = 0; p < width; ++p) { sprintf((buffer + 3*p), "%02X ", orig[y*orig_stride]); } buffer[3*width] = 0; CHECKPOINT("pixels_blit: %04d: %s", y, buffer); } #endif //CHECKPOINTS if (orig == dst) { //If we have the same array, then we should have the same stride assert(orig_stride == dst_stride); return; } assert(orig != dst || orig_stride == dst_stride); for (y = 0; y < height; ++y) { memcpy(&dst[y*dst_stride], &orig[y*orig_stride], width * sizeof(pixel)); } }