/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "filter.h" #include #include #include #include #include "config.h" #include "bitstream.h" #include "videoframe.h" #include "cabac.h" #include "transform.h" ////////////////////////////////////////////////////////////////////////// // INITIALIZATIONS const uint8_t kvz_g_tc_table_8x8[54] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 }; const uint8_t kvz_g_beta_table_8x8[52] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 }; const int8_t kvz_g_luma_filter[4][8] = { { 0, 0, 0, 64, 0, 0, 0, 0 }, { -1, 4, -10, 58, 17, -5, 1, 0 }, { -1, 4, -11, 40, 40, -11, 4, -1 }, { 0, 1, -5, 17, 58, -10, 4, -1 } }; const int8_t kvz_g_chroma_filter[8][4] = { { 0, 64, 0, 0 }, { -2, 58, 10, -2 }, { -4, 54, 16, -2 }, { -6, 46, 28, -4 }, { -4, 36, 36, -4 }, { -4, 28, 46, -6 }, { -2, 16, 54, -4 }, { -2, 10, 58, -2 } }; ////////////////////////////////////////////////////////////////////////// // FUNCTIONS /** * \brief */ INLINE void kvz_filter_deblock_luma(const encoder_control_t * const encoder, kvz_pixel *src, int32_t offset, int32_t tc, int8_t sw, int8_t part_P_nofilter, int8_t part_Q_nofilter, int32_t thr_cut, int8_t filter_second_P, int8_t filter_second_Q) { int32_t delta; int16_t m0 = src[-offset * 4]; int16_t m1 = src[-offset * 3]; int16_t m2 = src[-offset * 2]; int16_t m3 = src[-offset]; int16_t m4 = src[0]; int16_t m5 = src[offset]; int16_t m6 = src[offset * 2]; int16_t m7 = src[offset * 3]; if (sw) { src[-offset * 3] = CLIP(m1 - 2*tc, m1 + 2*tc, (2*m0 + 3*m1 + m2 + m3 + m4 + 4) >> 3); src[-offset * 2] = CLIP(m2 - 2*tc, m2 + 2*tc, ( m1 + m2 + m3 + m4 + 2) >> 2); src[-offset] = CLIP(m3 - 2*tc, m3 + 2*tc, ( m1 + 2*m2 + 2*m3 + 2*m4 + m5 + 4) >> 3); src[0] = CLIP(m4 - 2*tc, m4 + 2*tc, ( m2 + 2*m3 + 2*m4 + 2*m5 + m6 + 4) >> 3); src[offset] = CLIP(m5 - 2*tc, m5 + 2*tc, ( m3 + m4 + m5 + m6 + 2) >> 2); src[offset * 2] = CLIP(m6 - 2*tc, m6 + 2*tc, ( m3 + m4 + m5 + 3*m6 + 2*m7 + 4) >> 3); } else { // Weak filter delta = (9*(m4 - m3) - 3*(m5 - m2) + 8) >> 4; if (abs(delta) < thr_cut) { int32_t tc2 = tc >> 1; delta = CLIP(-tc, tc, delta); src[-offset] = CLIP(0, (1 << encoder->bitdepth) - 1, (m3 + delta)); src[0] = CLIP(0, (1 << encoder->bitdepth) - 1, (m4 - delta)); if(filter_second_P) { int32_t delta1 = CLIP(-tc2, tc2, (((m1 + m3 + 1) >> 1) - m2 + delta) >> 1); src[-offset * 2] = CLIP(0, (1 << encoder->bitdepth) - 1, m2 + delta1); } if(filter_second_Q) { int32_t delta2 = CLIP(-tc2, tc2, (((m6 + m4 + 1) >> 1) - m5 - delta) >> 1); src[offset] = CLIP(0, (1 << encoder->bitdepth) - 1, m5 + delta2); } } } if(part_P_nofilter) { src[-offset] = (kvz_pixel)m3; src[-offset * 2] = (kvz_pixel)m2; src[-offset * 3] = (kvz_pixel)m1; } if(part_Q_nofilter) { src[0] = (kvz_pixel)m4; src[offset] = (kvz_pixel)m5; src[offset * 2] = (kvz_pixel)m6; } } /** * \brief */ INLINE void kvz_filter_deblock_chroma(const encoder_control_t * const encoder, kvz_pixel *src, int32_t offset, int32_t tc, int8_t part_P_nofilter, int8_t part_Q_nofilter) { int32_t delta; int16_t m2 = src[-offset * 2]; int16_t m3 = src[-offset]; int16_t m4 = src[0]; int16_t m5 = src[offset]; delta = CLIP(-tc,tc, (((m4 - m3) << 2) + m2 - m5 + 4 ) >> 3); if(!part_P_nofilter) { src[-offset] = CLIP(0, (1 << encoder->bitdepth) - 1, m3 + delta); } if(!part_Q_nofilter) { src[0] = CLIP(0, (1 << encoder->bitdepth) - 1, m4 - delta); } } /** * \brief */ void kvz_filter_deblock_edge_luma(encoder_state_t * const state, int32_t xpos, int32_t ypos, int8_t depth, int8_t dir) { videoframe_t * const frame = state->tile->frame; const encoder_control_t * const encoder = state->encoder_control; cu_info_t *cu_q = kvz_videoframe_get_cu(frame, xpos >> MIN_SIZE, ypos >> MIN_SIZE); { // Return if called with a coordinate which is not at CU or TU boundary. // TODO: Add handling for asymmetric inter CU boundaries which do not coincide // with transform boundaries. const int tu_width = LCU_WIDTH >> cu_q->tr_depth; if (dir == EDGE_HOR && (ypos & (tu_width - 1))) return; if (dir == EDGE_VER && (xpos & (tu_width - 1))) return; } { int32_t stride = frame->rec->stride; int32_t offset = stride; int32_t beta_offset_div2 = encoder->beta_offset_div2; int32_t tc_offset_div2 = encoder->tc_offset_div2; // TODO: support 10+bits kvz_pixel *orig_src = &frame->rec->y[xpos + ypos*stride]; kvz_pixel *src = orig_src; int32_t step = 1; cu_info_t *cu_p = NULL; int16_t x_cu = xpos>>MIN_SIZE,y_cu = ypos>>MIN_SIZE; int8_t strength = 0; int32_t qp = state->global->QP; int32_t bitdepth_scale = 1 << (encoder->bitdepth - 8); int32_t b_index = CLIP(0, 51, qp + (beta_offset_div2 << 1)); int32_t beta = kvz_g_beta_table_8x8[b_index] * bitdepth_scale; int32_t side_threshold = (beta + (beta >>1 )) >> 3; uint32_t blocks_in_part = (LCU_WIDTH >> depth) / 4; uint32_t block_idx; int32_t tc_index,tc,thr_cut; if (dir == EDGE_VER) { offset = 1; step = stride; } // TODO: add CU based QP calculation // For each 4-pixel part in the edge for (block_idx = 0; block_idx < blocks_in_part; ++block_idx) { int32_t dp0, dq0, dp3, dq3, d0, d3, dp, dq, d; { vector2d_t px = { (dir == EDGE_HOR ? xpos + block_idx * 4 : xpos), (dir == EDGE_VER ? ypos + block_idx * 4 : ypos) }; // Don't deblock the last 4x4 block of the LCU. This will be deblocked // when processing the next LCU. if (block_idx > 0 && dir == EDGE_HOR && (px.x + 4) % 64 == 0 && (px.x + 4 != frame->width)) { continue; } // CU in the side we are filtering, update every 8-pixels cu_p = kvz_videoframe_get_cu(frame, x_cu - (dir == EDGE_VER) + (dir == EDGE_HOR ? block_idx>>1 : 0), y_cu - (dir == EDGE_HOR) + (dir == EDGE_VER ? block_idx>>1 : 0)); // Filter strength strength = 0; if(cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) { strength = 2; } else if(cbf_is_set(cu_q->cbf.y, cu_q->tr_depth) || cbf_is_set(cu_p->cbf.y, cu_p->tr_depth)) { // Non-zero residual/coeffs and transform boundary // Neither CU is intra so tr_depth <= MAX_DEPTH. strength = 1; } else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 && ((abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][0] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][0]) >= 4) || (abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][1] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][1]) >= 4))) { // Absolute motion vector diff between blocks >= 1 (Integer pixel) strength = 1; } else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 && cu_q->inter.mv_ref[cu_q->inter.mv_dir - 1] != cu_p->inter.mv_ref[cu_p->inter.mv_dir - 1]) { strength = 1; } // B-slice related checks if(!strength && state->global->slicetype == KVZ_SLICE_B) { // Zero all undefined motion vectors for easier usage if(!(cu_q->inter.mv_dir & 1)) { cu_q->inter.mv[0][0] = 0; cu_q->inter.mv[0][1] = 0; } if(!(cu_q->inter.mv_dir & 2)) { cu_q->inter.mv[1][0] = 0; cu_q->inter.mv[1][1] = 0; } if(!(cu_p->inter.mv_dir & 1)) { cu_p->inter.mv[0][0] = 0; cu_p->inter.mv[0][1] = 0; } if(!(cu_p->inter.mv_dir & 2)) { cu_p->inter.mv[1][0] = 0; cu_p->inter.mv[1][1] = 0; } const int refP0 = (cu_p->inter.mv_dir & 1) ? cu_p->inter.mv_ref[0] : -1; const int refP1 = (cu_p->inter.mv_dir & 2) ? cu_p->inter.mv_ref[1] : -1; const int refQ0 = (cu_q->inter.mv_dir & 1) ? cu_q->inter.mv_ref[0] : -1; const int refQ1 = (cu_q->inter.mv_dir & 2) ? cu_q->inter.mv_ref[1] : -1; const int16_t* mvQ0 = cu_q->inter.mv[0]; const int16_t* mvQ1 = cu_q->inter.mv[1]; const int16_t* mvP0 = cu_p->inter.mv[0]; const int16_t* mvP1 = cu_p->inter.mv[1]; if(( refP0 == refQ0 && refP1 == refQ1 ) || ( refP0 == refQ1 && refP1==refQ0 )) { // Different L0 & L1 if ( refP0 != refP1 ) { if ( refP0 == refQ0 ) { strength = ((abs(mvQ0[0] - mvP0[0]) >= 4) || (abs(mvQ0[1] - mvP0[1]) >= 4) || (abs(mvQ1[0] - mvP1[0]) >= 4) || (abs(mvQ1[1] - mvP1[1]) >= 4)) ? 1 : 0; } else { strength = ((abs(mvQ1[0] - mvP0[0]) >= 4) || (abs(mvQ1[1] - mvP0[1]) >= 4) || (abs(mvQ0[0] - mvP1[0]) >= 4) || (abs(mvQ0[1] - mvP1[1]) >= 4)) ? 1 : 0; } // Same L0 & L1 } else { strength = ((abs(mvQ0[0] - mvP0[0]) >= 4) || (abs(mvQ0[1] - mvP0[1]) >= 4) || (abs(mvQ1[0] - mvP1[0]) >= 4) || (abs(mvQ1[1] - mvP1[1]) >= 4)) && ((abs(mvQ1[0] - mvP0[0]) >= 4) || (abs(mvQ1[1] - mvP0[1]) >= 4) || (abs(mvQ0[0] - mvP1[0]) >= 4) || (abs(mvQ0[1] - mvP1[1]) >= 4)) ? 1 : 0; } } else { strength = 1; } } tc_index = CLIP(0, 51 + 2, (int32_t)(qp + 2*(strength - 1) + (tc_offset_div2 << 1))); tc = kvz_g_tc_table_8x8[tc_index] * bitdepth_scale; thr_cut = tc * 10; } if(!strength) continue; // Check conditions for filtering // TODO: Get rid of these inline defines. #define calc_DP(s,o) abs( (int16_t)s[-o*3] - (int16_t)2*s[-o*2] + (int16_t)s[-o] ) #define calc_DQ(s,o) abs( (int16_t)s[0] - (int16_t)2*s[o] + (int16_t)s[o*2] ) dp0 = calc_DP((src+step*(block_idx*4+0)), offset); dq0 = calc_DQ((src+step*(block_idx*4+0)), offset); dp3 = calc_DP((src+step*(block_idx*4+3)), offset); dq3 = calc_DQ((src+step*(block_idx*4+3)), offset); d0 = dp0 + dq0; d3 = dp3 + dq3; dp = dp0 + dp3; dq = dq0 + dq3; d = d0 + d3; #if ENABLE_PCM // TODO: add PCM deblocking #endif if (d < beta) { int8_t filter_P = (dp < side_threshold) ? 1 : 0; int8_t filter_Q = (dq < side_threshold) ? 1 : 0; // Strong filtering flag checking #define useStrongFiltering(o,d,s) ( ((abs(s[-o*4]-s[-o]) + abs(s[o*3]-s[0])) < (beta>>3)) && (d<(beta>>2)) && ( abs(s[-o]-s[0]) < ((tc*5+1)>>1)) ) int8_t sw = useStrongFiltering(offset, 2*d0, (src+step*(block_idx*4+0))) && useStrongFiltering(offset, 2*d3, (src+step*(block_idx*4+3))); // Filter four rows/columns kvz_filter_deblock_luma(encoder, src + step * (4*block_idx + 0), offset, tc, sw, 0, 0, thr_cut, filter_P, filter_Q); kvz_filter_deblock_luma(encoder, src + step * (4*block_idx + 1), offset, tc, sw, 0, 0, thr_cut, filter_P, filter_Q); kvz_filter_deblock_luma(encoder, src + step * (4*block_idx + 2), offset, tc, sw, 0, 0, thr_cut, filter_P, filter_Q); kvz_filter_deblock_luma(encoder, src + step * (4*block_idx + 3), offset, tc, sw, 0, 0, thr_cut, filter_P, filter_Q); } } } } /** * \brief */ void kvz_filter_deblock_edge_chroma(encoder_state_t * const state, int32_t x, int32_t y, int8_t depth, int8_t dir) { const encoder_control_t * const encoder = state->encoder_control; const videoframe_t * const frame = state->tile->frame; const cu_info_t *cu_q = kvz_videoframe_get_cu_const(frame, x >> (MIN_SIZE - 1), y >> (MIN_SIZE - 1)); // Chroma edges that do not lay on a 8x8 grid are not deblocked. if (depth >= MAX_DEPTH) { if (dir == EDGE_HOR && (y & (8 - 1))) return; if (dir == EDGE_VER && (x & (8 - 1))) return; } { // Return if called with a coordinate which is not at CU or TU boundary. // TODO: Add handling for asymmetric inter CU boundaries which do not coincide // with transform boundaries. const int tu_width = (LCU_WIDTH / 2) >> cu_q->tr_depth; if (dir == EDGE_HOR && (y & (tu_width - 1))) return; if (dir == EDGE_VER && (x & (tu_width - 1))) return; } // For each subpart { int32_t stride = frame->rec->stride >> 1; int32_t tc_offset_div2 = encoder->tc_offset_div2; // TODO: support 10+bits kvz_pixel *src_u = &frame->rec->u[x + y*stride]; kvz_pixel *src_v = &frame->rec->v[x + y*stride]; // Init offset and step to EDGE_HOR int32_t offset = stride; int32_t step = 1; const cu_info_t *cu_p = NULL; int16_t x_cu = x>>(MIN_SIZE-1),y_cu = y>>(MIN_SIZE-1); int8_t strength = 2; int32_t QP = kvz_g_chroma_scale[state->global->QP]; int32_t bitdepth_scale = 1 << (encoder->bitdepth-8); int32_t TC_index = CLIP(0, 51+2, (int32_t)(QP + 2*(strength-1) + (tc_offset_div2 << 1))); int32_t Tc = kvz_g_tc_table_8x8[TC_index]*bitdepth_scale; // Special handling for depth 4. It's meaning is that we want to bypass // last block in LCU check in order to deblock just that block. uint32_t blocks_in_part= (LCU_WIDTH>>(depth == 4 ? depth : depth + 1)) / 4; uint32_t blk_idx; if(dir == EDGE_VER) { offset = 1; step = stride; } for (blk_idx = 0; blk_idx < blocks_in_part; ++blk_idx) { vector2d_t px = { (dir == EDGE_HOR ? x + blk_idx * 4 : x), (dir == EDGE_VER ? y + blk_idx * 4 : y) }; cu_p = kvz_videoframe_get_cu_const(frame, x_cu - (dir == EDGE_VER) + (dir == EDGE_HOR ? blk_idx : 0), y_cu - (dir == EDGE_HOR) + (dir == EDGE_VER ? blk_idx : 0)); // Don't deblock the last 4x4 block of the LCU. This will be deblocked // when processing the next LCU. if (depth != 4 && dir == EDGE_HOR && (px.x + 4) % 32 == 0 && (px.x + 4 != frame->width / 2)) { continue; } // Only filter when strenght == 2 (one of the blocks is intra coded) if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) { // Chroma U kvz_filter_deblock_chroma(encoder, src_u + step * (4*blk_idx + 0), offset, Tc, 0, 0); kvz_filter_deblock_chroma(encoder, src_u + step * (4*blk_idx + 1), offset, Tc, 0, 0); kvz_filter_deblock_chroma(encoder, src_u + step * (4*blk_idx + 2), offset, Tc, 0, 0); kvz_filter_deblock_chroma(encoder, src_u + step * (4*blk_idx + 3), offset, Tc, 0, 0); // Chroma V kvz_filter_deblock_chroma(encoder, src_v + step * (4*blk_idx + 0), offset, Tc, 0, 0); kvz_filter_deblock_chroma(encoder, src_v + step * (4*blk_idx + 1), offset, Tc, 0, 0); kvz_filter_deblock_chroma(encoder, src_v + step * (4*blk_idx + 2), offset, Tc, 0, 0); kvz_filter_deblock_chroma(encoder, src_v + step * (4*blk_idx + 3), offset, Tc, 0, 0); } } } } /** * \brief function to split LCU into smaller CU blocks * \param encoder the encoder info structure * \param xCtb block x-position (as SCU) * \param yCtb block y-position (as SCU) * \param depth block depth * \param edge which edge we are filtering * * This function takes (SCU) block position as input and splits the block * until the coded block size has been achived. Calls luma and chroma filtering * functions for each coded CU size. */ void kvz_filter_deblock_cu(encoder_state_t * const state, int32_t x, int32_t y, int8_t depth, int32_t edge) { const videoframe_t * const frame = state->tile->frame; const cu_info_t *cur_cu = kvz_videoframe_get_cu_const(frame, x, y); uint8_t split_flag = (cur_cu->depth > depth) ? 1 : 0; uint8_t tr_split = (cur_cu->tr_depth > depth) ? 1 : 0; uint8_t border_x = (frame->width < x*(LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth)) ? 1 : 0; uint8_t border_y = (frame->height < y*(LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth)) ? 1 : 0; uint8_t border_split_x = (frame->width < ((x + 1) * (LCU_WIDTH >> MAX_DEPTH)) + (LCU_WIDTH >> (depth + 1))) ? 0 : 1; uint8_t border_split_y = (frame->height < ((y + 1) * (LCU_WIDTH >> MAX_DEPTH)) + (LCU_WIDTH >> (depth + 1))) ? 0 : 1; uint8_t border = border_x | border_y; // are we in any border CU? // split 64x64, on split flag and on border if (depth < MAX_DEPTH && (depth == 0 || split_flag || border || tr_split)) { // Split the four sub-blocks of this block recursively. uint8_t change; assert(depth >= 0); // for clang-analyzer change = 1 << (MAX_DEPTH - 1 - depth); kvz_filter_deblock_cu(state, x, y, depth + 1, edge); if(!border_x || border_split_x) { kvz_filter_deblock_cu(state, x + change, y, depth + 1, edge); } if(!border_y || border_split_y) { kvz_filter_deblock_cu(state, x , y + change, depth + 1, edge); } if((!border_x && !border_y) || (border_split_x && border_split_y)) { kvz_filter_deblock_cu(state, x + change, y + change, depth + 1, edge); } return; } // no filtering on borders (where filter would use pixels outside the picture) if ((x == 0 && edge == EDGE_VER) || (y == 0 && edge == EDGE_HOR)) return; // do the filtering for block edge kvz_filter_deblock_edge_luma(state, x*(LCU_WIDTH >> MAX_DEPTH), y*(LCU_WIDTH >> MAX_DEPTH), depth, edge); kvz_filter_deblock_edge_chroma(state, x*(LCU_WIDTH >> (MAX_DEPTH + 1)), y*(LCU_WIDTH >> (MAX_DEPTH + 1)), depth, edge); } /** * \brief Deblock a single LCU without using data from right or down. * * Filter all the following edges: * - All edges within the LCU, except for the last 4 pixels on the right when * using horizontal filtering. * - Left edge and top edge. * - After vertical filtering the left edge, filter the last 4 pixels of * horizontal edges in the LCU to the left. */ void kvz_filter_deblock_lcu(encoder_state_t * const state, int x_px, int y_px) { const vector2d_t lcu = { x_px / LCU_WIDTH, y_px / LCU_WIDTH }; kvz_filter_deblock_cu(state, lcu.x << MAX_DEPTH, lcu.y << MAX_DEPTH, 0, EDGE_VER); // Filter rightmost 4 pixels from last LCU now that they have been // finally deblocked vertically. if (lcu.x > 0) { int y; for (y = 0; y < 64; y += 8) { if (lcu.y + y == 0) continue; kvz_filter_deblock_edge_luma(state, lcu.x * 64 - 4, lcu.y * 64 + y, 4, EDGE_HOR); } for (y = 0; y < 32; y += 8) { if (lcu.y + y == 0) continue; kvz_filter_deblock_edge_chroma(state, lcu.x * 32 - 4, lcu.y * 32 + y, 4, EDGE_HOR); } } kvz_filter_deblock_cu(state, lcu.x << MAX_DEPTH, lcu.y << MAX_DEPTH, 0, EDGE_HOR); }