/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*/
#include "search.h"
#include
#include
#include
#include
#include "intra.h"
#include "inter.h"
#include "rdo.h"
#include "transform.h"
#include "search_inter.h"
#include "search_intra.h"
#define IN_FRAME(x, y, width, height, block_width, block_height) \
((x) >= 0 && (y) >= 0 \
&& (x) + (block_width) <= (width) \
&& (y) + (block_height) <= (height))
// Cost treshold for doing intra search in inter frames with --rd=0.
#ifndef INTRA_TRESHOLD
# define INTRA_TRESHOLD 20
#endif
// Extra cost for CU split.
// Compensates for missing or incorrect bit costs. Must be recalculated if
// bits are added or removed from cu-tree search.
#ifndef CU_COST
# define CU_COST 3
#endif
// Disable early cu-split pruning.
#ifndef FULL_CU_SPLIT_SEARCH
# define FULL_CU_SPLIT_SEARCH false
#endif
// Modify weight of luma SSD.
#ifndef LUMA_MULT
# define LUMA_MULT 0.8
#endif
// Modify weight of chroma SSD.
#ifndef CHROMA_MULT
# define CHROMA_MULT 1.5
#endif
/**
* Copy all non-reference CU data from depth+1 to depth.
*/
static void work_tree_copy_up(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1])
{
assert(depth >= 0 && depth < MAX_PU_DEPTH);
// Copy non-reference CUs.
{
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
const int width_cu = LCU_WIDTH >> MAX_DEPTH >> depth;
int x, y;
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
const cu_info_t *from_cu = &work_tree[depth + 1].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
cu_info_t *to_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
}
// Copy reconstructed pixels.
{
const int x = SUB_SCU(x_px);
const int y = SUB_SCU(y_px);
const int width_px = LCU_WIDTH >> depth;
const int luma_index = x + y * LCU_WIDTH;
const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2);
const lcu_yuv_t *from = &work_tree[depth + 1].rec;
lcu_yuv_t *to = &work_tree[depth].rec;
const lcu_coeff_t *from_coeff = &work_tree[depth + 1].coeff;
lcu_coeff_t *to_coeff = &work_tree[depth].coeff;
pixels_blit(&from->y[luma_index], &to->y[luma_index],
width_px, width_px, LCU_WIDTH, LCU_WIDTH);
pixels_blit(&from->u[chroma_index], &to->u[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
pixels_blit(&from->v[chroma_index], &to->v[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
// Copy coefficients up. They do not have to be copied down because they
// are not used for the search.
coefficients_blit(&from_coeff->y[luma_index], &to_coeff->y[luma_index],
width_px, width_px, LCU_WIDTH, LCU_WIDTH);
coefficients_blit(&from_coeff->u[chroma_index], &to_coeff->u[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
coefficients_blit(&from_coeff->v[chroma_index], &to_coeff->v[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
}
}
/**
* Copy all non-reference CU data from depth to depth+1..MAX_PU_DEPTH.
*/
static void work_tree_copy_down(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1])
{
assert(depth >= 0 && depth < MAX_PU_DEPTH);
// TODO: clean up to remove the copy pasta
const int width_px = LCU_WIDTH >> depth;
int d;
for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) {
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
const int width_cu = width_px >> MAX_DEPTH;
int x, y;
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
const cu_info_t *from_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
cu_info_t *to_cu = &work_tree[d].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
}
// Copy reconstructed pixels.
for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) {
const int x = SUB_SCU(x_px);
const int y = SUB_SCU(y_px);
const int luma_index = x + y * LCU_WIDTH;
const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2);
lcu_yuv_t *from = &work_tree[depth].rec;
lcu_yuv_t *to = &work_tree[d].rec;
pixels_blit(&from->y[luma_index], &to->y[luma_index],
width_px, width_px, LCU_WIDTH, LCU_WIDTH);
pixels_blit(&from->u[chroma_index], &to->u[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
pixels_blit(&from->v[chroma_index], &to->v[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
}
}
void lcu_set_trdepth(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const vector2d_t lcu_cu = { (x_px & (LCU_WIDTH - 1)) / 8, (y_px & (LCU_WIDTH - 1)) / 8 };
cu_info_t *const cur_cu = &lcu->cu[lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH + LCU_CU_OFFSET];
int x, y;
// Depth 4 doesn't go inside the loop. Set the top-left CU.
cur_cu->tr_depth = tr_depth;
for (y = 0; y < width_cu; ++y) {
for (x = 0; x < width_cu; ++x) {
cu_info_t *cu = &cur_cu[x + y * LCU_T_CU_WIDTH];
cu->tr_depth = tr_depth;
}
}
}
static void lcu_set_intra_mode(lcu_t *lcu, int x_px, int y_px, int depth, int pred_mode, int chroma_mode, int part_mode)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
// NxN can only be applied to a single CU at a time.
if (part_mode == SIZE_NxN) {
cu_info_t *cu = &lcu_cu[x_cu + y_cu * LCU_T_CU_WIDTH];
cu->depth = MAX_DEPTH;
cu->type = CU_INTRA;
cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode = pred_mode;
cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode_chroma = chroma_mode;
cu->part_size = part_mode;
return;
}
// Set mode in every CU covered by part_mode in this depth.
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
cu_info_t *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
cu->depth = depth;
cu->type = CU_INTRA;
cu->intra[0].mode = pred_mode;
cu->intra[1].mode = pred_mode;
cu->intra[2].mode = pred_mode;
cu->intra[3].mode = pred_mode;
cu->intra[0].mode_chroma = chroma_mode;
cu->part_size = part_mode;
cu->coded = 1;
}
}
}
static void lcu_set_inter(lcu_t *lcu, int x_px, int y_px, int depth, cu_info_t *cur_cu)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
// Set mode in every CU covered by part_mode in this depth.
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
cu_info_t *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
//Check if this could be moved inside the if
cu->coded = 1;
if (cu != cur_cu) {
cu->depth = cur_cu->depth;
cu->type = CU_INTER;
cu->tr_depth = cur_cu->tr_depth;
cu->merged = cur_cu->merged;
cu->skipped = cur_cu->skipped;
memcpy(&cu->inter, &cur_cu->inter, sizeof(cur_cu->inter));
}
}
}
}
static void lcu_set_coeff(lcu_t *lcu, int x_px, int y_px, int depth, cu_info_t *cur_cu)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
int tr_split = cur_cu->tr_depth-cur_cu->depth;
// Set coeff flags in every CU covered by part_mode in this depth.
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
cu_info_t *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
// Use TU top-left CU to propagate coeff flags
uint32_t mask = ~((width_cu>>tr_split)-1);
cu_info_t *cu_from = &lcu_cu[(x & mask) + (y & mask) * LCU_T_CU_WIDTH];
if (cu != cu_from) {
// Chroma coeff data is not used, luma is needed for deblocking
cu->cbf.y = cu_from->cbf.y;
}
}
}
}
/**
* Calculate RD cost for a Coding Unit.
* \return Cost of block
* \param ref_cu CU used for prediction parameters.
*
* Calculates the RDO cost of a single CU that will not be split further.
* Takes into account SSD of reconstruction and the cost of encoding whatever
* prediction unit data needs to be coded.
*/
double cu_rd_cost_luma(const encoder_state_t *const state,
const int x_px, const int y_px, const int depth,
const cu_info_t *const pred_cu,
lcu_t *const lcu)
{
const int width = LCU_WIDTH >> depth;
const uint8_t pu_index = PU_INDEX(x_px / 4, y_px / 4);
// cur_cu is used for TU parameters.
cu_info_t *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (x_px / 8) + (y_px / 8) * LCU_T_CU_WIDTH];
double coeff_bits = 0;
double tr_tree_bits = 0;
// Check that lcu is not in
assert(x_px >= 0 && x_px < LCU_WIDTH);
assert(y_px >= 0 && y_px < LCU_WIDTH);
const uint8_t tr_depth = tr_cu->tr_depth - depth;
// Add transform_tree split_transform_flag bit cost.
bool intra_split_flag = pred_cu->type == CU_INTRA && pred_cu->part_size == SIZE_NxN && depth == 3;
if (width <= TR_MAX_WIDTH
&& width > TR_MIN_WIDTH
&& !intra_split_flag)
{
const cabac_ctx_t *ctx = &(state->cabac.ctx.trans_subdiv_model[5 - (6 - depth)]);
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, tr_depth > 0);
}
if (tr_depth > 0) {
int offset = width / 2;
double sum = 0;
sum += cu_rd_cost_luma(state, x_px, y_px, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_luma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_luma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_luma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
return sum + tr_tree_bits * state->global->cur_lambda_cost;
}
// Add transform_tree cbf_luma bit cost.
if (pred_cu->type == CU_INTRA ||
tr_depth > 0 ||
cbf_is_set(tr_cu->cbf.u, depth) ||
cbf_is_set(tr_cu->cbf.v, depth))
{
const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_luma[!tr_depth]);
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.y, depth + pu_index));
}
unsigned ssd = 0;
// SSD between reconstruction and original
for (int y = y_px; y < y_px + width; ++y) {
for (int x = x_px; x < x_px + width; ++x) {
int diff = (int)lcu->rec.y[y * LCU_WIDTH + x] - (int)lcu->ref.y[y * LCU_WIDTH + x];
ssd += diff*diff;
}
}
{
coeff_t coeff_temp[32 * 32];
int8_t luma_scan_mode = get_scan_order(pred_cu->type, pred_cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode, depth);
// Code coeffs using cabac to get a better estimate of real coding costs.
coefficients_blit(&lcu->coeff.y[(y_px*LCU_WIDTH) + x_px], coeff_temp, width, width, LCU_WIDTH, width);
coeff_bits += get_coeff_cost(state, coeff_temp, width, 0, luma_scan_mode);
}
double bits = tr_tree_bits + coeff_bits;
return (double)ssd * LUMA_MULT + bits * state->global->cur_lambda_cost;
}
double cu_rd_cost_chroma(const encoder_state_t *const state,
const int x_px, const int y_px, const int depth,
const cu_info_t *const pred_cu,
lcu_t *const lcu)
{
const vector2d_t lcu_px = { x_px / 2, y_px / 2 };
const int width = (depth <= MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth;
cu_info_t *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x / 4) + (lcu_px.y / 4)*LCU_T_CU_WIDTH];
double tr_tree_bits = 0;
double coeff_bits = 0;
assert(x_px >= 0 && x_px < LCU_WIDTH);
assert(y_px >= 0 && y_px < LCU_WIDTH);
if (PU_INDEX(x_px / 4, y_px / 4) != 0) {
// For MAX_PU_DEPTH calculate chroma for previous depth for the first
// block and return 0 cost for all others.
return 0;
}
if (depth < MAX_PU_DEPTH) {
const int tr_depth = depth - pred_cu->depth;
const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_chroma[tr_depth]);
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.u, depth - 1)) {
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.u, depth));
}
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.v, depth - 1)) {
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.v, depth));
}
}
if (tr_cu->tr_depth > depth) {
int offset = LCU_WIDTH >> (depth + 1);
int sum = 0;
sum += cu_rd_cost_chroma(state, x_px, y_px, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_chroma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_chroma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
sum += cu_rd_cost_chroma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
return sum + tr_tree_bits * state->global->cur_lambda_cost;
}
// Chroma SSD
int ssd = 0;
for (int y = lcu_px.y; y < lcu_px.y + width; ++y) {
for (int x = lcu_px.x; x < lcu_px.x + width; ++x) {
int diff = (int)lcu->rec.u[y * LCU_WIDTH_C + x] - (int)lcu->ref.u[y * LCU_WIDTH_C + x];
ssd += diff * diff;
}
}
for (int y = lcu_px.y; y < lcu_px.y + width; ++y) {
for (int x = lcu_px.x; x < lcu_px.x + width; ++x) {
int diff = (int)lcu->rec.v[y * LCU_WIDTH_C + x] - (int)lcu->ref.v[y * LCU_WIDTH_C + x];
ssd += diff * diff;
}
}
{
coeff_t coeff_temp[16 * 16];
int8_t scan_order = get_scan_order(pred_cu->type, pred_cu->intra[0].mode_chroma, depth);
coefficients_blit(&lcu->coeff.u[(lcu_px.y*(LCU_WIDTH_C)) + lcu_px.x],
coeff_temp, width, width, LCU_WIDTH_C, width);
coeff_bits += get_coeff_cost(state, coeff_temp, width, 2, scan_order);
coefficients_blit(&lcu->coeff.v[(lcu_px.y*(LCU_WIDTH_C)) + lcu_px.x],
coeff_temp, width, width, LCU_WIDTH_C, width);
coeff_bits += get_coeff_cost(state, coeff_temp, width, 2, scan_order);
}
double bits = tr_tree_bits + coeff_bits;
return (double)ssd * CHROMA_MULT + bits * state->global->cur_lambda_cost;
}
// Return estimate of bits used to code prediction mode of cur_cu.
static double calc_mode_bits(const encoder_state_t *state,
const cu_info_t * cur_cu,
int x, int y)
{
double mode_bits;
if (cur_cu->type == CU_INTER) {
mode_bits = cur_cu->inter.bitcost;
} else {
int8_t candidate_modes[3];
{
const cu_info_t *left_cu = ((x > 8) ? &cur_cu[-1] : NULL);
const cu_info_t *above_cu = ((y > 8) ? &cur_cu[-LCU_T_CU_WIDTH] : NULL);
intra_get_dir_luma_predictor(x, y, candidate_modes, cur_cu, left_cu, above_cu);
}
mode_bits = luma_mode_bits(state, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode, candidate_modes);
if (PU_INDEX(x >> 2, y >> 2) == 0) {
mode_bits += chroma_mode_bits(state, cur_cu->intra[0].mode_chroma, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode);
}
}
return mode_bits;
}
static uint8_t get_ctx_cu_split_model(const lcu_t *lcu, int x, int y, int depth)
{
vector2d_t lcu_cu = { (x & 0x3f) / 8, (y & 0x3f) / 8 };
const cu_info_t *cu_array = &(lcu)->cu[LCU_CU_OFFSET];
bool condA = x >= 8 && cu_array[(lcu_cu.x - 1) * lcu_cu.y * LCU_T_CU_WIDTH].depth > depth;
bool condL = y >= 8 && cu_array[lcu_cu.x * (lcu_cu.y - 1) * LCU_T_CU_WIDTH].depth > depth;
return condA + condL;
}
/**
* Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode.
* - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH.
* - Data structure work_tree is maintained such that the neighbouring SCUs
* and pixels to the left and up of current CU are the final CUs decided
* via the search. This is done by copying the relevant data to all
* relevant levels whenever a decision is made whether to split or not.
* - All the final data for the LCU gets eventually copied to depth 0, which
* will be the final output of the recursion.
*/
static double search_cu(encoder_state_t * const state, int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1])
{
const encoder_control_t* ctrl = state->encoder_control;
const videoframe_t * const frame = state->tile->frame;
int cu_width = LCU_WIDTH >> depth;
double cost = MAX_INT;
cu_info_t *cur_cu;
lcu_t *const lcu = &work_tree[depth];
int x_local = (x&0x3f), y_local = (y&0x3f);
#ifdef _DEBUG
int debug_split = 0;
#endif
PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_CU);
// Stop recursion if the CU is completely outside the frame.
if (x >= frame->width || y >= frame->height) {
// Return zero cost because this CU does not have to be coded.
return 0;
}
cur_cu = &(&work_tree[depth])->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH];
// Assign correct depth
cur_cu->depth = depth > MAX_DEPTH ? MAX_DEPTH : depth;
cur_cu->tr_depth = depth > 0 ? depth : 1;
cur_cu->type = CU_NOTSET;
cur_cu->part_size = depth > MAX_DEPTH ? SIZE_NxN : SIZE_2Nx2N;
// If the CU is completely inside the frame at this depth, search for
// prediction modes at this depth.
if (x + cu_width <= frame->width &&
y + cu_width <= frame->height)
{
if (state->global->slicetype != SLICE_I &&
WITHIN(depth, ctrl->pu_depth_inter.min, ctrl->pu_depth_inter.max))
{
int mode_cost = search_cu_inter(state, x, y, depth, &work_tree[depth]);
if (mode_cost < cost) {
cost = mode_cost;
cur_cu->type = CU_INTER;
}
}
// Try to skip intra search in rd==0 mode.
// This can be quite severe on bdrate. It might be better to do this
// decision after reconstructing the inter frame.
bool skip_intra = state->encoder_control->rdo == 0
&& cur_cu->type != CU_NOTSET
&& cost / (cu_width * cu_width) < INTRA_TRESHOLD;
if (!skip_intra
&& WITHIN(depth, ctrl->pu_depth_intra.min, ctrl->pu_depth_intra.max))
{
double mode_cost = search_cu_intra(state, x, y, depth, &work_tree[depth]);
if (mode_cost < cost) {
cost = mode_cost;
cur_cu->type = CU_INTRA;
}
}
// Reconstruct best mode because we need the reconstructed pixels for
// mode search of adjacent CUs.
if (cur_cu->type == CU_INTRA) {
int8_t intra_mode = cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode;
lcu_set_intra_mode(&work_tree[depth], x, y, depth,
intra_mode,
intra_mode,
cur_cu->part_size);
intra_recon_lcu_luma(state, x, y, depth, intra_mode, NULL, &work_tree[depth]);
if (PU_INDEX(x >> 2, y >> 2) == 0) {
int8_t intra_mode_chroma = intra_mode;
// There is almost no benefit to doing the chroma mode search for
// rd2. Possibly because the luma mode search already takes chroma
// into account, so there is less of a chanse of luma mode being
// really bad for chroma.
if (state->encoder_control->rdo == 3) {
intra_mode_chroma = search_cu_intra_chroma(state, x, y, depth, &work_tree[depth]);
lcu_set_intra_mode(&work_tree[depth], x, y, depth,
intra_mode, intra_mode_chroma,
cur_cu->part_size);
}
intra_recon_lcu_chroma(state, x, y, depth, intra_mode_chroma, NULL, &work_tree[depth]);
}
} else if (cur_cu->type == CU_INTER) {
// Reset transform depth because intra messes with them.
// This will no longer be necessary if the transform depths are not shared.
int tr_depth = depth > 0 ? depth : 1;
lcu_set_trdepth(&work_tree[depth], x, y, depth, tr_depth);
if (cur_cu->inter.mv_dir == 3) {
inter_recon_lcu_bipred(state, state->global->ref->images[cur_cu->inter.mv_ref[0]], state->global->ref->images[cur_cu->inter.mv_ref[1]], x, y, LCU_WIDTH >> depth, cur_cu->inter.mv, &work_tree[depth]);
} else {
inter_recon_lcu(state, state->global->ref->images[cur_cu->inter.mv_ref[cur_cu->inter.mv_dir - 1]], x, y, LCU_WIDTH >> depth, cur_cu->inter.mv[cur_cu->inter.mv_dir - 1], &work_tree[depth]);
}
quantize_lcu_luma_residual(state, x, y, depth, NULL, &work_tree[depth]);
quantize_lcu_chroma_residual(state, x, y, depth, NULL, &work_tree[depth]);
int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth);
if(cur_cu->merged && !cbf) {
cur_cu->merged = 0;
cur_cu->skipped = 1;
// Selecting skip reduces bits needed to code the CU
if (cur_cu->inter.bitcost > 1) {
cur_cu->inter.bitcost -= 1;
}
}
lcu_set_inter(&work_tree[depth], x, y, depth, cur_cu);
lcu_set_coeff(&work_tree[depth], x, y, depth, cur_cu);
}
}
if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) {
cost = cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]);
cost += cu_rd_cost_chroma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]);
double mode_bits = calc_mode_bits(state, cur_cu, x, y);
cost += mode_bits * state->global->cur_lambda_cost;
}
// Recursively split all the way to max search depth.
if (depth < ctrl->pu_depth_intra.max || (depth < ctrl->pu_depth_inter.max && state->global->slicetype != SLICE_I)) {
int half_cu = cu_width / 2;
// Using Cost = lambda * 9 to compensate on the price of the split
double split_cost = state->global->cur_lambda_cost * CU_COST;
int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth);
if (depth < MAX_DEPTH) {
uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth);
const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]);
cost += CTX_ENTROPY_FBITS(ctx, 0);
split_cost += CTX_ENTROPY_FBITS(ctx, 1);
}
if (cur_cu->type == CU_INTRA && depth == MAX_DEPTH) {
const cabac_ctx_t *ctx = &(state->cabac.ctx.part_size_model[0]);
cost += CTX_ENTROPY_FBITS(ctx, 1); // 2Nx2N
split_cost += CTX_ENTROPY_FBITS(ctx, 0); // NxN
}
// If skip mode was selected for the block, skip further search.
// Skip mode means there's no coefficients in the block, so splitting
// might not give any better results but takes more time to do.
if (cur_cu->type == CU_NOTSET || cbf || FULL_CU_SPLIT_SEARCH) {
split_cost += search_cu(state, x, y, depth + 1, work_tree);
split_cost += search_cu(state, x + half_cu, y, depth + 1, work_tree);
split_cost += search_cu(state, x, y + half_cu, depth + 1, work_tree);
split_cost += search_cu(state, x + half_cu, y + half_cu, depth + 1, work_tree);
} else {
split_cost = INT_MAX;
}
// If no search is not performed for this depth, try just the best mode
// of the top left CU from the next depth. This should ensure that 64x64
// gets used, at least in the most obvious cases, while avoiding any
// searching.
if (cur_cu->type == CU_NOTSET && depth < MAX_PU_DEPTH
&& x + cu_width <= frame->width && y + cu_width <= frame->height)
{
vector2d_t lcu_cu = { x_local / 8, y_local / 8 };
cu_info_t *cu_array_d1 = &(&work_tree[depth + 1])->cu[LCU_CU_OFFSET];
cu_info_t *cu_d1 = &cu_array_d1[(lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH)];
// If the best CU in depth+1 is intra and the biggest it can be, try it.
if (cu_d1->type == CU_INTRA && cu_d1->depth == depth + 1) {
cost = 0;
cur_cu->intra[0] = cu_d1->intra[0];
cur_cu->type = CU_INTRA;
lcu_set_trdepth(&work_tree[depth], x, y, depth, cur_cu->tr_depth);
lcu_set_intra_mode(&work_tree[depth], x, y, depth,
cur_cu->intra[0].mode, cur_cu->intra[0].mode_chroma,
cur_cu->part_size);
intra_recon_lcu_luma(state, x, y, depth, cur_cu->intra[0].mode, NULL, &work_tree[depth]);
intra_recon_lcu_chroma(state, x, y, depth, cur_cu->intra[0].mode_chroma, NULL, &work_tree[depth]);
cost += cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]);
cost += cu_rd_cost_chroma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]);
uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth);
const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]);
cost += CTX_ENTROPY_FBITS(ctx, 0);
double mode_bits = calc_mode_bits(state, cur_cu, x, y);
cost += mode_bits * state->global->cur_lambda_cost;
}
}
if (split_cost < cost) {
// Copy split modes to this depth.
cost = split_cost;
work_tree_copy_up(x, y, depth, work_tree);
#if _DEBUG
debug_split = 1;
#endif
} else if (depth > 0) {
// Copy this CU's mode all the way down for use in adjacent CUs mode
// search.
work_tree_copy_down(x, y, depth, work_tree);
}
}
PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_CU, state->encoder_control->threadqueue, "type=search_cu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d,depth=%d,split=%d,cur_cu_is_intra=%d", state->global->frame, state->tile->id, state->slice->id,
(state->tile->lcu_offset_x * LCU_WIDTH) + x,
(state->tile->lcu_offset_x * LCU_WIDTH) + x + (LCU_WIDTH >> depth),
(state->tile->lcu_offset_y * LCU_WIDTH) + y,
(state->tile->lcu_offset_y * LCU_WIDTH) + y + (LCU_WIDTH >> depth),
depth, debug_split, (cur_cu->type==CU_INTRA)?1:0);
return cost;
}
/**
* Initialize lcu_t for search.
* - Copy reference CUs.
* - Copy reference pixels from neighbouring LCUs.
* - Copy reference pixels from this LCU.
*/
static void init_lcu_t(const encoder_state_t * const state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf)
{
const videoframe_t * const frame = state->tile->frame;
// Copy reference cu_info structs from neighbouring LCUs.
{
const int x_cu = x >> MAX_DEPTH;
const int y_cu = y >> MAX_DEPTH;
// Use top-left sub-cu of LCU as pointer to lcu->cu array to make things
// simpler.
cu_info_t *lcu_cu = &lcu->cu[LCU_CU_OFFSET];
// Copy top CU row.
if (y_cu > 0) {
int i;
for (i = 0; i < LCU_CU_WIDTH; ++i) {
const cu_info_t *from_cu = videoframe_get_cu_const(frame, x_cu + i, y_cu - 1);
cu_info_t *to_cu = &lcu_cu[i - LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy left CU column.
if (x_cu > 0) {
int i;
for (i = 0; i < LCU_CU_WIDTH; ++i) {
const cu_info_t *from_cu = videoframe_get_cu_const(frame, x_cu - 1, y_cu + i);
cu_info_t *to_cu = &lcu_cu[-1 + i * LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy top-left CU.
if (x_cu > 0 && y_cu > 0) {
const cu_info_t *from_cu = videoframe_get_cu_const(frame, x_cu - 1, y_cu - 1);
cu_info_t *to_cu = &lcu_cu[-1 - LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
// Copy top-right CU.
if (y_cu > 0 && x + LCU_WIDTH < frame->width) {
const cu_info_t *from_cu = videoframe_get_cu_const(frame, x_cu + LCU_CU_WIDTH, y_cu - 1);
cu_info_t *to_cu = &lcu->cu[LCU_T_CU_WIDTH*LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy reference pixels.
{
const int pic_width = frame->width;
// Copy top reference pixels.
if (y > 0) {
// hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH
// number of allocated pixels left.
int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x);
int x_min_in_lcu = (x>0) ? 0 : 1;
memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu-1)], x_max + (1-x_min_in_lcu));
memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu-1)], x_max / 2 + (1-x_min_in_lcu));
memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu-1)], x_max / 2 + (1-x_min_in_lcu));
}
// Copy left reference pixels.
if (x > 0) {
int y_min_in_lcu = (y>0) ? 0 : 1;
memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[OFFSET_VER_BUF(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH + (1-y_min_in_lcu));
memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH / 2 + (1-y_min_in_lcu));
memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH / 2 + (1-y_min_in_lcu));
}
}
// Copy LCU pixels.
{
const videoframe_t * const frame = state->tile->frame;
int x_max = MIN(x + LCU_WIDTH, frame->width) - x;
int y_max = MIN(y + LCU_WIDTH, frame->height) - y;
int x_c = x / 2;
int y_c = y / 2;
int x_max_c = x_max / 2;
int y_max_c = y_max / 2;
pixels_blit(&frame->source->y[x + y * frame->source->stride], lcu->ref.y,
x_max, y_max, frame->source->stride, LCU_WIDTH);
pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride/2], lcu->ref.u,
x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2);
pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride/2], lcu->ref.v,
x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2);
}
}
/**
* Copy CU and pixel data to it's place in picture datastructure.
*/
static void copy_lcu_to_cu_data(const encoder_state_t * const state, int x_px, int y_px, const lcu_t *lcu)
{
// Copy non-reference CUs to picture.
{
const int x_cu = x_px >> MAX_DEPTH;
const int y_cu = y_px >> MAX_DEPTH;
videoframe_t * const frame = state->tile->frame;
// Use top-left sub-cu of LCU as pointer to lcu->cu array to make things
// simpler.
const cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
for (y = 0; y < LCU_CU_WIDTH; ++y) {
for (x = 0; x < LCU_CU_WIDTH; ++x) {
const cu_info_t *from_cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
cu_info_t *to_cu = videoframe_get_cu(frame, x_cu + x, y_cu + y);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
}
// Copy pixels to picture.
{
videoframe_t * const pic = state->tile->frame;
const int pic_width = pic->width;
const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px;
const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px;
const int luma_index = x_px + y_px * pic_width;
const int chroma_index = (x_px / 2) + (y_px / 2) * (pic_width / 2);
pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride],
x_max, y_max, LCU_WIDTH, pic->rec->stride);
coefficients_blit(lcu->coeff.y, &pic->coeff_y[luma_index],
x_max, y_max, LCU_WIDTH, pic_width);
pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
coefficients_blit(lcu->coeff.u, &pic->coeff_u[chroma_index],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2);
coefficients_blit(lcu->coeff.v, &pic->coeff_v[chroma_index],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2);
}
}
/**
* Search LCU for modes.
* - Best mode gets copied to current picture.
*/
void search_lcu(encoder_state_t * const state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf)
{
lcu_t work_tree[MAX_PU_DEPTH + 1];
int depth;
// Initialize work tree.
for (depth = 0; depth <= MAX_PU_DEPTH; ++depth) {
FILL(work_tree[depth], 0);
init_lcu_t(state, x, y, &work_tree[depth], hor_buf, ver_buf);
}
// Start search from depth 0.
search_cu(state, x, y, 0, work_tree);
copy_lcu_to_cu_data(state, x, y, &work_tree[0]);
}