/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "encoderstate.h" #include #include #include #include #include "cabac.h" #include "context.h" #include "encode_coding_tree.h" #include "encoder_state-bitstream.h" #include "filter.h" #include "image.h" #include "rate_control.h" #include "sao.h" #include "search.h" #include "tables.h" int kvz_encoder_state_match_children_of_previous_frame(encoder_state_t * const state) { int i; for (i = 0; state->children[i].encoder_control; ++i) { //Child should also exist for previous encoder assert(state->previous_encoder_state->children[i].encoder_control); state->children[i].previous_encoder_state = &state->previous_encoder_state->children[i]; kvz_encoder_state_match_children_of_previous_frame(&state->children[i]); } return 1; } static void encoder_state_recdata_to_bufs(encoder_state_t * const state, const lcu_order_element_t * const lcu, yuv_t * const hor_buf, yuv_t * const ver_buf) { videoframe_t* const frame = state->tile->frame; if (hor_buf) { //Copy the bottom row of this LCU to the horizontal buffer vector2d_t bottom = { lcu->position_px.x, lcu->position_px.y + lcu->size.y - 1 }; const int lcu_row = lcu->position.y; unsigned from_index = bottom.y * frame->rec->stride + bottom.x; unsigned to_index = lcu->position_px.x + lcu_row * frame->width; kvz_pixels_blit(&frame->rec->y[from_index], &hor_buf->y[to_index], lcu->size.x, 1, frame->rec->stride, frame->width); if (state->encoder_control->chroma_format != KVZ_CSP_400) { unsigned from_index_c = (bottom.y / 2) * frame->rec->stride / 2 + (bottom.x / 2); unsigned to_index_c = lcu->position_px.x / 2 + lcu_row * frame->width / 2; kvz_pixels_blit(&frame->rec->u[from_index_c], &hor_buf->u[to_index_c], lcu->size.x / 2, 1, frame->rec->stride / 2, frame->width / 2); kvz_pixels_blit(&frame->rec->v[from_index_c], &hor_buf->v[to_index_c], lcu->size.x / 2, 1, frame->rec->stride / 2, frame->width / 2); } } if (ver_buf) { //Copy the right row of this LCU to the vertical buffer. const int lcu_col = lcu->position.x; vector2d_t left = { lcu->position_px.x + lcu->size.x - 1, lcu->position_px.y }; kvz_pixels_blit(&frame->rec->y[left.y * frame->rec->stride + left.x], &ver_buf->y[lcu->position_px.y + lcu_col * frame->height], 1, lcu->size.y, frame->rec->stride, 1); if (state->encoder_control->chroma_format != KVZ_CSP_400) { unsigned from_index = (left.y / 2) * frame->rec->stride / 2 + (left.x / 2); unsigned to_index = lcu->position_px.y / 2 + lcu_col * frame->height / 2; kvz_pixels_blit(&frame->rec->u[from_index], &ver_buf->u[to_index], 1, lcu->size.y / 2, frame->rec->stride / 2, 1); kvz_pixels_blit(&frame->rec->v[from_index], &ver_buf->v[to_index], 1, lcu->size.y / 2, frame->rec->stride / 2, 1); } } } static void encode_sao_color(encoder_state_t * const state, sao_info_t *sao, color_t color_i) { cabac_data_t * const cabac = &state->cabac; sao_eo_cat i; int offset_index = (color_i == COLOR_V) ? 5 : 0; // Skip colors with no SAO. //FIXME: for now, we always have SAO for all channels if (color_i == COLOR_Y && 0) return; if (color_i != COLOR_Y && 0) return; /// sao_type_idx_luma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass} /// sao_type_idx_chroma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass} // Encode sao_type_idx for Y and U+V. if (color_i != COLOR_V) { cabac->cur_ctx = &(cabac->ctx.sao_type_idx_model); CABAC_BIN(cabac, sao->type != SAO_TYPE_NONE, "sao_type_idx"); if (sao->type == SAO_TYPE_BAND) { CABAC_BIN_EP(cabac, 0, "sao_type_idx_ep"); } else if (sao->type == SAO_TYPE_EDGE) { CABAC_BIN_EP(cabac, 1, "sao_type_idx_ep"); } } if (sao->type == SAO_TYPE_NONE) return; /// sao_offset_abs[][][][]: TR, cMax = (1 << (Min(bitDepth, 10) - 5)) - 1, /// cRiceParam = 0, bins = {bypass x N} for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) { kvz_cabac_write_unary_max_symbol_ep(cabac, abs(sao->offsets[i + offset_index]), SAO_ABS_OFFSET_MAX); } /// sao_offset_sign[][][][]: FL, cMax = 1, bins = {bypass} /// sao_band_position[][][]: FL, cMax = 31, bins = {bypass x N} /// sao_eo_class_luma: FL, cMax = 3, bins = {bypass x 3} /// sao_eo_class_chroma: FL, cMax = 3, bins = {bypass x 3} if (sao->type == SAO_TYPE_BAND) { for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) { // Positive sign is coded as 0. if (sao->offsets[i + offset_index] != 0) { CABAC_BIN_EP(cabac, sao->offsets[i + offset_index] < 0 ? 1 : 0, "sao_offset_sign"); } } // TODO: sao_band_position // FL cMax=31 (5 bits) CABAC_BINS_EP(cabac, sao->band_position[color_i == COLOR_V ? 1:0], 5, "sao_band_position"); } else if (color_i != COLOR_V) { CABAC_BINS_EP(cabac, sao->eo_class, 2, "sao_eo_class"); } } static void encode_sao_merge_flags(encoder_state_t * const state, sao_info_t *sao, unsigned x_ctb, unsigned y_ctb) { cabac_data_t * const cabac = &state->cabac; // SAO merge flags are not present for the first row and column. if (x_ctb > 0) { cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model); CABAC_BIN(cabac, sao->merge_left_flag, "sao_merge_left_flag"); } if (y_ctb > 0 && !sao->merge_left_flag) { cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model); CABAC_BIN(cabac, sao->merge_up_flag, "sao_merge_up_flag"); } } /** * \brief Encode SAO information. */ static void encode_sao(encoder_state_t * const state, unsigned x_lcu, uint16_t y_lcu, sao_info_t *sao_luma, sao_info_t *sao_chroma) { // TODO: transmit merge flags outside sao_info encode_sao_merge_flags(state, sao_luma, x_lcu, y_lcu); // If SAO is merged, nothing else needs to be coded. if (!sao_luma->merge_left_flag && !sao_luma->merge_up_flag) { encode_sao_color(state, sao_luma, COLOR_Y); if (state->encoder_control->chroma_format != KVZ_CSP_400) { encode_sao_color(state, sao_chroma, COLOR_U); encode_sao_color(state, sao_chroma, COLOR_V); } } } static void encoder_state_worker_encode_lcu(void * opaque) { const lcu_order_element_t * const lcu = opaque; encoder_state_t *state = lcu->encoder_state; const encoder_control_t * const encoder = state->encoder_control; videoframe_t* const frame = state->tile->frame; //This part doesn't write to bitstream, it's only search, deblock and sao kvz_search_lcu(state, lcu->position_px.x, lcu->position_px.y, state->tile->hor_buf_search, state->tile->ver_buf_search); encoder_state_recdata_to_bufs(state, lcu, state->tile->hor_buf_search, state->tile->ver_buf_search); if (encoder->deblock_enable) { kvz_filter_deblock_lcu(state, lcu->position_px.x, lcu->position_px.y); } if (encoder->sao_enable) { kvz_sao_search_lcu(state, lcu->position.x, lcu->position.y); } // Copy LCU cu_array to main states cu_array, because that is the only one // which is given to the next frame through image_list_t. { PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME); encoder_state_t *main_state = state; while (main_state->parent) main_state = main_state->parent; assert(main_state != state); const unsigned tile_x_px = state->tile->lcu_offset_x << LOG2_LCU_WIDTH; const unsigned tile_y_px = state->tile->lcu_offset_y << LOG2_LCU_WIDTH; const unsigned x_px = lcu->position_px.x; const unsigned y_px = lcu->position_px.y; kvz_cu_array_copy(main_state->tile->frame->cu_array, x_px + tile_x_px, y_px + tile_y_px, state->tile->frame->cu_array, x_px, y_px, LCU_WIDTH, LCU_WIDTH); PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, state->encoder_control->threadqueue, "type=copy_cuinfo,frame=%d,tile=%d", state->frame->num, state->tile->id); } //Now write data to bitstream (required to have a correct CABAC state) //First LCU, and we are in a slice. We need a slice header if (state->type == ENCODER_STATE_TYPE_SLICE && lcu->index == 0) { kvz_encoder_state_write_bitstream_slice_header(state); kvz_bitstream_add_rbsp_trailing_bits(&state->stream); } //Encode SAO if (encoder->sao_enable) { encode_sao(state, lcu->position.x, lcu->position.y, &frame->sao_luma[lcu->position.y * frame->width_in_lcu + lcu->position.x], &frame->sao_chroma[lcu->position.y * frame->width_in_lcu + lcu->position.x]); } //Encode coding tree kvz_encode_coding_tree(state, lcu->position.x << MAX_DEPTH, lcu->position.y << MAX_DEPTH, 0); //Terminator if (lcu->index < state->lcu_order_count - 1) { //Since we don't handle slice segments, end of slice segment == end of slice //Always 0 since otherwise it would be split kvz_cabac_encode_bin_trm(&state->cabac, 0); // end_of_slice_segment_flag } //Wavefronts need the context to be copied to the next row if (state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW && lcu->index == 1) { int j; //Find next encoder (next row) for (j=0; state->parent->children[j].encoder_control; ++j) { if (state->parent->children[j].wfrow->lcu_offset_y == state->wfrow->lcu_offset_y + 1) { //And copy context kvz_context_copy(&state->parent->children[j], state); } } } if (encoder->sao_enable && lcu->above) { // Add the post-deblocking but pre-SAO pixels of the LCU row above this // row to a buffer so this row can use them on it's own SAO // reconstruction. // The pixels need to be taken to from the LCU to the top-left, because // not all of the pixels could be deblocked before prediction of this // LCU was reconstructed. if (lcu->above->left) { encoder_state_recdata_to_bufs(state, lcu->above->left, state->tile->hor_buf_before_sao, NULL); } // If this is the last LCU in the row, we can save the pixels from the top // also, as they have been fully deblocked. if (!lcu->right) { encoder_state_recdata_to_bufs(state, lcu->above, state->tile->hor_buf_before_sao, NULL); } } } static void encoder_state_encode_leaf(encoder_state_t * const state) { assert(state->is_leaf); assert(state->lcu_order_count > 0); const kvz_config *cfg = state->encoder_control->cfg; // Select whether to encode the frame/tile in current thread or to define // wavefront jobs for other threads to handle. bool wavefront = state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW; bool use_parallel_encoding = (wavefront && state->parent->children[1].encoder_control); if (!use_parallel_encoding) { // Encode every LCU in order and perform SAO reconstruction after every // frame is encoded. Deblocking and SAO search is done during LCU encoding. for (int i = 0; i < state->lcu_order_count; ++i) { PERFORMANCE_MEASURE_START(KVZ_PERF_LCU); encoder_state_worker_encode_lcu(&state->lcu_order[i]); #ifdef KVZ_DEBUG { const lcu_order_element_t * const lcu = &state->lcu_order[i]; PERFORMANCE_MEASURE_END(KVZ_PERF_LCU, state->encoder_control->threadqueue, "type=encode_lcu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", state->frame->num, state->tile->id, state->slice->id, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH + lcu->size.x - 1, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH + lcu->size.y - 1); } #endif //KVZ_DEBUG } if (state->encoder_control->sao_enable) { PERFORMANCE_MEASURE_START(KVZ_PERF_SAOREC); kvz_sao_reconstruct_frame(state); PERFORMANCE_MEASURE_END(KVZ_PERF_SAOREC, state->encoder_control->threadqueue, "type=kvz_sao_reconstruct_frame,frame=%d,tile=%d,slice=%d,row=%d-%d,px_x=%d-%d,px_y=%d-%d", state->frame->num, state->tile->id, state->slice->id, state->lcu_order[0].position.y + state->tile->lcu_offset_y, state->lcu_order[state->lcu_order_count - 1].position.y + state->tile->lcu_offset_y, state->tile->lcu_offset_x * LCU_WIDTH, state->tile->frame->width + state->tile->lcu_offset_x * LCU_WIDTH - 1, state->tile->lcu_offset_y * LCU_WIDTH, state->tile->frame->height + state->tile->lcu_offset_y * LCU_WIDTH - 1 ); } } else { // Add each LCU in the wavefront row as it's own job to the queue. // Select which frame dependancies should be set to. const encoder_state_t * ref_state = NULL; if (cfg->gop_lowdelay && cfg->gop_len > 0 && state->previous_encoder_state != state) { // For LP-gop, depend on the state of the first reference. int ref_neg = cfg->gop[(state->frame->poc - 1) % cfg->gop_len].ref_neg[0]; if (ref_neg > state->encoder_control->owf) { // If frame is not within OWF range, it's already done. ref_state = NULL; } else { ref_state = state->previous_encoder_state; while (ref_neg > 1) { ref_neg -= 1; ref_state = ref_state->previous_encoder_state; } } } else { // Otherwise, depend on the previous frame. ref_state = state->previous_encoder_state; } for (int i = 0; i < state->lcu_order_count; ++i) { const lcu_order_element_t * const lcu = &state->lcu_order[i]; #ifdef KVZ_DEBUG char job_description[256]; sprintf(job_description, "type=encode_lcu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", state->frame->num, state->tile->id, state->slice->id, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH + lcu->size.x - 1, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH + lcu->size.y - 1); #else char* job_description = NULL; #endif state->tile->wf_jobs[lcu->id] = kvz_threadqueue_submit(state->encoder_control->threadqueue, encoder_state_worker_encode_lcu, (void*)lcu, 1, job_description); // If job object was returned, add dependancies and allow it to run. if (state->tile->wf_jobs[lcu->id]) { // Add inter frame dependancies when ecoding more than one frame at // once. The added dependancy is for the first LCU of each wavefront // row to depend on the reconstruction status of the row below in the // previous frame. if (ref_state != NULL && state->previous_encoder_state->tqj_recon_done && state->frame->slicetype != KVZ_SLICE_I) { if (!lcu->left) { const lcu_order_element_t * const ref_lcu = &ref_state->lcu_order[i]; if (lcu->below) { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], ref_lcu->below->encoder_state->tqj_recon_done); } else { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], ref_lcu->encoder_state->tqj_recon_done); } } } // Add local WPP dependancy to the LCU on the left. if (lcu->left) { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - 1]); } // Add local WPP dependancy to the LCU on the top right. if (lcu->above) { if (lcu->above->right) { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - state->tile->frame->width_in_lcu + 1]); } else { kvz_threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - state->tile->frame->width_in_lcu]); } } kvz_threadqueue_job_unwait_job(state->encoder_control->threadqueue, state->tile->wf_jobs[lcu->id]); } // In the case where SAO is not enabled, the wavefront row is // done when the last LCU in the row is done. if (!state->encoder_control->sao_enable && i + 1 == state->lcu_order_count) { assert(!state->tqj_recon_done); state->tqj_recon_done = state->tile->wf_jobs[lcu->id]; } } } } static void encoder_state_encode(encoder_state_t * const main_state); static void encoder_state_worker_encode_children(void * opaque) { encoder_state_t *sub_state = opaque; encoder_state_encode(sub_state); if (sub_state->is_leaf) { if (sub_state->type != ENCODER_STATE_TYPE_WAVEFRONT_ROW) { PERFORMANCE_MEASURE_START(KVZ_PERF_BSLEAF); kvz_encoder_state_write_bitstream_leaf(sub_state); PERFORMANCE_MEASURE_END(KVZ_PERF_BSLEAF, sub_state->encoder_control->threadqueue, "type=encoder_state_write_bitstream_leaf,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", sub_state->frame->num, sub_state->tile->id, sub_state->slice->id, sub_state->lcu_order[0].position_px.x + sub_state->tile->lcu_offset_x * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count - 1].position_px.x + sub_state->lcu_order[sub_state->lcu_order_count - 1].size.x + sub_state->tile->lcu_offset_x * LCU_WIDTH - 1, sub_state->lcu_order[0].position_px.y + sub_state->tile->lcu_offset_y * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count - 1].position_px.y + sub_state->lcu_order[sub_state->lcu_order_count - 1].size.y + sub_state->tile->lcu_offset_y * LCU_WIDTH - 1); } else { threadqueue_job_t *job; #ifdef KVZ_DEBUG char job_description[256]; sprintf(job_description, "type=encoder_state_write_bitstream_leaf,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", sub_state->frame->num, sub_state->tile->id, sub_state->slice->id, sub_state->lcu_order[0].position_px.x + sub_state->tile->lcu_offset_x * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count-1].position_px.x + sub_state->lcu_order[sub_state->lcu_order_count-1].size.x + sub_state->tile->lcu_offset_x * LCU_WIDTH - 1, sub_state->lcu_order[0].position_px.y + sub_state->tile->lcu_offset_y * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count-1].position_px.y + sub_state->lcu_order[sub_state->lcu_order_count-1].size.y + sub_state->tile->lcu_offset_y * LCU_WIDTH - 1); #else char* job_description = NULL; #endif job = kvz_threadqueue_submit(sub_state->encoder_control->threadqueue, kvz_encoder_state_worker_write_bitstream_leaf, sub_state, 1, job_description); kvz_threadqueue_job_dep_add(job, sub_state->tile->wf_jobs[sub_state->wfrow->lcu_offset_y * sub_state->tile->frame->width_in_lcu + sub_state->lcu_order_count - 1]); kvz_threadqueue_job_unwait_job(sub_state->encoder_control->threadqueue, job); assert(!sub_state->tqj_bitstream_written); //Bitstream is written for the row, if we're at the last LCU sub_state->tqj_bitstream_written = job; return; } } } typedef struct { int y; const encoder_state_t * encoder_state; } worker_sao_reconstruct_lcu_data; static void encoder_state_worker_sao_reconstruct_lcu(void *opaque) { worker_sao_reconstruct_lcu_data *data = opaque; videoframe_t * const frame = data->encoder_state->tile->frame; unsigned stride = frame->width_in_lcu; int x; //TODO: copy only needed data kvz_pixel *new_y_data = MALLOC(kvz_pixel, frame->width * frame->height); kvz_pixel *new_u_data = NULL; kvz_pixel *new_v_data = NULL; if (frame->rec->chroma_format != KVZ_CSP_400) { new_u_data = MALLOC(kvz_pixel, (frame->width * frame->height) >> 2); new_v_data = MALLOC(kvz_pixel, (frame->width * frame->height) >> 2); } const int offset = frame->width * (data->y*LCU_WIDTH); const int offset_c = frame->width/2 * (data->y*LCU_WIDTH_C); int num_pixels = frame->width * (LCU_WIDTH + 2); if (num_pixels + offset > frame->width * frame->height) { num_pixels = frame->width * frame->height - offset; } memcpy(&new_y_data[offset], &frame->rec->y[offset], sizeof(kvz_pixel) * num_pixels); if (frame->rec->chroma_format != KVZ_CSP_400) { memcpy(&new_u_data[offset_c], &frame->rec->u[offset_c], sizeof(kvz_pixel) * num_pixels >> 2); memcpy(&new_v_data[offset_c], &frame->rec->v[offset_c], sizeof(kvz_pixel) * num_pixels >> 2); } if (data->y>0) { //copy first row from buffer memcpy(&new_y_data[frame->width * (data->y*LCU_WIDTH-1)], &data->encoder_state->tile->hor_buf_before_sao->y[frame->width * (data->y-1)], frame->width * sizeof(kvz_pixel)); if (frame->rec->chroma_format != KVZ_CSP_400) { memcpy(&new_u_data[frame->width / 2 * (data->y*LCU_WIDTH_C - 1)], &data->encoder_state->tile->hor_buf_before_sao->u[frame->width / 2 * (data->y - 1)], frame->width / 2 * sizeof(kvz_pixel)); memcpy(&new_v_data[frame->width / 2 * (data->y*LCU_WIDTH_C - 1)], &data->encoder_state->tile->hor_buf_before_sao->v[frame->width / 2 * (data->y - 1)], frame->width / 2 * sizeof(kvz_pixel)); } } for (x = 0; x < frame->width_in_lcu; x++) { // sao_do_rdo(encoder, lcu.x, lcu.y, sao_luma, sao_chroma); sao_info_t *sao_luma = &frame->sao_luma[data->y * stride + x]; sao_info_t *sao_chroma = &frame->sao_chroma[data->y * stride + x]; kvz_sao_reconstruct(data->encoder_state->encoder_control, frame, new_y_data, x, data->y, sao_luma, COLOR_Y); if (frame->rec->chroma_format != KVZ_CSP_400) { kvz_sao_reconstruct(data->encoder_state->encoder_control, frame, new_u_data, x, data->y, sao_chroma, COLOR_U); kvz_sao_reconstruct(data->encoder_state->encoder_control, frame, new_v_data, x, data->y, sao_chroma, COLOR_V); } } free(new_y_data); free(new_u_data); free(new_v_data); free(opaque); } static int encoder_state_tree_is_a_chain(const encoder_state_t * const state) { if (!state->children[0].encoder_control) return 1; if (state->children[1].encoder_control) return 0; return encoder_state_tree_is_a_chain(&state->children[0]); } static void encoder_state_encode(encoder_state_t * const main_state) { //If we have children, encode at child level if (main_state->children[0].encoder_control) { int i=0; //If we have only one child, than it cannot be the last split in tree int node_is_the_last_split_in_tree = (main_state->children[1].encoder_control != 0); for (i=0; main_state->children[i].encoder_control; ++i) { encoder_state_t *sub_state = &(main_state->children[i]); if (sub_state->tile != main_state->tile) { const int offset_x = sub_state->tile->lcu_offset_x * LCU_WIDTH; const int offset_y = sub_state->tile->lcu_offset_y * LCU_WIDTH; const int width = MIN(sub_state->tile->frame->width_in_lcu * LCU_WIDTH, main_state->tile->frame->width - offset_x); const int height = MIN(sub_state->tile->frame->height_in_lcu * LCU_WIDTH, main_state->tile->frame->height - offset_y); if (sub_state->tile->frame->source) { kvz_image_free(sub_state->tile->frame->source); sub_state->tile->frame->source = NULL; } if (sub_state->tile->frame->rec) { kvz_image_free(sub_state->tile->frame->rec); sub_state->tile->frame->rec = NULL; } assert(!sub_state->tile->frame->source); assert(!sub_state->tile->frame->rec); sub_state->tile->frame->source = kvz_image_make_subimage(main_state->tile->frame->source, offset_x, offset_y, width, height); sub_state->tile->frame->rec = kvz_image_make_subimage(main_state->tile->frame->rec, offset_x, offset_y, width, height); } //To be the last split, we require that every child is a chain node_is_the_last_split_in_tree = node_is_the_last_split_in_tree && encoder_state_tree_is_a_chain(&main_state->children[i]); } //If it's the latest split point if (node_is_the_last_split_in_tree) { for (i=0; main_state->children[i].encoder_control; ++i) { //If we don't have wavefronts, parallelize encoding of children. if (main_state->children[i].type != ENCODER_STATE_TYPE_WAVEFRONT_ROW) { #ifdef KVZ_DEBUG char job_description[256]; switch (main_state->children[i].type) { case ENCODER_STATE_TYPE_TILE: sprintf(job_description, "type=encode_child,frame=%d,tile=%d,row=%d-%d,px_x=%d-%d,px_y=%d-%d", main_state->children[i].frame->num, main_state->children[i].tile->id, main_state->children[i].lcu_order[0].position.y + main_state->children[i].tile->lcu_offset_y, main_state->children[i].lcu_order[0].position.y + main_state->children[i].tile->lcu_offset_y, main_state->children[i].lcu_order[0].position_px.x + main_state->children[i].tile->lcu_offset_x * LCU_WIDTH, main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].position_px.x + main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].size.x + main_state->children[i].tile->lcu_offset_x * LCU_WIDTH - 1, main_state->children[i].lcu_order[0].position_px.y + main_state->children[i].tile->lcu_offset_y * LCU_WIDTH, main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].position_px.y + main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].size.y + main_state->children[i].tile->lcu_offset_y * LCU_WIDTH - 1); break; case ENCODER_STATE_TYPE_SLICE: sprintf(job_description, "type=encode_child,frame=%d,slice=%d,start_in_ts=%d", main_state->children[i].frame->num, main_state->children[i].slice->id, main_state->children[i].slice->start_in_ts); break; default: sprintf(job_description, "type=encode_child,frame=%d,invalid", main_state->children[i].frame->num); break; } #else char* job_description = NULL; #endif main_state->children[i].tqj_recon_done = kvz_threadqueue_submit(main_state->encoder_control->threadqueue, encoder_state_worker_encode_children, &(main_state->children[i]), 1, job_description); if (main_state->children[i].previous_encoder_state != &main_state->children[i] && main_state->children[i].previous_encoder_state->tqj_recon_done && !main_state->children[i].frame->is_idr_frame) { #if 0 // Disabled due to non-determinism. if (main_state->encoder_control->cfg->mv_constraint == KVZ_MV_CONSTRAIN_FRAME_AND_TILE_MARGIN) { // When MV's don't cross tile boundaries, add dependancy only to the same tile. kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[i].previous_encoder_state->tqj_recon_done); } else #endif { // Add dependancy to each child in the previous frame. for (int child_id = 0; main_state->children[child_id].encoder_control; ++child_id) { kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[child_id].previous_encoder_state->tqj_recon_done); } } } kvz_threadqueue_job_unwait_job(main_state->encoder_control->threadqueue, main_state->children[i].tqj_recon_done); } else { //Wavefront rows have parallelism at LCU level, so we should not launch multiple threads here! //FIXME: add an assert: we can only have wavefront children encoder_state_worker_encode_children(&(main_state->children[i])); } } // Add SAO reconstruction jobs and their dependancies when using WPP coding. if (main_state->encoder_control->sao_enable && main_state->children[0].type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) { int y; videoframe_t * const frame = main_state->tile->frame; threadqueue_job_t *previous_job = NULL; for (y = 0; y < frame->height_in_lcu; ++y) { // Queue a single job performing SAO reconstruction for the whole wavefront row. worker_sao_reconstruct_lcu_data *data = MALLOC(worker_sao_reconstruct_lcu_data, 1); threadqueue_job_t *job; #ifdef KVZ_DEBUG char job_description[256]; sprintf(job_description, "type=sao,frame=%d,tile=%d,px_x=%d-%d,px_y=%d-%d", main_state->frame->num, main_state->tile->id, main_state->tile->lcu_offset_x * LCU_WIDTH, main_state->tile->lcu_offset_x * LCU_WIDTH + main_state->tile->frame->width - 1, (main_state->tile->lcu_offset_y + y) * LCU_WIDTH, MIN(main_state->tile->lcu_offset_y * LCU_WIDTH + main_state->tile->frame->height, (main_state->tile->lcu_offset_y + y + 1) * LCU_WIDTH)-1); #else char* job_description = NULL; #endif data->y = y; data->encoder_state = main_state; job = kvz_threadqueue_submit(main_state->encoder_control->threadqueue, encoder_state_worker_sao_reconstruct_lcu, data, 1, job_description); // This dependancy is needed, because the pre-SAO pixels from the LCU row // below this one are read straigh from the frame. if (previous_job) { kvz_threadqueue_job_dep_add(job, previous_job); } previous_job = job; // This depepndancy ensures that the bottom edge of this LCU row // has been fully deblocked. if (y < frame->height_in_lcu - 1) { // Not last row: depend on the last LCU of the row below. kvz_threadqueue_job_dep_add(job, main_state->tile->wf_jobs[(y + 1) * frame->width_in_lcu + frame->width_in_lcu - 1]); } else { // Last row: depend on the last LCU of the row kvz_threadqueue_job_dep_add(job, main_state->tile->wf_jobs[(y + 0) * frame->width_in_lcu + frame->width_in_lcu - 1]); } kvz_threadqueue_job_unwait_job(main_state->encoder_control->threadqueue, job); // The wavefront row is finished, when the SAO-reconstruction is // finished. main_state->children[y].tqj_recon_done = job; if (y == frame->height_in_lcu - 1) { // This tile is finished, when the reconstruction of the last // WPP-row is finished. assert(!main_state->tqj_recon_done); main_state->tqj_recon_done = job; } } } } else { for (i=0; main_state->children[i].encoder_control; ++i) { encoder_state_worker_encode_children(&(main_state->children[i])); } } } else { switch (main_state->type) { case ENCODER_STATE_TYPE_TILE: case ENCODER_STATE_TYPE_SLICE: case ENCODER_STATE_TYPE_WAVEFRONT_ROW: encoder_state_encode_leaf(main_state); break; default: fprintf(stderr, "Unsupported leaf type %c!\n", main_state->type); assert(0); } } } static void encoder_ref_insertion_sort(int reflist[16], int length) { for (uint8_t i = 1; i < length; ++i) { const int16_t cur_poc = reflist[i]; int16_t j = i; while (j > 0 && cur_poc < reflist[j - 1]) { reflist[j] = reflist[j - 1]; --j; } reflist[j] = cur_poc; } } /** * \brief Return reference picture lists. * * \param state main encoder state * \param ref_list_len_out Returns the lengths of the reference lists. * \param ref_list_poc_out Returns two lists of POCs of the reference pictures. */ void kvz_encoder_get_ref_lists(const encoder_state_t *const state, int ref_list_len_out[2], int ref_list_poc_out[2][16]) { FILL_ARRAY(ref_list_len_out, 0, 2); // List all pocs of lists int j = 0; for (j = 0; j < state->frame->ref->used_size; j++) { if (state->frame->ref->pocs[j] < state->frame->poc) { ref_list_poc_out[0][ref_list_len_out[0]] = state->frame->ref->pocs[j]; ref_list_len_out[0]++; } else { ref_list_poc_out[1][ref_list_len_out[1]] = state->frame->ref->pocs[j]; ref_list_len_out[1]++; } } // Fill the rest of ref_list_poc_out array with -1s. for (; j < 16; j++) { ref_list_poc_out[0][j] = -1; ref_list_poc_out[1][j] = -1; } encoder_ref_insertion_sort(ref_list_poc_out[0], ref_list_len_out[0]); encoder_ref_insertion_sort(ref_list_poc_out[1], ref_list_len_out[1]); } static void encoder_state_ref_sort(encoder_state_t *state) { int ref_list_len[2]; int ref_list_poc[2][16]; kvz_encoder_get_ref_lists(state, ref_list_len, ref_list_poc); for (int j = 0; j < state->frame->ref->used_size; j++) { if (state->frame->ref->pocs[j] < state->frame->poc) { for (int ref_idx = 0; ref_idx < ref_list_len[0]; ref_idx++) { if (ref_list_poc[0][ref_idx] == state->frame->ref->pocs[j]) { state->frame->refmap[j].idx = ref_list_len[0] - ref_idx - 1; break; } } state->frame->refmap[j].list = 1; } else { for (int ref_idx = 0; ref_idx < ref_list_len[1]; ref_idx++) { if (ref_list_poc[1][ref_idx] == state->frame->ref->pocs[j]) { state->frame->refmap[j].idx = ref_idx; break; } } state->frame->refmap[j].list = 2; } state->frame->refmap[j].poc = state->frame->ref->pocs[j]; } } /** * \brief Remove any references that should no longer be used. */ static void encoder_state_remove_refs(encoder_state_t *state) { const encoder_control_t * const encoder = state->encoder_control; int neg_refs = encoder->cfg->gop[state->frame->gop_offset].ref_neg_count; int pos_refs = encoder->cfg->gop[state->frame->gop_offset].ref_pos_count; unsigned target_ref_num; if (encoder->cfg->gop_len) { target_ref_num = neg_refs + pos_refs; } else { target_ref_num = encoder->cfg->ref_frames; } if (state->frame->slicetype == KVZ_SLICE_I) { target_ref_num = 0; } if (encoder->cfg->gop_len && target_ref_num > 0) { // With GOP in use, go through all the existing reference pictures and // remove any picture that is not referenced by the current picture. for (int ref = state->frame->ref->used_size - 1; ref >= 0; --ref) { bool is_referenced = false; int ref_poc = state->frame->ref->pocs[ref]; for (int i = 0; i < neg_refs; i++) { int ref_relative_poc = -encoder->cfg->gop[state->frame->gop_offset].ref_neg[i]; if (ref_poc == state->frame->poc + ref_relative_poc) { is_referenced = true; break; } } for (int i = 0; i < pos_refs; i++) { int ref_relative_poc = encoder->cfg->gop[state->frame->gop_offset].ref_pos[i]; if (ref_poc == state->frame->poc + ref_relative_poc) { is_referenced = true; break; } } if (!is_referenced) { // This reference is not referred to by this frame, it must be removed. kvz_image_list_rem(state->frame->ref, ref); } } } else { // Without GOP, remove the oldest picture. while (state->frame->ref->used_size > target_ref_num) { int8_t oldest_ref = state->frame->ref->used_size - 1; kvz_image_list_rem(state->frame->ref, oldest_ref); } } assert(state->frame->ref->used_size <= target_ref_num); } static void encoder_state_reset_poc(encoder_state_t *state) { state->frame->poc = 0; kvz_videoframe_set_poc(state->tile->frame, 0); for (int i = 0; state->children[i].encoder_control; ++i) { encoder_state_t *sub_state = &(state->children[i]); encoder_state_reset_poc(sub_state); } } static void encoder_set_source_picture(encoder_state_t * const state, kvz_picture* frame) { assert(!state->tile->frame->source); assert(!state->tile->frame->rec); state->tile->frame->source = frame; if (state->encoder_control->cfg->lossless) { // In lossless mode, the reconstruction is equal to the source frame. state->tile->frame->rec = kvz_image_copy_ref(frame); } else { state->tile->frame->rec = kvz_image_alloc(state->encoder_control->chroma_format, frame->width, frame->height); state->tile->frame->rec->dts = frame->dts; state->tile->frame->rec->pts = frame->pts; } kvz_videoframe_set_poc(state->tile->frame, state->frame->poc); } static void encoder_state_init_children(encoder_state_t * const state) { kvz_bitstream_clear(&state->stream); if (state->is_leaf) { //Leaf states have cabac and context kvz_cabac_start(&state->cabac); kvz_init_contexts(state, state->frame->QP, state->frame->slicetype); } //Clear the jobs state->tqj_bitstream_written = NULL; state->tqj_recon_done = NULL; for (int i = 0; state->children[i].encoder_control; ++i) { encoder_state_init_children(&state->children[i]); } } static void encoder_state_init_new_frame(encoder_state_t * const state, kvz_picture* frame) { assert(state->type == ENCODER_STATE_TYPE_MAIN); const kvz_config * const cfg = state->encoder_control->cfg; encoder_set_source_picture(state, frame); if (state->frame->num == 0) { state->frame->is_idr_frame = true; } else if (cfg->gop_len) { // Closed GOP / CRA is not yet supported. state->frame->is_idr_frame = false; // Calculate POC according to the global frame counter and GOP structure int32_t poc = state->frame->num - 1; int32_t poc_offset = cfg->gop[state->frame->gop_offset].poc_offset; state->frame->poc = poc - poc % cfg->gop_len + poc_offset; kvz_videoframe_set_poc(state->tile->frame, state->frame->poc); } else { bool is_i_idr = (cfg->intra_period == 1 && state->frame->num % 2 == 0); bool is_p_idr = (cfg->intra_period > 1 && (state->frame->num % cfg->intra_period) == 0); state->frame->is_idr_frame = is_i_idr || is_p_idr; } if (state->frame->is_idr_frame) { encoder_state_reset_poc(state); state->frame->slicetype = KVZ_SLICE_I; state->frame->pictype = KVZ_NAL_IDR_W_RADL; } else { state->frame->slicetype = cfg->intra_period==1 ? KVZ_SLICE_I : (state->encoder_control->cfg->gop_len?KVZ_SLICE_B:KVZ_SLICE_P); // Use P-slice for lowdelay. if (state->frame->slicetype == KVZ_SLICE_B && cfg->gop_lowdelay) { state->frame->slicetype = KVZ_SLICE_P; } state->frame->pictype = KVZ_NAL_TRAIL_R; if (state->encoder_control->cfg->gop_len) { if (cfg->intra_period > 1 && (state->frame->poc % cfg->intra_period) == 0) { state->frame->slicetype = KVZ_SLICE_I; } } } encoder_state_remove_refs(state); encoder_state_ref_sort(state); double lambda; if (cfg->target_bitrate > 0) { // Rate control enabled. lambda = kvz_select_picture_lambda(state); state->frame->QP = kvz_lambda_to_QP(lambda); } else { if (cfg->gop_len > 0 && state->frame->slicetype != KVZ_SLICE_I) { kvz_gop_config const * const gop = cfg->gop + state->frame->gop_offset; state->frame->QP = cfg->qp + gop->qp_offset; state->frame->QP_factor = gop->qp_factor; } else { state->frame->QP = cfg->qp; } lambda = kvz_select_picture_lambda_from_qp(state); } state->frame->cur_lambda_cost = lambda; state->frame->cur_lambda_cost_sqrt = sqrt(lambda); encoder_state_init_children(state); } static void _encode_one_frame_add_bitstream_deps(const encoder_state_t * const state, threadqueue_job_t * const job) { int i; for (i = 0; state->children[i].encoder_control; ++i) { _encode_one_frame_add_bitstream_deps(&state->children[i], job); } if (state->tqj_bitstream_written) { kvz_threadqueue_job_dep_add(job, state->tqj_bitstream_written); } if (state->tqj_recon_done) { kvz_threadqueue_job_dep_add(job, state->tqj_recon_done); } } void kvz_encode_one_frame(encoder_state_t * const state, kvz_picture* frame) { { PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME); encoder_state_init_new_frame(state, frame); PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, state->encoder_control->threadqueue, "type=init_new_frame,frame=%d,poc=%d", state->frame->num, state->frame->poc); } { PERFORMANCE_MEASURE_START(KVZ_PERF_FRAME); encoder_state_encode(state); PERFORMANCE_MEASURE_END(KVZ_PERF_FRAME, state->encoder_control->threadqueue, "type=encode,frame=%d", state->frame->num); } //kvz_threadqueue_flush(main_state->encoder_control->threadqueue); { threadqueue_job_t *job; #ifdef KVZ_DEBUG char job_description[256]; sprintf(job_description, "type=write_bitstream,frame=%d", state->frame->num); #else char* job_description = NULL; #endif job = kvz_threadqueue_submit(state->encoder_control->threadqueue, kvz_encoder_state_worker_write_bitstream, (void*) state, 1, job_description); _encode_one_frame_add_bitstream_deps(state, job); if (state->previous_encoder_state != state && state->previous_encoder_state->tqj_bitstream_written) { //We need to depend on previous bitstream generation kvz_threadqueue_job_dep_add(job, state->previous_encoder_state->tqj_bitstream_written); } kvz_threadqueue_job_unwait_job(state->encoder_control->threadqueue, job); assert(!state->tqj_bitstream_written); state->tqj_bitstream_written = job; } state->frame_done = 0; //kvz_threadqueue_flush(main_state->encoder_control->threadqueue); } /** * Prepare the encoder state for encoding the next frame. * * - Add the previous reconstructed picture as a reference, if needed. * - Free the previous reconstructed and source pictures. * - Create a new cu array, if needed. * - Update frame count and POC. */ void kvz_encoder_prepare(encoder_state_t *state) { const encoder_control_t * const encoder = state->encoder_control; // The previous frame must be done before the next one is started. assert(state->frame_done); if (state->frame->num == -1) { // We're at the first frame, so don't care about all this stuff. state->frame->num = 0; state->frame->poc = 0; assert(!state->tile->frame->source); assert(!state->tile->frame->rec); state->prepared = 1; return; } // NOTE: prev_state is equal to state when OWF is zero encoder_state_t *prev_state = state->previous_encoder_state; if (state->previous_encoder_state != state) { kvz_cu_array_free(state->tile->frame->cu_array); state->tile->frame->cu_array = NULL; unsigned width = state->tile->frame->width_in_lcu * LCU_WIDTH; unsigned height = state->tile->frame->height_in_lcu * LCU_WIDTH; state->tile->frame->cu_array = kvz_cu_array_alloc(width, height); kvz_image_list_copy_contents(state->frame->ref, prev_state->frame->ref); } if (!encoder->cfg->gop_len || !prev_state->frame->poc || encoder->cfg->gop[prev_state->frame->gop_offset].is_ref) { // Add previous reconstructed picture as a reference kvz_image_list_add(state->frame->ref, prev_state->tile->frame->rec, prev_state->tile->frame->cu_array, prev_state->frame->poc); kvz_cu_array_free(state->tile->frame->cu_array); unsigned height = state->tile->frame->height_in_lcu * LCU_WIDTH; unsigned width = state->tile->frame->width_in_lcu * LCU_WIDTH; state->tile->frame->cu_array = kvz_cu_array_alloc(width, height); } // Remove source and reconstructed picture. kvz_image_free(state->tile->frame->source); state->tile->frame->source = NULL; kvz_image_free(state->tile->frame->rec); state->tile->frame->rec = NULL; // Update POC and frame count. state->frame->num = prev_state->frame->num + 1; state->frame->poc = prev_state->frame->poc + 1; state->prepared = 1; } coeff_scan_order_t kvz_get_scan_order(int8_t cu_type, int intra_mode, int depth) { // Scan mode is diagonal, except for 4x4+8x8 luma and 4x4 chroma, where: // - angular 6-14 = vertical // - angular 22-30 = horizontal if (cu_type == CU_INTRA && depth >= 3) { if (intra_mode >= 6 && intra_mode <= 14) { return SCAN_VER; } else if (intra_mode >= 22 && intra_mode <= 30) { return SCAN_HOR; } } return SCAN_DIAG; }