/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "strategies/generic/ipol-generic.h" #include #include #include "encoder.h" #include "strategies/generic/picture-generic.h" #include "strategies/strategies-ipol.h" #include "strategyselector.h" extern int8_t kvz_g_luma_filter[4][8]; extern int8_t kvz_g_chroma_filter[8][4]; int32_t kvz_eight_tap_filter_hor_generic(int8_t *filter, kvz_pixel *data) { int32_t temp = 0; for (int i = 0; i < 8; ++i) { temp += filter[i] * data[i]; } return temp; } int32_t kvz_eight_tap_filter_hor_16bit_generic(int8_t *filter, int16_t *data) { int32_t temp = 0; for (int i = 0; i < 8; ++i) { temp += filter[i] * data[i]; } return temp; } int32_t kvz_eight_tap_filter_ver_generic(int8_t *filter, kvz_pixel *data, int16_t stride) { int32_t temp = 0; for (int i = 0; i < 8; ++i) { temp += filter[i] * data[stride * i]; } return temp; } int32_t kvz_eight_tap_filter_ver_16bit_generic(int8_t *filter, int16_t *data, int16_t stride) { int32_t temp = 0; for (int i = 0; i < 8; ++i) { temp += filter[i] * data[stride * i]; } return temp; } int32_t kvz_four_tap_filter_hor_generic(int8_t *filter, kvz_pixel *data) { int32_t temp = 0; for (int i = 0; i < 4; ++i) { temp += filter[i] * data[i]; } return temp; } int32_t kvz_four_tap_filter_hor_16bit_generic(int8_t *filter, int16_t *data) { int32_t temp = 0; for (int i = 0; i < 4; ++i) { temp += filter[i] * data[i]; } return temp; } int32_t kvz_four_tap_filter_ver_generic(int8_t *filter, kvz_pixel *data, int16_t stride) { int32_t temp = 0; for (int i = 0; i < 4; ++i) { temp += filter[i] * data[stride * i]; } return temp; } int32_t kvz_four_tap_filter_ver_16bit_generic(int8_t *filter, int16_t *data, int16_t stride) { int32_t temp = 0; for (int i = 0; i < 4; ++i) { temp += filter[i] * data[stride * i]; } return temp; } void kvz_sample_quarterpel_luma_generic(const encoder_control_t * const encoder, kvz_pixel *src, int16_t src_stride, int width, int height, kvz_pixel *dst, int16_t dst_stride, int8_t hor_flag, int8_t ver_flag, const int16_t mv[2]) { //TODO: horizontal and vertical only filtering int32_t x, y; // Interpolation filter shifts int16_t shift1 = KVZ_BIT_DEPTH - 8; int32_t shift2 = 6; // Weighted prediction offset and shift int32_t wp_shift1 = 14 - KVZ_BIT_DEPTH; int32_t wp_offset1 = 1 << (wp_shift1 - 1); // Select filters according to the fractional part of the x and y mv components int8_t *hor_filter = kvz_g_luma_filter[mv[0] & 3]; int8_t *ver_filter = kvz_g_luma_filter[mv[1] & 3]; int16_t hor_filtered[KVZ_EXT_BLOCK_W_LUMA][LCU_WIDTH]; int16_t hor_stride = LCU_WIDTH; // Filter horizontally for (y = 0; y < height + KVZ_EXT_PADDING_LUMA; ++y) { for (x = 0; x < width; ++x) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET; hor_filtered[y][x] = kvz_eight_tap_filter_hor_generic(hor_filter, &src[src_stride * ypos + xpos]) >> shift1; } } // Filter vertically for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { dst[y * dst_stride + x] = kvz_fast_clip_32bit_to_pixel(((kvz_eight_tap_filter_ver_16bit_generic(ver_filter, &hor_filtered[y][x], hor_stride) >> shift2) + wp_offset1) >> wp_shift1); } } } void kvz_sample_14bit_quarterpel_luma_generic(const encoder_control_t * const encoder, kvz_pixel *src, int16_t src_stride, int width, int height, int16_t *dst, int16_t dst_stride, int8_t hor_flag, int8_t ver_flag, const int16_t mv[2]) { //TODO: horizontal and vertical only filtering int32_t x, y; // Interpolation filter shifts int16_t shift1 = KVZ_BIT_DEPTH - 8; int32_t shift2 = 6; // Select filters according to the fractional part of the x and y mv components int8_t *hor_filter = kvz_g_luma_filter[mv[0] & 3]; int8_t *ver_filter = kvz_g_luma_filter[mv[1] & 3]; int16_t hor_filtered[KVZ_EXT_BLOCK_W_LUMA][LCU_WIDTH]; int16_t hor_stride = LCU_WIDTH; // Filter horizontally for (y = 0; y < height + KVZ_EXT_PADDING_LUMA; ++y) { for (x = 0; x < width; ++x) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET; hor_filtered[y][x] = kvz_eight_tap_filter_hor_generic(hor_filter, &src[src_stride * ypos + xpos]) >> shift1; } } // Filter vertically for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { dst[y * dst_stride + x] = kvz_eight_tap_filter_ver_16bit_generic(ver_filter, &hor_filtered[y][x], hor_stride) >> shift2; } } } void kvz_filter_hpel_blocks_hor_ver_luma_generic(const encoder_control_t * encoder, kvz_pixel *src, int16_t src_stride, int width, int height, kvz_pixel filtered[4][LCU_WIDTH * LCU_WIDTH], int16_t hor_intermediate[5][(KVZ_EXT_BLOCK_W_LUMA + 1) * LCU_WIDTH], int8_t fme_level, int16_t hor_first_cols[5][KVZ_EXT_BLOCK_W_LUMA + 1], int8_t hpel_off_x, int8_t hpel_off_y) { int x, y, first_y; // Interpolation filter shifts int16_t shift1 = KVZ_BIT_DEPTH - 8; // Weighted prediction offset and shift int32_t wp_shift1 = 14 - KVZ_BIT_DEPTH; int32_t wp_offset1 = 1 << (wp_shift1 - 1); int8_t *fir0 = kvz_g_luma_filter[0]; int8_t *fir2 = kvz_g_luma_filter[2]; int16_t dst_stride = LCU_WIDTH; int16_t hor_stride = LCU_WIDTH; int32_t first_row_offset = (KVZ_LUMA_FILTER_OFFSET + 1) * hor_stride; int16_t *col_pos0 = hor_first_cols[0]; int16_t *col_pos2 = hor_first_cols[2]; // Horizontally filtered samples from the top row are // not needed unless samples for diagonal positions are filtered later. first_y = fme_level > 1 ? 0 : 1; // HORIZONTAL STEP // Integer pixels for (y = 0; y < height + KVZ_EXT_PADDING_LUMA + 1; ++y) { for (x = 0; x < width; ++x) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET + 1; hor_intermediate[0][y * hor_stride + x] = kvz_eight_tap_filter_hor_generic(fir0, &src[src_stride*ypos + xpos]) >> shift1; } } // Write the first column in contiguous memory x = 0; for (y = 0; y < height + KVZ_EXT_PADDING_LUMA + 1; ++y) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET; col_pos0[y] = kvz_eight_tap_filter_hor_generic(fir0, &src[src_stride*ypos + xpos]) >> shift1; } // Half pixels for (y = first_y; y < height + KVZ_EXT_PADDING_LUMA + 1; ++y) { for (x = 0; x < width; ++x) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET + 1; hor_intermediate[1][y * hor_stride + x] = kvz_eight_tap_filter_hor_generic(fir2, &src[src_stride*ypos + xpos]) >> shift1; } } // Write the first column in contiguous memory x = 0; for (y = first_y; y < height + KVZ_EXT_PADDING_LUMA + 1; ++y) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET; col_pos2[y] = kvz_eight_tap_filter_hor_generic(fir2, &src[src_stride*ypos + xpos]) >> shift1; } // VERTICAL STEP // Right // Only horizontal filter for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { filtered[1][y * dst_stride + x] = kvz_fast_clip_16bit_to_pixel((hor_intermediate[1][first_row_offset + y * hor_stride + x] + wp_offset1) >> wp_shift1); } } // Left // Copy from the right filtered block and the extra column for (y = 0; y < height; ++y) { x = 0; filtered[0][y * dst_stride + x] = kvz_fast_clip_16bit_to_pixel((col_pos2[y + KVZ_LUMA_FILTER_OFFSET + 1] + wp_offset1) >> wp_shift1); for (x = 1; x < width; ++x) filtered[0][y * dst_stride + x] = filtered[1][y * dst_stride + x - 1]; } // Top // Only vertical filter for (y = 0; y < height; ++y) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; for (x = 0; x < width; ++x) { int xpos = x; int16_t sample = kvz_eight_tap_filter_ver_generic(fir2, &src[src_stride*ypos + xpos + 1], src_stride) >> shift1; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[2][y * dst_stride + x] = sample; } } // Bottom // Copy what can be copied from the top filtered values. // Then filter the last row from horizontal intermediate buffer. for (y = 0; y < height - 1; ++y) { for (x = 0; x < width; ++x) filtered[3][y * dst_stride + x] = filtered[2][(y + 1) * dst_stride + x]; } int ypos = y - KVZ_LUMA_FILTER_OFFSET; for (x = 0; x < width; ++x) { int xpos = x; int16_t sample = kvz_eight_tap_filter_ver_generic(fir2, &src[src_stride*(ypos + 1) + xpos + 1], src_stride) >> shift1; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[3][y * dst_stride + x] = sample; } } void kvz_filter_hpel_blocks_diag_luma_generic(const encoder_control_t * encoder, kvz_pixel *src, int16_t src_stride, int width, int height, kvz_pixel filtered[4][LCU_WIDTH * LCU_WIDTH], int16_t hor_intermediate[5][(KVZ_EXT_BLOCK_W_LUMA + 1) * LCU_WIDTH], int8_t fme_level, int16_t hor_first_cols[5][KVZ_EXT_BLOCK_W_LUMA + 1], int8_t hpel_off_x, int8_t hpel_off_y) { int x, y; // Interpolation filter shifts int32_t shift2 = 6; // Weighted prediction offset and shift int32_t wp_shift1 = 14 - KVZ_BIT_DEPTH; int32_t wp_offset1 = 1 << (wp_shift1 - 1); int8_t *fir2 = kvz_g_luma_filter[2]; int16_t dst_stride = LCU_WIDTH; int16_t hor_stride = LCU_WIDTH; // Horizontal positions int16_t *col_pos2 = hor_first_cols[2]; // VERTICAL STEP // Top-right for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(fir2, &hor_intermediate[1][y * hor_stride + x], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[1][y * dst_stride + x] = sample; } } for (y = 0; y < height; ++y) { x = 0; filtered[0][y * dst_stride + x] = kvz_fast_clip_16bit_to_pixel((col_pos2[y + KVZ_LUMA_FILTER_OFFSET + 1] + wp_offset1) >> wp_shift1); for (x = 1; x < width; ++x) filtered[0][y * dst_stride + x] = filtered[1][y * dst_stride + x - 1]; } // Top-left // Copy what can be copied from top-right filtered values. Filter the first column from the column array. for (y = 0; y < height; ++y) { x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(fir2, &col_pos2[y]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[0][y * dst_stride + x] = sample; for (x = 1; x < width; ++x) filtered[0][y * dst_stride + x] = filtered[1][y * dst_stride + x - 1]; } // Bottom-right // Copy what can be copied from top-right filtered values. Filter the last row. for (y = 0; y < height - 1; ++y) { for (x = 0; x < width; ++x) filtered[3][y* dst_stride + x] = filtered[1][(y + 1) * dst_stride + x]; } for (x = 0; x < width; ++x) { int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(fir2, &hor_intermediate[1][(y + 1) * hor_stride + x], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[3][y * dst_stride + x] = sample; } // Bottom-left // Copy what can be copied from the top-left filtered values. // Copy what can be copied from the bottom-right filtered values. // Finally filter the last pixel from the column array. for (y = 0; y < height - 1; ++y) { for (x = 0; x < width; ++x) filtered[2][y * dst_stride + x] = filtered[0][(y + 1) * dst_stride + x]; } for (x = 1; x < width; ++x) filtered[2][y * dst_stride + x] = filtered[3][y * dst_stride + x - 1]; x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(fir2, &col_pos2[(y + 1)]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[2][y * dst_stride + x] = sample; } void kvz_filter_qpel_blocks_hor_ver_luma_generic(const encoder_control_t * encoder, kvz_pixel *src, int16_t src_stride, int width, int height, kvz_pixel filtered[4][LCU_WIDTH * LCU_WIDTH], int16_t hor_intermediate[5][(KVZ_EXT_BLOCK_W_LUMA + 1) * LCU_WIDTH], int8_t fme_level, int16_t hor_first_cols[5][KVZ_EXT_BLOCK_W_LUMA + 1], int8_t hpel_off_x, int8_t hpel_off_y) { int x, y; // Interpolation filter shifts int16_t shift1 = KVZ_BIT_DEPTH - 8; int32_t shift2 = 6; // Weighted prediction offset and shift int32_t wp_shift1 = 14 - KVZ_BIT_DEPTH; int32_t wp_offset1 = 1 << (wp_shift1 - 1); int8_t *fir0 = kvz_g_luma_filter[0]; int8_t *fir2 = kvz_g_luma_filter[2]; int8_t *fir1 = kvz_g_luma_filter[1]; int8_t *fir3 = kvz_g_luma_filter[3]; // Horiziontal positions. Positions 0 and 2 have already been calculated in filtered. int16_t *hor_pos0 = hor_intermediate[0]; int16_t *hor_pos2 = hor_intermediate[1]; int16_t *hor_pos_l = hor_intermediate[3]; int16_t *hor_pos_r = hor_intermediate[4]; int8_t *hor_fir_l = hpel_off_x != 0 ? fir1 : fir3; int8_t *hor_fir_r = hpel_off_x != 0 ? fir3 : fir1; int16_t *col_pos_l = hor_first_cols[1]; int16_t *col_pos_r = hor_first_cols[3]; int16_t dst_stride = LCU_WIDTH; int16_t hor_stride = LCU_WIDTH; int16_t *hor_hpel_pos = hpel_off_x != 0 ? hor_pos2 : hor_pos0; int16_t *col_pos_hor = hpel_off_x != 0 ? hor_first_cols[2] : hor_first_cols[0]; // Specify if integer pixels are filtered from left or/and top integer samples int off_x_fir_l = hpel_off_x < 1 ? 0 : 1; int off_x_fir_r = hpel_off_x < 0 ? 0 : 1; int off_y_fir_t = hpel_off_y < 1 ? 0 : 1; int off_y_fir_b = hpel_off_y < 0 ? 0 : 1; // HORIZONTAL STEP // Left QPEL int sample_off_y = hpel_off_y < 0 ? 0 : 1; for (y = 0; y < height + KVZ_EXT_PADDING_LUMA + 1; ++y) { for (x = 0; x < width; ++x) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET + 1; hor_pos_l[y * hor_stride + x] = kvz_eight_tap_filter_hor_generic(hor_fir_l, &src[src_stride*ypos + xpos]) >> shift1; } } // Write the first column in contiguous memory x = 0; for (y = 0; y < height + KVZ_EXT_PADDING_LUMA + 1; ++y) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET; col_pos_l[y] = kvz_eight_tap_filter_hor_generic(hor_fir_l, &src[src_stride*ypos + xpos]) >> shift1; } // Right QPEL for (y = 0; y < height + KVZ_EXT_PADDING_LUMA + 1; ++y) { for (x = 0; x < width; ++x) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET + 1; hor_pos_r[y * hor_stride + x] = kvz_eight_tap_filter_hor_generic(hor_fir_r, &src[src_stride*ypos + xpos]) >> shift1; } } // Write the first column in contiguous memory x = 0; for (y = 0; y < height + KVZ_EXT_PADDING_LUMA + 1; ++y) { int ypos = y - KVZ_LUMA_FILTER_OFFSET; int xpos = x - KVZ_LUMA_FILTER_OFFSET; col_pos_r[y] = kvz_eight_tap_filter_hor_generic(hor_fir_r, &src[src_stride*ypos + xpos]) >> shift1; } // VERTICAL STEP int8_t *ver_fir_l = hpel_off_y != 0 ? fir2 : fir0; int8_t *ver_fir_r = hpel_off_y != 0 ? fir2 : fir0; int8_t *ver_fir_t = hpel_off_y != 0 ? fir1 : fir3; int8_t *ver_fir_b = hpel_off_y != 0 ? fir3 : fir1; // Left QPEL (1/4 or 3/4 x positions) for (y = 0; y < height; ++y) { if (!off_x_fir_l) { x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(ver_fir_l, &col_pos_l[y + sample_off_y]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[0][y * dst_stride + x] = sample; } for (x = !off_x_fir_l; x < width; ++x) { int ypos = y + sample_off_y; int xpos = x - !off_x_fir_l; int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(ver_fir_l, &hor_pos_l[ypos * hor_stride + xpos], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[0][y * dst_stride + x] = sample; } } // Right QPEL (3/4 or 1/4 x positions) for (y = 0; y < height; ++y) { if (!off_x_fir_r) { x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(ver_fir_r, &col_pos_r[y + sample_off_y]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[1][y * dst_stride + x] = sample; } for (x = !off_x_fir_r; x < width; ++x) { int ypos = y + sample_off_y; int xpos = x - !off_x_fir_r; int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(ver_fir_r, &hor_pos_r[ypos * hor_stride + xpos], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[1][y * dst_stride + x] = sample; } } // Top QPEL (1/4 or 3/4 y positions) int sample_off_x = (hpel_off_x > -1 ? 1 : 0); for (y = 0; y < height; ++y) { if (!sample_off_x) { x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(ver_fir_t, &col_pos_hor[y + off_y_fir_t]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[2][y * dst_stride + x] = sample; } for (x = !sample_off_x; x < width; ++x) { int ypos = y + off_y_fir_t; int xpos = x - !sample_off_x; int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(ver_fir_t, &hor_hpel_pos[ypos * hor_stride + xpos], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[2][y * dst_stride + x] = sample; } } // Bottom QPEL (3/4 or 1/4 y positions) for (y = 0; y < height; ++y) { if (!sample_off_x) { x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(ver_fir_b, &col_pos_hor[y + off_y_fir_b]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[3][y * dst_stride + x] = sample; } for (x = !sample_off_x; x < width; ++x) { int ypos = y + off_y_fir_b; int xpos = x - !sample_off_x; int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(ver_fir_b, &hor_hpel_pos[ypos * hor_stride + xpos], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[3][y * dst_stride + x] = sample; } } } void kvz_filter_qpel_blocks_diag_luma_generic(const encoder_control_t * encoder, kvz_pixel *src, int16_t src_stride, int width, int height, kvz_pixel filtered[4][LCU_WIDTH * LCU_WIDTH], int16_t hor_intermediate[5][(KVZ_EXT_BLOCK_W_LUMA + 1) * LCU_WIDTH], int8_t fme_level, int16_t hor_first_cols[5][KVZ_EXT_BLOCK_W_LUMA + 1], int8_t hpel_off_x, int8_t hpel_off_y) { int x, y; // Interpolation filter shifts int32_t shift2 = 6; // Weighted prediction offset and shift int32_t wp_shift1 = 14 - KVZ_BIT_DEPTH; int32_t wp_offset1 = 1 << (wp_shift1 - 1); int8_t *fir1 = kvz_g_luma_filter[1]; int8_t *fir3 = kvz_g_luma_filter[3]; // Horiziontal positions. int16_t *hor_pos_l = hor_intermediate[3]; int16_t *hor_pos_r = hor_intermediate[4]; int16_t *col_pos_l = hor_first_cols[1]; int16_t *col_pos_r = hor_first_cols[3]; int16_t dst_stride = LCU_WIDTH; int16_t hor_stride = LCU_WIDTH; // VERTICAL STEP int8_t *ver_fir_t = hpel_off_y != 0 ? fir1 : fir3; int8_t *ver_fir_b = hpel_off_y != 0 ? fir3 : fir1; // Specify if integer pixels are filtered from left or/and top integer samples int off_x_fir_l = hpel_off_x < 1 ? 0 : 1; int off_x_fir_r = hpel_off_x < 0 ? 0 : 1; int off_y_fir_t = hpel_off_y < 1 ? 0 : 1; int off_y_fir_b = hpel_off_y < 0 ? 0 : 1; // Top-left QPEL for (y = 0; y < height; ++y) { if (!off_x_fir_l) { x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(ver_fir_t, &col_pos_l[y + off_y_fir_t]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[0][y * dst_stride + x] = sample; } for (x = !off_x_fir_l; x < width; ++x) { int ypos = y + off_y_fir_t; int xpos = x - !off_x_fir_l; int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(ver_fir_t, &hor_pos_l[ypos * hor_stride + xpos], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[0][y * dst_stride + x] = sample; } } // Top-right QPEL for (y = 0; y < height; ++y) { if (!off_x_fir_r) { x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(ver_fir_t, &col_pos_r[y + off_y_fir_t]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[1][y * dst_stride + x] = sample; } for (x = !off_x_fir_r; x < width; ++x) { int ypos = y + off_y_fir_t; int xpos = x - !off_x_fir_r; int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(ver_fir_t, &hor_pos_r[ypos * hor_stride + xpos], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[1][y * dst_stride + x] = sample; } } // Bottom-left QPEL for (y = 0; y < height; ++y) { if (!off_x_fir_l) { x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(ver_fir_b, &col_pos_l[y + off_y_fir_b]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[2][y * dst_stride + x] = sample; } for (x = !off_x_fir_l; x < width; ++x) { int ypos = y + off_y_fir_b; int xpos = x - !off_x_fir_l; int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(ver_fir_b, &hor_pos_l[ypos * hor_stride + xpos], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[2][y * dst_stride + x] = sample; } } // Bottom-right QPEL for (y = 0; y < height; ++y) { if (!off_x_fir_r) { x = 0; int16_t sample = kvz_eight_tap_filter_hor_16bit_generic(ver_fir_b, &col_pos_r[y + off_y_fir_b]) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[3][y * dst_stride + x] = sample; } for (x = !off_x_fir_r; x < width; ++x) { int ypos = y + off_y_fir_b; int xpos = x - !off_x_fir_r; int16_t sample = kvz_eight_tap_filter_ver_16bit_generic(ver_fir_b, &hor_pos_r[ypos * hor_stride + xpos], hor_stride) >> shift2; sample = kvz_fast_clip_16bit_to_pixel((sample + wp_offset1) >> wp_shift1); filtered[3][y * dst_stride + x] = sample; } } } void kvz_sample_octpel_chroma_generic(const encoder_control_t * const encoder, kvz_pixel *src, int16_t src_stride, int width, int height,kvz_pixel *dst, int16_t dst_stride, int8_t hor_flag, int8_t ver_flag, const int16_t mv[2]) { //TODO: horizontal and vertical only filtering int32_t x, y; // Interpolation filter shifts int16_t shift1 = KVZ_BIT_DEPTH - 8; int32_t shift2 = 6; // Weighted prediction offset and shift int32_t wp_shift1 = 14 - KVZ_BIT_DEPTH; int32_t wp_offset1 = 1 << (wp_shift1 - 1); // Select filters according to the fractional part of the x and y mv components int8_t *hor_filter = kvz_g_chroma_filter[mv[0] & 7]; int8_t *ver_filter = kvz_g_chroma_filter[mv[1] & 7]; int16_t hor_filtered[KVZ_EXT_BLOCK_W_CHROMA][LCU_WIDTH_C]; int16_t hor_stride = LCU_WIDTH_C; // Filter horizontally for (y = 0; y < height + KVZ_EXT_PADDING_CHROMA; ++y) { for (x = 0; x < width; ++x) { int ypos = y - KVZ_CHROMA_FILTER_OFFSET; int xpos = x - KVZ_CHROMA_FILTER_OFFSET; hor_filtered[y][x] = kvz_four_tap_filter_hor_generic(hor_filter, &src[src_stride * ypos + xpos]) >> shift1; } } // Filter vertically for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { dst[y * dst_stride + x] = kvz_fast_clip_32bit_to_pixel(((kvz_four_tap_filter_ver_16bit_generic(ver_filter, &hor_filtered[y][x], hor_stride) >> shift2) + wp_offset1) >> wp_shift1); } } } void kvz_sample_14bit_octpel_chroma_generic(const encoder_control_t * const encoder, kvz_pixel *src, int16_t src_stride, int width, int height, int16_t *dst, int16_t dst_stride, int8_t hor_flag, int8_t ver_flag, const int16_t mv[2]) { //TODO: horizontal and vertical only filtering int32_t x, y; // Interpolation filter shifts int16_t shift1 = KVZ_BIT_DEPTH - 8; int32_t shift2 = 6; // Select filters according to the fractional part of the x and y mv components int8_t *hor_filter = kvz_g_chroma_filter[mv[0] & 7]; int8_t *ver_filter = kvz_g_chroma_filter[mv[1] & 7]; int16_t hor_filtered[KVZ_EXT_BLOCK_W_CHROMA][LCU_WIDTH_C]; int16_t hor_stride = LCU_WIDTH_C; // Filter horizontally for (y = 0; y < height + KVZ_EXT_PADDING_CHROMA; ++y) { for (x = 0; x < width; ++x) { int ypos = y - KVZ_CHROMA_FILTER_OFFSET; int xpos = x - KVZ_CHROMA_FILTER_OFFSET; hor_filtered[y][x] = kvz_four_tap_filter_hor_generic(hor_filter, &src[src_stride * ypos + xpos]) >> shift1; } } // Filter vertically for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { dst[y * dst_stride + x] = kvz_four_tap_filter_ver_16bit_generic(ver_filter, &hor_filtered[y][x], hor_stride) >> shift2; } } } void kvz_get_extended_block_generic(int xpos, int ypos, int mv_x, int mv_y, int off_x, int off_y, kvz_pixel *ref, int ref_width, int ref_height, int filter_size, int width, int height, kvz_extended_block *out) { int half_filter_size = filter_size >> 1; out->buffer = ref + (ypos - half_filter_size + off_y + mv_y) * ref_width + (xpos - half_filter_size + off_x + mv_x); out->stride = ref_width; out->orig_topleft = out->buffer + out->stride * half_filter_size + half_filter_size; out->malloc_used = 0; int min_y = ypos - half_filter_size + off_y + mv_y; int max_y = min_y + height + filter_size; int out_of_bounds_y = (min_y < 0) || (max_y >= ref_height); int min_x = xpos - half_filter_size + off_x + mv_x; int max_x = min_x + width + filter_size; int out_of_bounds_x = (min_x < 0) || (max_x >= ref_width); int sample_out_of_bounds = out_of_bounds_y || out_of_bounds_x; if (sample_out_of_bounds){ out->buffer = MALLOC(kvz_pixel, (width + filter_size) * (height + filter_size)); if (!out->buffer){ fprintf(stderr, "Memory allocation failed!\n"); assert(0); } out->stride = width + filter_size; out->orig_topleft = out->buffer + out->stride * half_filter_size + half_filter_size; out->malloc_used = 1; int dst_y; int y; int dst_x; int x; int coord_x; int coord_y; for (dst_y = 0, y = ypos - half_filter_size; y < ((ypos + height)) + half_filter_size; dst_y++, y++) { // calculate y-pixel offset coord_y = y + off_y + mv_y; coord_y = CLIP(0, (ref_height)-1, coord_y); coord_y *= ref_width; if (!out_of_bounds_x){ memcpy(&out->buffer[dst_y * out->stride + 0], &ref[coord_y + min_x], out->stride * sizeof(kvz_pixel)); } else { for (dst_x = 0, x = (xpos)-half_filter_size; x < ((xpos + width)) + half_filter_size; dst_x++, x++) { coord_x = x + off_x + mv_x; coord_x = CLIP(0, (ref_width)-1, coord_x); // Store source block data (with extended borders) out->buffer[dst_y * out->stride + dst_x] = ref[coord_y + coord_x]; } } } } } int kvz_strategy_register_ipol_generic(void* opaque, uint8_t bitdepth) { bool success = true; success &= kvz_strategyselector_register(opaque, "filter_hpel_blocks_hor_ver_luma", "generic", 0, &kvz_filter_hpel_blocks_hor_ver_luma_generic); success &= kvz_strategyselector_register(opaque, "filter_hpel_blocks_diag_luma", "generic", 0, &kvz_filter_hpel_blocks_diag_luma_generic); success &= kvz_strategyselector_register(opaque, "filter_qpel_blocks_hor_ver_luma", "generic", 0, &kvz_filter_qpel_blocks_hor_ver_luma_generic); success &= kvz_strategyselector_register(opaque, "filter_qpel_blocks_diag_luma", "generic", 0, &kvz_filter_qpel_blocks_diag_luma_generic); success &= kvz_strategyselector_register(opaque, "sample_quarterpel_luma", "generic", 0, &kvz_sample_quarterpel_luma_generic); success &= kvz_strategyselector_register(opaque, "sample_octpel_chroma", "generic", 0, &kvz_sample_octpel_chroma_generic); success &= kvz_strategyselector_register(opaque, "sample_14bit_quarterpel_luma", "generic", 0, &kvz_sample_14bit_quarterpel_luma_generic); success &= kvz_strategyselector_register(opaque, "sample_14bit_octpel_chroma", "generic", 0, &kvz_sample_14bit_octpel_chroma_generic); success &= kvz_strategyselector_register(opaque, "get_extended_block", "generic", 0, &kvz_get_extended_block_generic); return success; }