/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2014 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Kvazaar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "search.h" #include #include #include #include "config.h" #include "bitstream.h" #include "picture.h" #include "intra.h" #include "inter.h" #include "filter.h" // Temporarily for debugging. #define USE_INTRA_IN_P 1 //#define RENDER_CU encoder->frame==2 #define RENDER_CU 0 #define SEARCH_MV_FULL_RADIUS 0 #define IN_FRAME(x, y, width, height, block_width, block_height) \ ((x) >= 0 && (y) >= 0 \ && (x) + (block_width) <= (width) \ && (y) + (block_height) <= (height)) /** * This is used in the hexagon_search to select 3 points to search. * * The start of the hexagonal pattern has been repeated at the end so that * the indices between 1-6 can be used as the start of a 3-point list of new * points to search. * * 6 o-o 1 / 7 * / \ * 5 o 0 o 2 / 8 * \ / * 4 o-o 3 */ const vector2d large_hexbs[10] = { { 0, 0 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 }, { 1, -2 }, { 2, 0 } }; /** * This is used as the last step of the hexagon search. */ const vector2d small_hexbs[5] = { { 0, 0 }, { -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 } }; static int calc_mvd_cost(int x, int y, const vector2d *pred) { int cost = 0; // Get the absolute difference vector and count the bits. x = abs(abs(x) - abs(pred->x)); y = abs(abs(y) - abs(pred->y)); while (x >>= 1) { ++cost; } while (y >>= 1) { ++cost; } // I don't know what is a good cost function for this. It probably doesn't // have to aproximate the actual cost of encoding the vector, but it's a // place to start. // Add two for quarter pixel resolution and multiply by two for Exp-Golomb. return (cost ? (cost + 2) << 1 : 0); } /** * \brief Do motion search using the HEXBS algorithm. * * \param depth log2 depth of the search * \param pic Picture motion vector is searched for. * \param ref Picture motion vector is searched from. * \param orig Top left corner of the searched for block. * \param mv_in_out Predicted mv in and best out. Quarter pixel precision. * * \returns Cost of the motion vector. * * Motion vector is searched by first searching iteratively with the large * hexagon pattern until the best match is at the center of the hexagon. * As a final step a smaller hexagon is used to check the adjacent pixels. * * If a non 0,0 predicted motion vector predictor is given as mv_in_out, * the 0,0 vector is also tried. This is hoped to help in the case where * the predicted motion vector is way off. In the future even more additional * points like 0,0 might be used, such as vectors from top or left. */ static unsigned hexagon_search(unsigned depth, const picture *pic, const picture *ref, const vector2d *orig, vector2d *mv_in_out) { vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = UINT32_MAX; unsigned i; unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs. // Search the initial 7 points of the hexagon. for (i = 0; i < 7; ++i) { const vector2d *pattern = &large_hexbs[i]; unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + mv.x + pattern->x, orig->y + mv.y + pattern->y, block_width, block_width); cost += calc_mvd_cost(mv.x + pattern->x, mv.y + pattern->y, mv_in_out); if (cost < best_cost) { best_cost = cost; best_index = i; } } // Try the 0,0 vector. if (!(mv.x == 0 && mv.y == 0)) { unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x, orig->y, block_width, block_width); cost += calc_mvd_cost(0, 0, mv_in_out); // If the 0,0 is better, redo the hexagon around that point. if (cost < best_cost) { best_cost = cost; best_index = 0; mv.x = 0; mv.y = 0; for (i = 1; i < 7; ++i) { const vector2d *pattern = &large_hexbs[i]; unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + pattern->x, orig->y + pattern->y, block_width, block_width); cost += calc_mvd_cost(pattern->x, pattern->y, mv_in_out); if (cost < best_cost) { best_cost = cost; best_index = i; } } } } // Iteratively search the 3 new points around the best match, until the best // match is in the center. while (best_index != 0) { unsigned start; // Starting point of the 3 offsets to be searched. if (best_index == 1) { start = 6; } else if (best_index == 8) { start = 1; } else { start = best_index - 1; } // Move the center to the best match. mv.x += large_hexbs[best_index].x; mv.y += large_hexbs[best_index].y; best_index = 0; // Iterate through the next 3 points. for (i = 0; i < 3; ++i) { const vector2d *offset = &large_hexbs[start + i]; unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + mv.x + offset->x, orig->y + mv.y + offset->y, block_width, block_width); cost += calc_mvd_cost(mv.x + offset->x, mv.y + offset->y, mv_in_out); if (cost < best_cost) { best_cost = cost; best_index = start + i; } ++offset; } } // Move the center to the best match. mv.x += large_hexbs[best_index].x; mv.y += large_hexbs[best_index].y; best_index = 0; // Do the final step of the search with a small pattern. for (i = 1; i < 5; ++i) { const vector2d *offset = &small_hexbs[i]; unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + mv.x + offset->x, orig->y + mv.y + offset->y, block_width, block_width); cost += calc_mvd_cost(mv.x + offset->x, mv.y + offset->y, mv_in_out); if (cost > 0 && cost < best_cost) { best_cost = cost; best_index = i; } } // Adjust the movement vector according to the final best match. mv.x += small_hexbs[best_index].x; mv.y += small_hexbs[best_index].y; // Return final movement vector in quarter-pixel precision. mv_in_out->x = mv.x << 2; mv_in_out->y = mv.y << 2; return best_cost; } #if SEARCH_MV_FULL_RADIUS static unsigned search_mv_full(unsigned depth, const picture *pic, const picture *ref, const vector2d *orig, vector2d *mv_in_out) { vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = UINT32_MAX; int x, y; vector2d min_mv, max_mv; /*if (abs(mv.x) > SEARCH_MV_FULL_RADIUS || abs(mv.y) > SEARCH_MV_FULL_RADIUS) { best_cost = calc_sad(pic, ref, orig->x, orig->y, orig->x, orig->y, block_width, block_width); mv.x = 0; mv.y = 0; }*/ min_mv.x = mv.x - SEARCH_MV_FULL_RADIUS; min_mv.y = mv.y - SEARCH_MV_FULL_RADIUS; max_mv.x = mv.x + SEARCH_MV_FULL_RADIUS; max_mv.y = mv.y + SEARCH_MV_FULL_RADIUS; for (y = min_mv.y; y < max_mv.y; ++y) { for (x = min_mv.x; x < max_mv.x; ++x) { unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + x, orig->y + y, block_width, block_width); cost += calc_mvd_cost(x, y, mv_in_out); if (cost < best_cost) { best_cost = cost; mv.x = x; mv.y = y; } } } mv_in_out->x = mv.x << 2; mv_in_out->y = mv.y << 2; return best_cost; } #endif static void search_inter(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { picture *cur_pic = encoder->in.cur_pic; int32_t ref_idx = 0; cu_info *cur_cu = &cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; cur_cu->inter.cost = UINT_MAX; for (ref_idx = 0; ref_idx < encoder->ref->used_size; ref_idx++) { picture *ref_pic = encoder->ref->pics[ref_idx]; unsigned width_in_scu = NO_SCU_IN_LCU(ref_pic->width_in_lcu); cu_info *ref_cu = &ref_pic->cu_array[MAX_DEPTH][y_ctb * width_in_scu + x_ctb]; uint32_t temp_cost = (int)(g_lambda_cost[encoder->QP] * ref_idx); vector2d orig, mv; orig.x = x_ctb * CU_MIN_SIZE_PIXELS; orig.y = y_ctb * CU_MIN_SIZE_PIXELS; mv.x = 0; mv.y = 0; if (ref_cu->type == CU_INTER) { mv.x = ref_cu->inter.mv[0]; mv.y = ref_cu->inter.mv[1]; } #if SEARCH_MV_FULL_RADIUS cur_cu->inter.cost = search_mv_full(depth, cur_pic, ref_pic, &orig, &mv); #else temp_cost += hexagon_search(depth, cur_pic, ref_pic, &orig, &mv); #endif if(temp_cost < cur_cu->inter.cost) { cur_cu->inter.mv_ref = ref_idx; cur_cu->inter.mv_dir = 1; cur_cu->inter.mv[0] = (int16_t)mv.x; cur_cu->inter.mv[1] = (int16_t)mv.y; cur_cu->inter.cost = temp_cost; } } } /** * Copy all non-reference CU data from depth+1 to depth. */ static void work_tree_copy_up(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH]) { // Copy non-reference CUs. { const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; const int width_cu = LCU_WIDTH >> MAX_DEPTH >> depth; int x, y; for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { const cu_info *from_cu = &work_tree[depth + 1].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; cu_info *to_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy reconstructed pixels. { const int x = SUB_SCU(x_px); const int y = SUB_SCU(y_px); const int width_px = LCU_WIDTH >> depth; const int luma_index = x + y * LCU_WIDTH; const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2); const lcu_yuv_t *from = &work_tree[depth + 1].rec; lcu_yuv_t *to = &work_tree[depth].rec; const lcu_coeff_t *from_coeff = &work_tree[depth + 1].coeff; lcu_coeff_t *to_coeff = &work_tree[depth].coeff; picture_blit_pixels(&from->y[luma_index], &to->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); picture_blit_pixels(&from->u[chroma_index], &to->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); picture_blit_pixels(&from->v[chroma_index], &to->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); // Copy coefficients up. They do not have to be copied down because they // are not used for the search. picture_blit_coeffs(&from_coeff->y[luma_index], &to_coeff->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); picture_blit_coeffs(&from_coeff->u[chroma_index], &to_coeff->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); picture_blit_coeffs(&from_coeff->v[chroma_index], &to_coeff->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } /** * Copy all non-reference CU data from depth to depth+1..MAX_PU_DEPTH. */ static void work_tree_copy_down(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH]) { // TODO: clean up to remove the copy pasta const int width_px = LCU_WIDTH >> depth; int d; for (d = depth + 1; d < MAX_PU_DEPTH; ++d) { const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; const int width_cu = width_px >> MAX_DEPTH; int x, y; for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { const cu_info *from_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; cu_info *to_cu = &work_tree[d].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy reconstructed pixels. for (d = depth + 1; d < MAX_PU_DEPTH; ++d) { const int x = SUB_SCU(x_px); const int y = SUB_SCU(y_px); const int luma_index = x + y * LCU_WIDTH; const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2); lcu_yuv_t *from = &work_tree[depth].rec; lcu_yuv_t *to = &work_tree[d].rec; picture_blit_pixels(&from->y[luma_index], &to->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); picture_blit_pixels(&from->u[chroma_index], &to->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); picture_blit_pixels(&from->v[chroma_index], &to->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } static void lcu_set_intra_mode(lcu_t *lcu, int x_px, int y_px, int depth, int pred_mode, int part_mode) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; // NxN can only be applied to a single CU at a time. if (part_mode == SIZE_NxN) { cu_info *cu = &lcu_cu[x_cu + y_cu * LCU_T_CU_WIDTH]; cu->depth = depth; cu->type = CU_INTRA; // It is assumed that cu->intra[].mode's are already set. cu->part_size = part_mode; cu->tr_depth = depth + 1; return; } // Set mode in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; cu->depth = depth; cu->type = CU_INTRA; cu->intra[0].mode = pred_mode; cu->intra[1].mode = pred_mode; cu->intra[2].mode = pred_mode; cu->intra[3].mode = pred_mode; cu->part_size = part_mode; cu->tr_depth = depth; } } } /** * Update lcu to have best modes at this depth. * \return Cost of best mode. */ static int search_cu_inter(encoder_control *encoder, int x, int y, int depth, lcu_t lcu) { int cost = MAX_INT; return cost; } /** * Update lcu to have best modes at this depth. * \return Cost of best mode. */ static int search_cu_intra(encoder_control *encoder, int x, int y, int depth, lcu_t *lcu) { int width = (LCU_WIDTH >> (depth)); int x_local = (x&0x3f), y_local = (y&0x3f); int x_cu = x>>3; int y_cu = y>>3; int cu_pos = LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH; cu_info *cur_cu = &lcu->cu[cu_pos]; // INTRAPREDICTION pixel pred[LCU_WIDTH * LCU_WIDTH + 1]; pixel rec[(LCU_WIDTH * 2 + 1) * (LCU_WIDTH * 2 + 1)]; pixel *rec_shift = &rec[width * 2 + 8 + 1]; int8_t intra_preds[3]; cu_info* left_cu = 0; cu_info* above_cu = 0; if (x_cu > 0) { left_cu = &lcu->cu[cu_pos - 1]; } // Don't take the above CU across the LCU boundary. if (y_cu > 0 && ((y_cu * (LCU_WIDTH>>MAX_DEPTH)) % LCU_WIDTH) != 0) { above_cu = &lcu->cu[cu_pos - LCU_T_CU_WIDTH]; } // Get intra predictors intra_get_dir_luma_predictor(x, y, intra_preds, cur_cu, left_cu, above_cu); // Build reconstructed block to use in prediction with extrapolated borders intra_build_reference_border(x, y,(int16_t)width * 2 + 8, rec, (int16_t)width * 2 + 8, 0, encoder->in.cur_pic->width, encoder->in.cur_pic->height, lcu); // find best intra mode cur_cu->intra[0].mode = (int8_t)intra_prediction(&lcu->ref.y[x_local + y_local*LCU_WIDTH], LCU_WIDTH, rec_shift, width * 2 + 8, x, y, width, pred, width, &cur_cu->intra[0].cost, intra_preds); cur_cu->part_size = SIZE_2Nx2N; // Do search for NxN split. if (0 && depth == MAX_DEPTH) { //TODO: reactivate NxN when _something_ is done to make it better // Save 2Nx2N information to compare with NxN. int nn_cost = cur_cu->intra[0].cost; int8_t nn_mode = cur_cu->intra[0].mode; int i; int cost = (int)(g_cur_lambda_cost * 4.5); // round to nearest static vector2d offsets[4] = {{0,0},{1,0},{0,1},{1,1}}; width = 4; rec_shift = &rec[width * 2 + 8 + 1]; for (i = 0; i < 4; ++i) { int x_pos = x + offsets[i].x * width; int y_pos = y + offsets[i].y * width; intra_get_dir_luma_predictor(x_pos,y_pos, intra_preds, cur_cu, left_cu, above_cu); intra_build_reference_border(x_pos, y_pos,(int16_t)width * 2 + 8, rec, (int16_t)width * 2 + 8, 0, encoder->in.cur_pic->width, encoder->in.cur_pic->height, lcu); cur_cu->intra[i].mode = (int8_t)intra_prediction(encoder->in.cur_pic->y_data, encoder->in.width, rec_shift, width * 2 + 8, (int16_t)x_pos, (int16_t)y_pos, width, pred, width, &cur_cu->intra[i].cost,intra_preds); cost += cur_cu->intra[i].cost; } // Choose between 2Nx2N and NxN. if (nn_cost <= cost) { cur_cu->intra[0].cost = nn_cost; cur_cu->intra[0].mode = nn_mode; } else { cur_cu->intra[0].cost = cost; cur_cu->part_size = SIZE_NxN; } } return cur_cu->intra[0].cost; } /** * Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode. * - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH. * - Data structure work_tree is maintained such that the neighbouring SCUs * and pixels to the left and up of current CU are the final CUs decided * via the search. This is done by copying the relevant data to all * relevant levels whenever a decision is made whether to split or not. * - All the final data for the LCU gets eventually copied to depth 0, which * will be the final output of the recursion. */ static int search_cu(encoder_control *encoder, int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH]) { int cu_width = LCU_WIDTH >> depth; int cost = MAX_INT; cu_info *cur_cu; int x_local = (x&0x3f), y_local = (y&0x3f); // Stop recursion if the CU is completely outside the frame. if (x >= encoder->in.width || y >= encoder->in.height) { // Return zero cost because this CU does not have to be coded. return 0; } cur_cu = &(&work_tree[depth])->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH]; // Assign correct depth cur_cu->depth = depth; cur_cu->tr_depth = depth; // If the CU is completely inside the frame at this depth, search for // prediction modes at this depth. if (x + cu_width <= encoder->in.width && y + cu_width <= encoder->in.height) { picture *cur_pic = encoder->in.cur_pic; if (cur_pic->slicetype != SLICE_I && depth >= MIN_INTER_SEARCH_DEPTH && depth <= MAX_INTER_SEARCH_DEPTH) { int mode_cost = search_cu_inter(encoder, x, y, depth, work_tree[depth]); if (mode_cost < cost) { cost = mode_cost; cur_cu->type = CU_INTER; } } if (depth >= MIN_INTRA_SEARCH_DEPTH && depth <= MAX_INTRA_SEARCH_DEPTH) { int mode_cost = search_cu_intra(encoder, x, y, depth, &work_tree[depth]); if (mode_cost < cost) { cost = mode_cost; cur_cu->type = CU_INTRA; } } // Reconstruct best mode because we need the reconstructed pixels for // mode search of adjacent CUs. if (cur_cu->type == CU_INTRA) { lcu_set_intra_mode(&work_tree[depth], x, y, depth, cur_cu->intra[0].mode, cur_cu->part_size); intra_recon_lcu(encoder, x, y, depth,&work_tree[depth],encoder->in.cur_pic->width,encoder->in.cur_pic->height); } else if (cur_cu->type == CU_INTER) { // TODO } } // Recursively split all the way to max search depth. if (depth < MAX_INTRA_SEARCH_DEPTH || depth < MAX_INTER_SEARCH_DEPTH) { int half_cu = cu_width / 2; int split_cost = (int)(4.5 * g_lambda_cost[encoder->QP]); split_cost += search_cu(encoder, x, y, depth + 1, work_tree); split_cost += search_cu(encoder, x + half_cu, y, depth + 1, work_tree); split_cost += search_cu(encoder, x, y + half_cu, depth + 1, work_tree); split_cost += search_cu(encoder, x + half_cu, y + half_cu, depth + 1, work_tree); if (split_cost < cost) { // Copy split modes to this depth. cost = split_cost; work_tree_copy_up(x, y, depth, work_tree); } else { // Copy this CU's mode all the way down for use in adjacent CUs mode // search. work_tree_copy_down(x, y, depth, work_tree); } } return cost; } /** * Initialize lcu_t for search. * - Copy reference CUs. * - Copy reference pixels from neighbouring LCUs. * - Copy reference pixels from this LCU. */ static void init_lcu_t(encoder_control *encoder, const int x, const int y, lcu_t *lcu) { // Copy reference cu_info structs from neighbouring LCUs. { const int x_cu = x >> MAX_DEPTH; const int y_cu = y >> MAX_DEPTH; const int cu_array_width = encoder->in.width_in_lcu << MAX_DEPTH; cu_info *const cu_array = encoder->in.cur_pic->cu_array[MAX_DEPTH]; // Use top-left sub-cu of LCU as pointer to lcu->cu array to make things // simpler. cu_info *lcu_cu = &lcu->cu[LCU_CU_OFFSET]; // Copy top CU row. if (y_cu > 0) { int i; for (i = 0; i < LCU_CU_WIDTH; ++i) { const cu_info *from_cu = &cu_array[(x_cu + i) + (y_cu - 1) * cu_array_width]; cu_info *to_cu = &lcu_cu[i - LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy left CU column. if (x_cu > 0) { int i; for (i = 0; i < LCU_CU_WIDTH; ++i) { const cu_info *from_cu = &cu_array[(x_cu - 1) + (y_cu + i) * cu_array_width]; cu_info *to_cu = &lcu_cu[-1 + i * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy top-left CU. if (x_cu > 0 && y_cu > 0) { const cu_info *from_cu = &cu_array[(x_cu - 1) + (y_cu - 1) * cu_array_width]; cu_info *to_cu = &lcu_cu[-1 - LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy reference pixels. { const picture *pic = encoder->in.cur_pic; const int pic_width = encoder->in.width; const int pic_height = encoder->in.height; const int ref_size = LCU_REF_PX_WIDTH; const int pic_width_c = encoder->in.width / 2; const int pic_height_c = encoder->in.height / 2; const int ref_size_c = LCU_REF_PX_WIDTH / 2; const int x_c = x / 2; const int y_c = y / 2; // Copy top reference pixels. if (y > 0) { int x_max = MIN(ref_size, pic_width - x); int x_max_c = x_max / 2; picture_blit_pixels(&pic->y_recdata[x + (y - 1) * pic_width], &lcu->top_ref.y[1], x_max, 1, pic_width, ref_size); picture_blit_pixels(&pic->u_recdata[x_c + (y_c - 1) * pic_width_c], &lcu->top_ref.u[1], x_max, 1, pic_width_c, ref_size_c); picture_blit_pixels(&pic->v_recdata[x_c + (y_c - 1) * pic_width_c], &lcu->top_ref.v[1], x_max, 1, pic_width_c, ref_size_c); } // Copy left reference pixels. if (x > 0) { int y_max = MIN(LCU_REF_PX_WIDTH, pic_height - y); int y_max_c = y_max / 2; picture_blit_pixels(&pic->y_recdata[(x - 1) + y * pic_width], &lcu->left_ref.y[1], 1, y_max, pic_width, 1); picture_blit_pixels(&pic->u_recdata[(x_c - 1) + (y_c) * pic_width_c], &lcu->left_ref.u[1], 1, y_max_c, pic_width_c, 1); picture_blit_pixels(&pic->v_recdata[(x_c - 1) + (y_c) * pic_width_c], &lcu->left_ref.v[1], 1, y_max_c, pic_width_c, 1); } // Copy top-left reference pixel. if (x > 0 && y > 0) { lcu->top_ref.y[0] = pic->y_recdata[(x - 1) + (y - 1) * pic_width]; lcu->left_ref.y[0] = pic->y_recdata[(x - 1) + (y - 1) * pic_width]; } } // Copy LCU pixels. { const picture *pic = encoder->in.cur_pic; int pic_width = encoder->in.width; int x_max = MIN(x + LCU_WIDTH, pic_width) - x; int y_max = MIN(y + LCU_WIDTH, encoder->in.height) - y; int x_c = x / 2; int y_c = y / 2; int pic_width_c = pic_width / 2; int x_max_c = x_max / 2; int y_max_c = y_max / 2; picture_blit_pixels(&pic->y_data[x + y * pic_width], lcu->ref.y, x_max, y_max, pic_width, LCU_WIDTH); picture_blit_pixels(&pic->u_data[x_c + y_c * pic_width_c], lcu->ref.u, x_max_c, y_max_c, pic_width_c, LCU_WIDTH / 2); picture_blit_pixels(&pic->v_data[x_c + y_c * pic_width_c], lcu->ref.v, x_max_c, y_max_c, pic_width_c, LCU_WIDTH / 2); } } /** * Copy CU and pixel data to it's place in picture datastructure. */ static void copy_lcu_to_cu_data(encoder_control *encoder, int x_px, int y_px, const lcu_t *lcu) { // Copy non-reference CUs to picture. { const int x_cu = x_px >> MAX_DEPTH; const int y_cu = y_px >> MAX_DEPTH; const int cu_array_width = encoder->in.width_in_lcu << MAX_DEPTH; cu_info *const cu_array = encoder->in.cur_pic->cu_array[MAX_DEPTH]; // Use top-left sub-cu of LCU as pointer to lcu->cu array to make things // simpler. const cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; for (y = 0; y < LCU_CU_WIDTH; ++y) { for (x = 0; x < LCU_CU_WIDTH; ++x) { const cu_info *from_cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; cu_info *to_cu = &cu_array[(x_cu + x) + (y_cu + y) * cu_array_width]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy pixels to picture. { picture *const pic = encoder->in.cur_pic; const int pic_width = encoder->in.width; const int pic_height = encoder->in.height; const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px; const int y_max = MIN(y_px + LCU_WIDTH, encoder->in.height) - y_px; const int luma_index = x_px + y_px * pic_width; const int chroma_index = (x_px / 2) + (y_px / 2) * (pic_width / 2); picture_blit_pixels(lcu->rec.y, &pic->y_recdata[luma_index], x_max, y_max, LCU_WIDTH, pic_width); picture_blit_coeffs(lcu->coeff.y, &pic->coeff_y[luma_index], x_max, y_max, LCU_WIDTH, pic_width); picture_blit_pixels(lcu->rec.u, &pic->u_recdata[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); picture_blit_pixels(lcu->rec.v, &pic->v_recdata[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); picture_blit_coeffs(lcu->coeff.u, &pic->coeff_u[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); picture_blit_coeffs(lcu->coeff.v, &pic->coeff_v[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); } } /** * Search LCU for modes. * - Best mode gets copied to current picture. */ static void search_lcu(encoder_control *encoder, int x, int y) { lcu_t work_tree[MAX_PU_DEPTH]; int depth; // Initialize work tree. for (depth = 0; depth < MAX_PU_DEPTH; ++depth) { init_lcu_t(encoder, x, y, &work_tree[depth]); } // Start search from depth 0. search_cu(encoder, x, y, 0, work_tree); copy_lcu_to_cu_data(encoder, x, y, &work_tree[0]); } /** * Perform mode search for every LCU in the current picture. */ static void search_frame(encoder_control *encoder) { int y_lcu, x_lcu; for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) { for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) { search_lcu(encoder, x_lcu * LCU_WIDTH, y_lcu * LCU_WIDTH); } } } /* static void search_intra(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { int16_t x = x_ctb * (LCU_WIDTH >> MAX_DEPTH); int16_t y = y_ctb * (LCU_WIDTH >> MAX_DEPTH); picture *cur_pic = encoder->in.cur_pic; uint8_t width = LCU_WIDTH >> depth; cu_info *cur_cu = &cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; // INTRAPREDICTION pixel pred[LCU_WIDTH * LCU_WIDTH + 1]; pixel rec[(LCU_WIDTH * 2 + 1) * (LCU_WIDTH * 2 + 1)]; pixel *recShift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1]; int8_t merge[3] = {-1,-1,-1}; // Build reconstructed block to use in prediction with extrapolated borders intra_build_reference_border(cur_pic, cur_pic->y_data, x, y, (int16_t)width * 2 + 8, rec, (int16_t)width * 2 + 8, 0); cur_cu->intra[0].mode = (int8_t)intra_prediction(encoder->in.cur_pic->y_data, encoder->in.width, recShift, width * 2 + 8, x, y, width, pred, width, &cur_cu->intra[0].cost,merge); cur_cu->part_size = SIZE_2Nx2N; // Do search for NxN split. if (0 && depth == MAX_DEPTH) { //TODO: reactivate NxN when _something_ is done to make it better // Save 2Nx2N information to compare with NxN. int nn_cost = cur_cu->intra[0].cost; int8_t nn_mode = cur_cu->intra[0].mode; int i; int cost = (int)(g_lambda_cost[encoder->QP] * 4.5); // round to nearest static vector2d offsets[4] = {{0,0},{1,0},{0,1},{1,1}}; width = 4; recShift = &rec[width * 2 + 8 + 1]; for (i = 0; i < 4; ++i) { int x_pos = x + offsets[i].x * width; int y_pos = y + offsets[i].y * width; intra_build_reference_border(cur_pic, cur_pic->y_data, x_pos, y_pos, (int16_t)width * 2 + 8, rec, (int16_t)width * 2 + 8, 0); cur_cu->intra[i].mode = (int8_t)intra_prediction(encoder->in.cur_pic->y_data, encoder->in.width, recShift, width * 2 + 8, (int16_t)x_pos, (int16_t)y_pos, width, pred, width, &cur_cu->intra[i].cost,merge); cost += cur_cu->intra[i].cost; } // Choose between 2Nx2N and NxN. if (nn_cost <= cost) { cur_cu->intra[0].cost = nn_cost; cur_cu->intra[0].mode = nn_mode; } else { cur_cu->intra[0].cost = cost; cur_cu->part_size = SIZE_NxN; } } } */ /** * \brief Search best modes at each depth for the whole picture. * * This function fills the cur_pic->cu_array of the current picture * with the best mode and it's cost for each CU at each depth for the whole * frame. */ /* void search_tree(encoder_control *encoder, int x, int y, uint8_t depth) { int cu_width = LCU_WIDTH >> depth; uint16_t x_ctb = (uint16_t)x / (LCU_WIDTH >> MAX_DEPTH); uint16_t y_ctb = (uint16_t)y / (LCU_WIDTH >> MAX_DEPTH); // Stop recursion if the CU is completely outside the frame. if (x >= encoder->in.width || y >= encoder->in.height) { return; } // If the CU is partially outside the frame, split. if (x + cu_width > encoder->in.width || y + cu_width > encoder->in.height) { int half_cu = cu_width / 2; search_tree(encoder, x, y, depth + 1); search_tree(encoder, x + half_cu, y, depth + 1); search_tree(encoder, x, y + half_cu, depth + 1); search_tree(encoder, x + half_cu, y + half_cu, depth + 1); return; } // CU is completely inside the frame, so search for best prediction mode at // this depth. { picture *cur_pic = encoder->in.cur_pic; if (cur_pic->slicetype != SLICE_I && depth >= MIN_INTER_SEARCH_DEPTH && depth <= MAX_INTER_SEARCH_DEPTH) { search_inter(encoder, x_ctb, y_ctb, depth); } if (depth >= MIN_INTRA_SEARCH_DEPTH && depth <= MAX_INTRA_SEARCH_DEPTH) { search_intra(encoder, x_ctb, y_ctb, depth); } } // Recurse to max search depth. if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) { int half_cu = cu_width / 2;; search_tree(encoder, x, y, depth + 1); search_tree(encoder, x + half_cu, y, depth + 1); search_tree(encoder, x, y + half_cu, depth + 1); search_tree(encoder, x + half_cu, y + half_cu, depth + 1); } } */ /** * \brief */ uint32_t search_best_mode(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { cu_info *cur_cu = &encoder->in.cur_pic->cu_array[depth] [x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; uint32_t best_intra_cost = cur_cu->intra[0].cost; uint32_t best_inter_cost = cur_cu->inter.cost; uint32_t lambda_cost = (int)(4.5 * g_lambda_cost[encoder->QP]); //TODO: Correct cost calculation if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) { uint32_t cost = lambda_cost; uint8_t change = 1 << (MAX_DEPTH - 1 - depth); cost += search_best_mode(encoder, x_ctb, y_ctb, depth + 1); cost += search_best_mode(encoder, x_ctb + change, y_ctb, depth + 1); cost += search_best_mode(encoder, x_ctb, y_ctb + change, depth + 1); cost += search_best_mode(encoder, x_ctb + change, y_ctb + change, depth + 1); if (cost < best_intra_cost && cost < best_inter_cost) { // Better value was found at a lower level. return cost; } } // If search hasn't been peformed at all for this block, the cost will be // max value, so it is safe to just compare costs. It just has to be made // sure that no value overflows. if (best_inter_cost <= best_intra_cost) { inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu); return best_inter_cost; } else { intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu->intra[0].mode, cur_cu->part_size); return best_intra_cost; } } /** * \brief */ void search_slice_data(encoder_control *encoder) { search_frame(encoder); /* int16_t x_lcu, y_lcu; // Initialize the costs in the cu-array used for searching. { int d, x_cu, y_cu; for (y_cu = 0; y_cu < encoder->in.height / CU_MIN_SIZE_PIXELS; ++y_cu) { for (x_cu = 0; x_cu < encoder->in.width / CU_MIN_SIZE_PIXELS; ++x_cu) { for (d = 0; d <= MAX_DEPTH; ++d) { picture *cur_pic = encoder->in.cur_pic; cu_info *cur_cu = &cur_pic->cu_array[d][x_cu + y_cu * (encoder->in.width_in_lcu << MAX_DEPTH)]; cur_cu->intra[0].cost = UINT32_MAX; cur_cu->inter.cost = UINT32_MAX; } } } } // Loop through every LCU in the slice for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) { for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) { uint8_t depth = 0; // Recursive function for looping through all the sub-blocks search_tree(encoder, x_lcu * LCU_WIDTH, y_lcu * LCU_WIDTH, depth); // Decide actual coding modes search_best_mode(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth); encode_block_residual(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth); } } */ }