/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
#include "search.h"
#include
#include
#include "cabac.h"
#include "encoder.h"
#include "imagelist.h"
#include "inter.h"
#include "intra.h"
#include "kvazaar.h"
#include "rdo.h"
#include "search_inter.h"
#include "search_intra.h"
#include "threadqueue.h"
#include "transform.h"
#include "videoframe.h"
#include "strategies/strategies-picture.h"
#include "strategies/strategies-quant.h"
#define IN_FRAME(x, y, width, height, block_width, block_height) \
((x) >= 0 && (y) >= 0 \
&& (x) + (block_width) <= (width) \
&& (y) + (block_height) <= (height))
// Cost threshold for doing intra search in inter frames with --rd=0.
static const int INTRA_THRESHOLD = 8;
// Modify weight of luma SSD.
#ifndef LUMA_MULT
# define LUMA_MULT 0.8
#endif
// Modify weight of chroma SSD.
#ifndef CHROMA_MULT
# define CHROMA_MULT 1.5
#endif
static INLINE void copy_cu_info(int x_local, int y_local, int width, lcu_t *from, lcu_t *to)
{
for (int y = y_local; y < y_local + width; y += SCU_WIDTH) {
for (int x = x_local; x < x_local + width; x += SCU_WIDTH) {
*LCU_GET_CU_AT_PX(to, x, y) = *LCU_GET_CU_AT_PX(from, x, y);
}
}
}
static INLINE void copy_cu_pixels(int x_local, int y_local, int width, lcu_t *from, lcu_t *to)
{
const int luma_index = x_local + y_local * LCU_WIDTH;
const int chroma_index = (x_local / 2) + (y_local / 2) * (LCU_WIDTH / 2);
kvz_pixels_blit(&from->rec.y[luma_index], &to->rec.y[luma_index],
width, width, LCU_WIDTH, LCU_WIDTH);
if (from->rec.chroma_format != KVZ_CSP_400) {
kvz_pixels_blit(&from->rec.u[chroma_index], &to->rec.u[chroma_index],
width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
kvz_pixels_blit(&from->rec.v[chroma_index], &to->rec.v[chroma_index],
width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
}
}
static INLINE void copy_cu_coeffs(int x_local, int y_local, int width, lcu_t *from, lcu_t *to)
{
const int luma_z = xy_to_zorder(LCU_WIDTH, x_local, y_local);
copy_coeffs(&from->coeff.y[luma_z], &to->coeff.y[luma_z], width);
if (from->rec.chroma_format != KVZ_CSP_400) {
const int chroma_z = xy_to_zorder(LCU_WIDTH_C, x_local >> 1, y_local >> 1);
copy_coeffs(&from->coeff.u[chroma_z], &to->coeff.u[chroma_z], width >> 1);
copy_coeffs(&from->coeff.v[chroma_z], &to->coeff.v[chroma_z], width >> 1);
}
}
/**
* Copy all non-reference CU data from next level to current level.
*/
static void work_tree_copy_up(int x_local, int y_local, int depth, lcu_t *work_tree)
{
const int width = LCU_WIDTH >> depth;
copy_cu_info (x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]);
copy_cu_pixels(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]);
copy_cu_coeffs(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]);
}
/**
* Copy all non-reference CU data from current level to all lower levels.
*/
static void work_tree_copy_down(int x_local, int y_local, int depth, lcu_t *work_tree)
{
const int width = LCU_WIDTH >> depth;
for (int i = depth + 1; i <= MAX_PU_DEPTH; i++) {
copy_cu_info (x_local, y_local, width, &work_tree[depth], &work_tree[i]);
copy_cu_pixels(x_local, y_local, width, &work_tree[depth], &work_tree[i]);
}
}
void kvz_lcu_set_trdepth(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth)
{
const int x_local = SUB_SCU(x_px);
const int y_local = SUB_SCU(y_px);
const int width = LCU_WIDTH >> depth;
for (unsigned y = 0; y < width; y += SCU_WIDTH) {
for (unsigned x = 0; x < width; x += SCU_WIDTH) {
LCU_GET_CU_AT_PX(lcu, x_local + x, y_local + y)->tr_depth = tr_depth;
}
}
}
static void lcu_fill_cu_info(lcu_t *lcu, int x_local, int y_local, int width, int height, cu_info_t *cu)
{
// Set mode in every CU covered by part_mode in this depth.
for (int y = y_local; y < y_local + height; y += SCU_WIDTH) {
for (int x = x_local; x < x_local + width; x += SCU_WIDTH) {
cu_info_t *to = LCU_GET_CU_AT_PX(lcu, x, y);
to->type = cu->type;
to->depth = cu->depth;
to->part_size = cu->part_size;
to->qp = cu->qp;
if (cu->type == CU_INTRA) {
to->intra.mode = cu->intra.mode;
to->intra.mode_chroma = cu->intra.mode_chroma;
} else {
to->skipped = cu->skipped;
to->merged = cu->merged;
to->merge_idx = cu->merge_idx;
to->inter = cu->inter;
}
}
}
}
static void lcu_set_inter(lcu_t *lcu, int x_local, int y_local, int cu_width)
{
const part_mode_t part_mode = LCU_GET_CU_AT_PX(lcu, x_local, y_local)->part_size;
const int num_pu = kvz_part_mode_num_parts[part_mode];
for (int i = 0; i < num_pu; ++i) {
const int x_pu = PU_GET_X(part_mode, cu_width, x_local, i);
const int y_pu = PU_GET_Y(part_mode, cu_width, y_local, i);
const int width_pu = PU_GET_W(part_mode, cu_width, i);
const int height_pu = PU_GET_H(part_mode, cu_width, i);
cu_info_t *pu = LCU_GET_CU_AT_PX(lcu, x_pu, y_pu);
pu->type = CU_INTER;
lcu_fill_cu_info(lcu, x_pu, y_pu, width_pu, height_pu, pu);
}
}
static void lcu_set_coeff(lcu_t *lcu, int x_local, int y_local, int width, cu_info_t *cur_cu)
{
const uint32_t tr_split = cur_cu->tr_depth - cur_cu->depth;
const uint32_t mask = ~((width >> tr_split)-1);
// Set coeff flags in every CU covered by part_mode in this depth.
for (uint32_t y = y_local; y < y_local + width; y += SCU_WIDTH) {
for (uint32_t x = x_local; x < x_local + width; x += SCU_WIDTH) {
// Use TU top-left CU to propagate coeff flags
cu_info_t *cu_from = LCU_GET_CU_AT_PX(lcu, x & mask, y & mask);
cu_info_t *cu_to = LCU_GET_CU_AT_PX(lcu, x, y);
if (cu_from != cu_to) {
// Chroma coeff data is not used, luma is needed for deblocking
cbf_copy(&cu_to->cbf, cu_from->cbf, COLOR_Y);
}
}
}
}
/**
* Calculate RD cost for a Coding Unit.
* \return Cost of block
* \param ref_cu CU used for prediction parameters.
*
* Calculates the RDO cost of a single CU that will not be split further.
* Takes into account SSD of reconstruction and the cost of encoding whatever
* prediction unit data needs to be coded.
*/
double kvz_cu_rd_cost_luma(const encoder_state_t *const state,
const int x_px, const int y_px, const int depth,
const cu_info_t *const pred_cu,
lcu_t *const lcu)
{
const int width = LCU_WIDTH >> depth;
// cur_cu is used for TU parameters.
cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px);
double coeff_bits = 0;
double tr_tree_bits = 0;
// Check that lcu is not in
assert(x_px >= 0 && x_px < LCU_WIDTH);
assert(y_px >= 0 && y_px < LCU_WIDTH);
const uint8_t tr_depth = tr_cu->tr_depth - depth;
// Add transform_tree split_transform_flag bit cost.
bool intra_split_flag = pred_cu->type == CU_INTRA && pred_cu->part_size == SIZE_NxN && depth == 3;
if (width <= TR_MAX_WIDTH
&& width > TR_MIN_WIDTH
&& !intra_split_flag)
{
const cabac_ctx_t *ctx = &(state->cabac.ctx.trans_subdiv_model[5 - (6 - depth)]);
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, tr_depth > 0);
}
if (tr_depth > 0) {
int offset = width / 2;
double sum = 0;
sum += kvz_cu_rd_cost_luma(state, x_px, y_px, depth + 1, pred_cu, lcu);
sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
sum += kvz_cu_rd_cost_luma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
return sum + tr_tree_bits * state->lambda;
}
// Add transform_tree cbf_luma bit cost.
if (pred_cu->type == CU_INTRA ||
tr_depth > 0 ||
cbf_is_set(tr_cu->cbf, depth, COLOR_U) ||
cbf_is_set(tr_cu->cbf, depth, COLOR_V))
{
const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_luma[!tr_depth]);
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf, depth, COLOR_Y));
}
// SSD between reconstruction and original
int ssd = 0;
if (!state->encoder_control->cfg.lossless) {
int index = y_px * LCU_WIDTH + x_px;
ssd = kvz_pixels_calc_ssd(&lcu->ref.y[index], &lcu->rec.y[index],
LCU_WIDTH, LCU_WIDTH,
width);
}
{
int8_t luma_scan_mode = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode, depth);
const coeff_t *coeffs = &lcu->coeff.y[xy_to_zorder(LCU_WIDTH, x_px, y_px)];
coeff_bits += kvz_get_coeff_cost(state, coeffs, width, 0, luma_scan_mode);
}
double bits = tr_tree_bits + coeff_bits;
return (double)ssd * LUMA_MULT + bits * state->lambda;
}
double kvz_cu_rd_cost_chroma(const encoder_state_t *const state,
const int x_px, const int y_px, const int depth,
const cu_info_t *const pred_cu,
lcu_t *const lcu)
{
const vector2d_t lcu_px = { x_px / 2, y_px / 2 };
const int width = (depth <= MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth;
cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px);
double tr_tree_bits = 0;
double coeff_bits = 0;
assert(x_px >= 0 && x_px < LCU_WIDTH);
assert(y_px >= 0 && y_px < LCU_WIDTH);
if (x_px % 8 != 0 || y_px % 8 != 0) {
// For MAX_PU_DEPTH calculate chroma for previous depth for the first
// block and return 0 cost for all others.
return 0;
}
if (depth < MAX_PU_DEPTH) {
const int tr_depth = depth - pred_cu->depth;
const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_chroma[tr_depth]);
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_U)) {
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf, depth, COLOR_U));
}
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_V)) {
tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf, depth, COLOR_V));
}
}
if (tr_cu->tr_depth > depth) {
int offset = LCU_WIDTH >> (depth + 1);
int sum = 0;
sum += kvz_cu_rd_cost_chroma(state, x_px, y_px, depth + 1, pred_cu, lcu);
sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
sum += kvz_cu_rd_cost_chroma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
return sum + tr_tree_bits * state->lambda;
}
// Chroma SSD
int ssd = 0;
if (!state->encoder_control->cfg.lossless) {
int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x;
int ssd_u = kvz_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.u[index],
LCU_WIDTH_C, LCU_WIDTH_C,
width);
int ssd_v = kvz_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.v[index],
LCU_WIDTH_C, LCU_WIDTH_C,
width);
ssd = ssd_u + ssd_v;
}
{
int8_t scan_order = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode_chroma, depth);
const int index = xy_to_zorder(LCU_WIDTH_C, lcu_px.x, lcu_px.y);
coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.u[index], width, 2, scan_order);
coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.v[index], width, 2, scan_order);
}
double bits = tr_tree_bits + coeff_bits;
return (double)ssd * CHROMA_MULT + bits * state->lambda;
}
// Return estimate of bits used to code prediction mode of cur_cu.
static double calc_mode_bits(const encoder_state_t *state,
const lcu_t *lcu,
const cu_info_t * cur_cu,
int x, int y)
{
int x_local = SUB_SCU(x);
int y_local = SUB_SCU(y);
assert(cur_cu->type == CU_INTRA);
int8_t candidate_modes[3];
{
const cu_info_t *left_cu = ((x >= SCU_WIDTH) ? LCU_GET_CU_AT_PX(lcu, x_local - SCU_WIDTH, y_local) : NULL);
const cu_info_t *above_cu = ((y >= SCU_WIDTH) ? LCU_GET_CU_AT_PX(lcu, x_local, y_local - SCU_WIDTH) : NULL);
kvz_intra_get_dir_luma_predictor(x, y, candidate_modes, cur_cu, left_cu, above_cu);
}
double mode_bits = kvz_luma_mode_bits(state, cur_cu->intra.mode, candidate_modes);
if (x % 8 == 0 && y % 8 == 0 && state->encoder_control->chroma_format != KVZ_CSP_400) {
mode_bits += kvz_chroma_mode_bits(state, cur_cu->intra.mode_chroma, cur_cu->intra.mode);
}
return mode_bits;
}
static uint8_t get_ctx_cu_split_model(const lcu_t *lcu, int x, int y, int depth)
{
vector2d_t lcu_cu = { SUB_SCU(x), SUB_SCU(y) };
bool condA = x >= 8 && LCU_GET_CU_AT_PX(lcu, lcu_cu.x - 1, lcu_cu.y )->depth > depth;
bool condL = y >= 8 && LCU_GET_CU_AT_PX(lcu, lcu_cu.x, lcu_cu.y - 1)->depth > depth;
return condA + condL;
}
/**
* Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode.
* - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH.
* - Data structure work_tree is maintained such that the neighbouring SCUs
* and pixels to the left and up of current CU are the final CUs decided
* via the search. This is done by copying the relevant data to all
* relevant levels whenever a decision is made whether to split or not.
* - All the final data for the LCU gets eventually copied to depth 0, which
* will be the final output of the recursion.
*/
static double search_cu(encoder_state_t * const state, int x, int y, int depth, lcu_t *work_tree)
{
const encoder_control_t* ctrl = state->encoder_control;
const videoframe_t * const frame = state->tile->frame;
int cu_width = LCU_WIDTH >> depth;
double cost = MAX_INT;
double inter_zero_coeff_cost = MAX_INT;
uint32_t inter_bitcost = MAX_INT;
cu_info_t *cur_cu;
lcu_t *const lcu = &work_tree[depth];
int x_local = SUB_SCU(x);
int y_local = SUB_SCU(y);
// Stop recursion if the CU is completely outside the frame.
if (x >= frame->width || y >= frame->height) {
// Return zero cost because this CU does not have to be coded.
return 0;
}
cur_cu = LCU_GET_CU_AT_PX(lcu, x_local, y_local);
// Assign correct depth
cur_cu->depth = depth > MAX_DEPTH ? MAX_DEPTH : depth;
cur_cu->tr_depth = depth > 0 ? depth : 1;
cur_cu->type = CU_NOTSET;
cur_cu->part_size = SIZE_2Nx2N;
cur_cu->qp = state->qp;
// If the CU is completely inside the frame at this depth, search for
// prediction modes at this depth.
if (x + cu_width <= frame->width &&
y + cu_width <= frame->height)
{
int cu_width_inter_min = LCU_WIDTH >> ctrl->cfg.pu_depth_inter.max;
bool can_use_inter =
state->frame->slicetype != KVZ_SLICE_I &&
depth <= MAX_DEPTH &&
(
WITHIN(depth, ctrl->cfg.pu_depth_inter.min, ctrl->cfg.pu_depth_inter.max) ||
// When the split was forced because the CTU is partially outside the
// frame, we permit inter coding even if pu_depth_inter would
// otherwise forbid it.
(x & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame->width ||
(y & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame->height
);
if (can_use_inter) {
double mode_cost;
uint32_t mode_bitcost;
kvz_search_cu_inter(state,
x, y,
depth,
lcu,
&mode_cost, &mode_bitcost);
if (mode_cost < cost) {
cost = mode_cost;
inter_bitcost = mode_bitcost;
cur_cu->type = CU_INTER;
}
// Try SMP and AMP partitioning.
static const part_mode_t mp_modes[] = {
// SMP
SIZE_2NxN, SIZE_Nx2N,
// AMP
SIZE_2NxnU, SIZE_2NxnD,
SIZE_nLx2N, SIZE_nRx2N,
};
const int first_mode = ctrl->cfg.smp_enable ? 0 : 2;
const int last_mode = (ctrl->cfg.amp_enable && cu_width >= 16) ? 5 : 1;
for (int i = first_mode; i <= last_mode; ++i) {
kvz_search_cu_smp(state,
x, y,
depth,
mp_modes[i],
&work_tree[depth + 1],
&mode_cost, &mode_bitcost);
if (mode_cost < cost) {
cost = mode_cost;
inter_bitcost = mode_bitcost;
// Copy inter prediction info to current level.
copy_cu_info(x_local, y_local, cu_width, &work_tree[depth + 1], lcu);
}
}
}
// Try to skip intra search in rd==0 mode.
// This can be quite severe on bdrate. It might be better to do this
// decision after reconstructing the inter frame.
bool skip_intra = state->encoder_control->cfg.rdo == 0
&& cur_cu->type != CU_NOTSET
&& cost / (cu_width * cu_width) < INTRA_THRESHOLD;
int32_t cu_width_intra_min = LCU_WIDTH >> ctrl->cfg.pu_depth_intra.max;
bool can_use_intra =
WITHIN(depth, ctrl->cfg.pu_depth_intra.min, ctrl->cfg.pu_depth_intra.max) ||
// When the split was forced because the CTU is partially outside
// the frame, we permit intra coding even if pu_depth_intra would
// otherwise forbid it.
(x & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame->width ||
(y & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame->height;
if (can_use_intra && !skip_intra) {
int8_t intra_mode;
double intra_cost;
kvz_search_cu_intra(state, x, y, depth, lcu,
&intra_mode, &intra_cost);
if (intra_cost < cost) {
cost = intra_cost;
cur_cu->type = CU_INTRA;
cur_cu->part_size = depth > MAX_DEPTH ? SIZE_NxN : SIZE_2Nx2N;
cur_cu->intra.mode = intra_mode;
}
}
// Reconstruct best mode because we need the reconstructed pixels for
// mode search of adjacent CUs.
if (cur_cu->type == CU_INTRA) {
assert(cur_cu->part_size == SIZE_2Nx2N || cur_cu->part_size == SIZE_NxN);
cur_cu->intra.mode_chroma = cur_cu->intra.mode;
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
kvz_intra_recon_cu(state,
x, y,
depth,
cur_cu->intra.mode, -1, // skip chroma
NULL, lcu);
if (x % 8 == 0 && y % 8 == 0 && state->encoder_control->chroma_format != KVZ_CSP_400) {
// There is almost no benefit to doing the chroma mode search for
// rd2. Possibly because the luma mode search already takes chroma
// into account, so there is less of a chanse of luma mode being
// really bad for chroma.
if (ctrl->cfg.rdo == 3) {
cur_cu->intra.mode_chroma = kvz_search_cu_intra_chroma(state, x, y, depth, lcu);
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
}
kvz_intra_recon_cu(state,
x, y,
depth,
-1, cur_cu->intra.mode_chroma, // skip luma
NULL, lcu);
}
} else if (cur_cu->type == CU_INTER) {
// Reset transform depth because intra messes with them.
// This will no longer be necessary if the transform depths are not shared.
int tr_depth = MAX(1, depth);
if (cur_cu->part_size != SIZE_2Nx2N) {
tr_depth = depth + 1;
}
kvz_lcu_set_trdepth(lcu, x, y, depth, tr_depth);
kvz_inter_recon_cu(state, lcu, x, y, cu_width);
if (!ctrl->cfg.lossless && !ctrl->cfg.rdoq_enable) {
const int luma_index = y_local * LCU_WIDTH + x_local;
const int chroma_index = (y_local / 2) * LCU_WIDTH_C + (x_local / 2);
double ssd = 0.0;
ssd += LUMA_MULT * kvz_pixels_calc_ssd(
&lcu->ref.y[luma_index], &lcu->rec.y[luma_index],
LCU_WIDTH, LCU_WIDTH, cu_width
);
ssd += CHROMA_MULT * kvz_pixels_calc_ssd(
&lcu->ref.u[chroma_index], &lcu->rec.u[chroma_index],
LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2
);
ssd += CHROMA_MULT * kvz_pixels_calc_ssd(
&lcu->ref.v[chroma_index], &lcu->rec.v[chroma_index],
LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2
);
inter_zero_coeff_cost = ssd + inter_bitcost * state->lambda;
// Save the pixels at a lower level of the working tree.
copy_cu_pixels(x_local, y_local, cu_width, lcu, &work_tree[depth + 1]);
}
const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400;
kvz_quantize_lcu_residual(state,
true, has_chroma,
x, y, depth,
NULL,
lcu);
int cbf = cbf_is_set_any(cur_cu->cbf, depth);
if (cur_cu->merged && !cbf && cur_cu->part_size == SIZE_2Nx2N) {
cur_cu->merged = 0;
cur_cu->skipped = 1;
// Selecting skip reduces bits needed to code the CU
if (inter_bitcost > 1) {
inter_bitcost -= 1;
}
}
lcu_set_inter(lcu, x_local, y_local, cu_width);
lcu_set_coeff(lcu, x_local, y_local, cu_width, cur_cu);
}
}
if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) {
cost = kvz_cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, lcu);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
cost += kvz_cu_rd_cost_chroma(state, x_local, y_local, depth, cur_cu, lcu);
}
double mode_bits;
if (cur_cu->type == CU_INTRA) {
mode_bits = calc_mode_bits(state, lcu, cur_cu, x, y);
} else {
mode_bits = inter_bitcost;
}
cost += mode_bits * state->lambda;
if (inter_zero_coeff_cost <= cost) {
cost = inter_zero_coeff_cost;
// Restore saved pixels from lower level of the working tree.
copy_cu_pixels(x_local, y_local, cu_width, &work_tree[depth + 1], lcu);
if (cur_cu->merged && cur_cu->part_size == SIZE_2Nx2N) {
cur_cu->merged = 0;
cur_cu->skipped = 1;
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
}
if (cur_cu->tr_depth != depth) {
// Reset transform depth since there are no coefficients. This
// ensures that CBF is cleared for the whole area of the CU.
kvz_lcu_set_trdepth(lcu, x, y, depth, depth);
}
cur_cu->cbf = 0;
lcu_set_coeff(lcu, x_local, y_local, cu_width, cur_cu);
}
}
bool can_split_cu =
// If the CU is partially outside the frame, we need to split it even
// if pu_depth_intra and pu_depth_inter would not permit it.
cur_cu->type == CU_NOTSET ||
depth < ctrl->cfg.pu_depth_intra.max ||
(state->frame->slicetype != KVZ_SLICE_I &&
depth < ctrl->cfg.pu_depth_inter.max);
// Recursively split all the way to max search depth.
if (can_split_cu) {
int half_cu = cu_width / 2;
double split_cost = 0.0;
int cbf = cbf_is_set_any(cur_cu->cbf, depth);
if (depth < MAX_DEPTH) {
// Add cost of cu_split_flag.
uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth);
const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]);
cost += CTX_ENTROPY_FBITS(ctx, 0) * state->lambda;
split_cost += CTX_ENTROPY_FBITS(ctx, 1) * state->lambda;
}
if (cur_cu->type == CU_INTRA && depth == MAX_DEPTH) {
// Add cost of intra part_size.
const cabac_ctx_t *ctx = &(state->cabac.ctx.part_size_model[0]);
cost += CTX_ENTROPY_FBITS(ctx, 1) * state->lambda; // 2Nx2N
split_cost += CTX_ENTROPY_FBITS(ctx, 0) * state->lambda; // NxN
}
// If skip mode was selected for the block, skip further search.
// Skip mode means there's no coefficients in the block, so splitting
// might not give any better results but takes more time to do.
// It is ok to interrupt the search as soon as it is known that
// the split costs at least as much as not splitting.
if (cur_cu->type == CU_NOTSET || cbf || state->encoder_control->cfg.cu_split_termination == KVZ_CU_SPLIT_TERMINATION_OFF) {
if (split_cost < cost) split_cost += search_cu(state, x, y, depth + 1, work_tree);
if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y, depth + 1, work_tree);
if (split_cost < cost) split_cost += search_cu(state, x, y + half_cu, depth + 1, work_tree);
if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y + half_cu, depth + 1, work_tree);
} else {
split_cost = INT_MAX;
}
// If no search is not performed for this depth, try just the best mode
// of the top left CU from the next depth. This should ensure that 64x64
// gets used, at least in the most obvious cases, while avoiding any
// searching.
if (cur_cu->type == CU_NOTSET && depth < MAX_PU_DEPTH
&& x + cu_width <= frame->width && y + cu_width <= frame->height)
{
cu_info_t *cu_d1 = LCU_GET_CU_AT_PX(&work_tree[depth + 1], x_local, y_local);
// If the best CU in depth+1 is intra and the biggest it can be, try it.
if (cu_d1->type == CU_INTRA && cu_d1->depth == depth + 1) {
cost = 0;
cur_cu->intra = cu_d1->intra;
cur_cu->type = CU_INTRA;
cur_cu->part_size = SIZE_2Nx2N;
kvz_lcu_set_trdepth(lcu, x, y, depth, cur_cu->tr_depth);
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400;
const int8_t mode_chroma = has_chroma ? cur_cu->intra.mode_chroma : -1;
kvz_intra_recon_cu(state,
x, y,
depth,
cur_cu->intra.mode, mode_chroma,
NULL, lcu);
cost += kvz_cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, lcu);
if (has_chroma) {
cost += kvz_cu_rd_cost_chroma(state, x_local, y_local, depth, cur_cu, lcu);
}
// Add the cost of coding no-split.
uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth);
const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]);
cost += CTX_ENTROPY_FBITS(ctx, 0) * state->lambda;
// Add the cost of coding intra mode only once.
double mode_bits = calc_mode_bits(state, lcu, cur_cu, x, y);
cost += mode_bits * state->lambda;
}
}
if (split_cost < cost) {
// Copy split modes to this depth.
cost = split_cost;
work_tree_copy_up(x_local, y_local, depth, work_tree);
#if KVZ_DEBUG
debug_split = 1;
#endif
} else if (depth > 0) {
// Copy this CU's mode all the way down for use in adjacent CUs mode
// search.
work_tree_copy_down(x_local, y_local, depth, work_tree);
}
} else if (depth >= 0 && depth < MAX_PU_DEPTH) {
// Need to copy modes down since the lower level of the work tree is used
// when searching SMP and AMP blocks.
work_tree_copy_down(x_local, y_local, depth, work_tree);
}
assert(cur_cu->type != CU_NOTSET);
return cost;
}
/**
* Initialize lcu_t for search.
* - Copy reference CUs.
* - Copy reference pixels from neighbouring LCUs.
* - Copy reference pixels from this LCU.
*/
static void init_lcu_t(const encoder_state_t * const state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf)
{
const videoframe_t * const frame = state->tile->frame;
FILL(*lcu, 0);
lcu->rec.chroma_format = state->encoder_control->chroma_format;
lcu->ref.chroma_format = state->encoder_control->chroma_format;
// Copy reference cu_info structs from neighbouring LCUs.
// Copy top CU row.
if (y > 0) {
for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) {
const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x + i, y - 1);
cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, i, -1);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy left CU column.
if (x > 0) {
for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) {
const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y + i);
cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, i);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy top-left CU.
if (x > 0 && y > 0) {
const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y - 1);
cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, -1);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
// Copy top-right CU.
if (y > 0 && x + LCU_WIDTH < frame->width) {
const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x + LCU_WIDTH, y - 1);
cu_info_t *to_cu = LCU_GET_TOP_RIGHT_CU(lcu);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
// Copy reference pixels.
{
const int pic_width = frame->width;
// Copy top reference pixels.
if (y > 0) {
// hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH
// number of allocated pixels left.
int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x);
int x_min_in_lcu = (x>0) ? 0 : 1;
int luma_offset = OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu - 1);
int chroma_offset = OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu - 1);
int luma_bytes = (x_max + (1 - x_min_in_lcu))*sizeof(kvz_pixel);
int chroma_bytes = (x_max / 2 + (1 - x_min_in_lcu))*sizeof(kvz_pixel);
memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[luma_offset], luma_bytes);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[chroma_offset], chroma_bytes);
memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[chroma_offset], chroma_bytes);
}
}
// Copy left reference pixels.
if (x > 0) {
int y_min_in_lcu = (y>0) ? 0 : 1;
int luma_offset = OFFSET_VER_BUF(x, y, frame, y_min_in_lcu - 1);
int chroma_offset = OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu - 1);
int luma_bytes = (LCU_WIDTH + (1 - y_min_in_lcu)) * sizeof(kvz_pixel);
int chroma_bytes = (LCU_WIDTH / 2 + (1 - y_min_in_lcu)) * sizeof(kvz_pixel);
memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[luma_offset], luma_bytes);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[chroma_offset], chroma_bytes);
memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[chroma_offset], chroma_bytes);
}
}
}
// Copy LCU pixels.
{
const videoframe_t * const frame = state->tile->frame;
int x_max = MIN(x + LCU_WIDTH, frame->width) - x;
int y_max = MIN(y + LCU_WIDTH, frame->height) - y;
int x_c = x / 2;
int y_c = y / 2;
int x_max_c = x_max / 2;
int y_max_c = y_max / 2;
kvz_pixels_blit(&frame->source->y[x + y * frame->source->stride], lcu->ref.y,
x_max, y_max, frame->source->stride, LCU_WIDTH);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
kvz_pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride / 2], lcu->ref.u,
x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2);
kvz_pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride / 2], lcu->ref.v,
x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2);
}
}
}
/**
* Copy CU and pixel data to it's place in picture datastructure.
*/
static void copy_lcu_to_cu_data(const encoder_state_t * const state, int x_px, int y_px, const lcu_t *lcu)
{
// Copy non-reference CUs to picture.
kvz_cu_array_copy_from_lcu(state->tile->frame->cu_array, x_px, y_px, lcu);
// Copy pixels to picture.
{
videoframe_t * const pic = state->tile->frame;
const int pic_width = pic->width;
const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px;
const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px;
kvz_pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride],
x_max, y_max, LCU_WIDTH, pic->rec->stride);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
kvz_pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
kvz_pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
}
}
}
/**
* Search LCU for modes.
* - Best mode gets copied to current picture.
*/
void kvz_search_lcu(encoder_state_t * const state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf)
{
assert(x % LCU_WIDTH == 0);
assert(y % LCU_WIDTH == 0);
// Initialize the same starting state to every depth. The search process
// will use these as temporary storage for predictions before making
// a decision on which to use, and they get updated during the search
// process.
lcu_t work_tree[MAX_PU_DEPTH + 1];
init_lcu_t(state, x, y, &work_tree[0], hor_buf, ver_buf);
for (int depth = 1; depth <= MAX_PU_DEPTH; ++depth) {
work_tree[depth] = work_tree[0];
}
// Start search from depth 0.
double cost = search_cu(state, x, y, 0, work_tree);
// Save squared cost for rate control.
kvz_get_lcu_stats(state, x / LCU_WIDTH, y / LCU_WIDTH)->weight = cost * cost;
// The best decisions through out the LCU got propagated back to depth 0,
// so copy those back to the frame.
copy_lcu_to_cu_data(state, x, y, &work_tree[0]);
// Copy coeffs to encoder state.
copy_coeffs(work_tree[0].coeff.y, state->coeff->y, LCU_WIDTH);
copy_coeffs(work_tree[0].coeff.u, state->coeff->u, LCU_WIDTH_C);
copy_coeffs(work_tree[0].coeff.v, state->coeff->v, LCU_WIDTH_C);
}