/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "inter.h" #include #include #include "encoder.h" #include "imagelist.h" #include "strategies/generic/picture-generic.h" #include "strategies/strategies-ipol.h" #include "videoframe.h" static void inter_recon_frac_luma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, int32_t block_height, const int16_t mv_param[2], lcu_t *lcu) { int mv_frac_x = (mv_param[0] & 3); int mv_frac_y = (mv_param[1] & 3); #define FILTER_SIZE_Y 8 //Luma filter size // Fractional luma 1/4-pel kvz_extended_block src = {0, 0, 0, 0}; // Fractional luma kvz_get_extended_block(xpos, ypos, mv_param[0] >> 2, mv_param[1] >> 2, state->tile->lcu_offset_x * LCU_WIDTH, state->tile->lcu_offset_y * LCU_WIDTH, ref->y, ref->width, ref->height, FILTER_SIZE_Y, block_width, block_height, &src); kvz_sample_quarterpel_luma(state->encoder_control, src.orig_topleft, src.stride, block_width, block_height, lcu->rec.y + (ypos%LCU_WIDTH)*LCU_WIDTH + (xpos%LCU_WIDTH), LCU_WIDTH, mv_frac_x, mv_frac_y, mv_param); if (src.malloc_used) free(src.buffer); } static void inter_recon_14bit_frac_luma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, int32_t block_height, const int16_t mv_param[2], hi_prec_buf_t *hi_prec_out) { int mv_frac_x = (mv_param[0] & 3); int mv_frac_y = (mv_param[1] & 3); #define FILTER_SIZE_Y 8 //Luma filter size // Fractional luma 1/4-pel kvz_extended_block src = { 0, 0, 0, 0 }; // Fractional luma kvz_get_extended_block(xpos, ypos, mv_param[0] >> 2, mv_param[1] >> 2, state->tile->lcu_offset_x * LCU_WIDTH, state->tile->lcu_offset_y * LCU_WIDTH, ref->y, ref->width, ref->height, FILTER_SIZE_Y, block_width, block_height, &src); kvz_sample_14bit_quarterpel_luma(state->encoder_control, src.orig_topleft, src.stride, block_width, block_height, hi_prec_out->y + (ypos%LCU_WIDTH)*LCU_WIDTH + (xpos%LCU_WIDTH), LCU_WIDTH, mv_frac_x, mv_frac_y, mv_param); if (src.malloc_used) free(src.buffer); } static void inter_recon_frac_chroma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, int32_t block_height, const int16_t mv_param[2], lcu_t *lcu) { int mv_frac_x = (mv_param[0] & 7); int mv_frac_y = (mv_param[1] & 7); // Translate to chroma xpos >>= 1; ypos >>= 1; block_width >>= 1; block_height >>= 1; #define FILTER_SIZE_C 4 //Chroma filter size // Fractional chroma 1/8-pel kvz_extended_block src_u = { 0, 0, 0, 0 }; kvz_extended_block src_v = { 0, 0, 0, 0 }; //Fractional chroma U kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->lcu_offset_x * LCU_WIDTH_C, state->tile->lcu_offset_y * LCU_WIDTH_C, ref->u, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_u); kvz_sample_octpel_chroma(state->encoder_control, src_u.orig_topleft, src_u.stride, block_width, block_height, lcu->rec.u + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param); //Fractional chroma V kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->lcu_offset_x * LCU_WIDTH_C, state->tile->lcu_offset_y * LCU_WIDTH_C, ref->v, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_v); kvz_sample_octpel_chroma(state->encoder_control, src_v.orig_topleft, src_v.stride, block_width, block_height, lcu->rec.v + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param); if (src_u.malloc_used) free(src_u.buffer); if (src_v.malloc_used) free(src_v.buffer); } static void inter_recon_14bit_frac_chroma(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t block_width, int32_t block_height, const int16_t mv_param[2], hi_prec_buf_t *hi_prec_out) { int mv_frac_x = (mv_param[0] & 7); int mv_frac_y = (mv_param[1] & 7); // Translate to chroma xpos >>= 1; ypos >>= 1; block_width >>= 1; block_height >>= 1; #define FILTER_SIZE_C 4 //Chroma filter size // Fractional chroma 1/8-pel kvz_extended_block src_u = { 0, 0, 0, 0 }; kvz_extended_block src_v = { 0, 0, 0, 0 }; //Fractional chroma U kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->lcu_offset_x * LCU_WIDTH_C, state->tile->lcu_offset_y * LCU_WIDTH_C, ref->u, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_u); kvz_sample_14bit_octpel_chroma(state->encoder_control, src_u.orig_topleft, src_u.stride, block_width, block_height, hi_prec_out->u + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param); //Fractional chroma V kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->lcu_offset_x * LCU_WIDTH_C, state->tile->lcu_offset_y * LCU_WIDTH_C, ref->v, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_v); kvz_sample_14bit_octpel_chroma(state->encoder_control, src_v.orig_topleft, src_v.stride, block_width, block_height, hi_prec_out->v + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param); if (src_u.malloc_used) free(src_u.buffer); if (src_v.malloc_used) free(src_v.buffer); } /** * \brief Reconstruct inter block * * \param state encoder state * \param ref picture to copy the data from * \param xpos block x position * \param ypos block y position * \param width block width * \param height block height * \param mv_param motion vector * \param lcu destination lcu * \param hi_prec_out destination of high precision output (null if not needed) */ void kvz_inter_recon_lcu(const encoder_state_t * const state, const kvz_picture * const ref, int32_t xpos, int32_t ypos, int32_t width, int32_t height, const int16_t mv_param[2], lcu_t *lcu, hi_prec_buf_t *hi_prec_out) { int x,y,coord_x,coord_y; int16_t mv[2] = { mv_param[0], mv_param[1] }; int32_t dst_width_c = LCU_WIDTH>>1; //!< Destination picture width in chroma pixels int32_t ref_width_c = ref->width>>1; //!< Reference picture width in chroma pixels // negative overflow flag int8_t overflow_neg_x = (state->tile->lcu_offset_x * LCU_WIDTH + xpos + (mv[0]>>2) < 0)?1:0; int8_t overflow_neg_y = (state->tile->lcu_offset_y * LCU_WIDTH + ypos + (mv[1]>>2) < 0)?1:0; // positive overflow flag int8_t overflow_pos_x = (state->tile->lcu_offset_x * LCU_WIDTH + xpos + (mv[0]>>2) + width > ref->width )?1:0; int8_t overflow_pos_y = (state->tile->lcu_offset_y * LCU_WIDTH + ypos + (mv[1]>>2) + height > ref->height)?1:0; int8_t chroma_halfpel = ((mv[0]>>2)&1) || ((mv[1]>>2)&1); //!< (luma integer mv) lsb is set -> chroma is half-pel // Luma quarter-pel int8_t fractional_mv = (mv[0]&1) || (mv[1]&1) || (mv[0]&2) || (mv[1]&2); // either of 2 lowest bits of mv set -> mv is fractional if(fractional_mv) { if (state->encoder_control->cfg->bipred && hi_prec_out){ inter_recon_14bit_frac_luma(state, ref, xpos, ypos, width, height, mv_param, hi_prec_out); inter_recon_14bit_frac_chroma(state, ref, xpos, ypos, width, height, mv_param, hi_prec_out); } else { inter_recon_frac_luma(state, ref, xpos, ypos, width, height, mv_param, lcu); inter_recon_frac_chroma(state, ref, xpos, ypos, width, height, mv_param, lcu); } } mv[0] >>= 2; mv[1] >>= 2; // Chroma half-pel // get half-pel interpolated block and push it to output if(!fractional_mv) { if(chroma_halfpel) { if (state->encoder_control->cfg->bipred && hi_prec_out){ inter_recon_14bit_frac_chroma(state, ref, xpos, ypos, width, height, mv_param, hi_prec_out); } else { inter_recon_frac_chroma(state, ref, xpos, ypos, width, height, mv_param, lcu); } } // With overflow present, more checking if (overflow_neg_x || overflow_neg_y || overflow_pos_x || overflow_pos_y) { // Copy Luma with boundary checking for (y = ypos; y < ypos + height; y++) { for (x = xpos; x < xpos + width; x++) { int x_in_lcu = (x & ((LCU_WIDTH)-1)); int y_in_lcu = (y & ((LCU_WIDTH)-1)); coord_x = (x + state->tile->lcu_offset_x * LCU_WIDTH) + mv[0]; coord_y = (y + state->tile->lcu_offset_y * LCU_WIDTH) + mv[1]; overflow_neg_x = (coord_x < 0)?1:0; overflow_neg_y = (coord_y < 0)?1:0; overflow_pos_x = (coord_x >= ref->width )?1:0; overflow_pos_y = (coord_y >= ref->height)?1:0; // On x-overflow set coord_x accordingly if (overflow_neg_x) { coord_x = 0; } else if (overflow_pos_x) { coord_x = ref->width - 1; } // On y-overflow set coord_y accordingly if (overflow_neg_y) { coord_y = 0; } else if (overflow_pos_y) { coord_y = ref->height - 1; } // set destination to (corrected) pixel value from the reference lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = ref->y[coord_y*ref->width + coord_x]; } } if(!chroma_halfpel) { // Copy Chroma with boundary checking for (y = ypos>>1; y < (ypos + height)>>1; y++) { for (x = xpos>>1; x < (xpos + width)>>1; x++) { int x_in_lcu = (x & ((LCU_WIDTH>>1)-1)); int y_in_lcu = (y & ((LCU_WIDTH>>1)-1)); coord_x = (x + state->tile->lcu_offset_x * (LCU_WIDTH >> 1)) + (mv[0]>>1); coord_y = (y + state->tile->lcu_offset_y * (LCU_WIDTH >> 1)) + (mv[1]>>1); overflow_neg_x = (coord_x < 0)?1:0; overflow_neg_y = (coord_y < 0)?1:0; overflow_pos_x = (coord_x >= ref->width>>1 )?1:0; overflow_pos_y = (coord_y >= ref->height>>1)?1:0; // On x-overflow set coord_x accordingly if(overflow_neg_x) { coord_x = 0; } else if(overflow_pos_x) { coord_x = (ref->width>>1) - 1; } // On y-overflow set coord_y accordingly if(overflow_neg_y) { coord_y = 0; } else if(overflow_pos_y) { coord_y = (ref->height>>1) - 1; } // set destinations to (corrected) pixel value from the reference lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = ref->u[coord_y * ref_width_c + coord_x]; lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = ref->v[coord_y * ref_width_c + coord_x]; } } } } else { //If no overflow, we can copy without checking boundaries // Copy Luma for (y = ypos; y < ypos + height; y++) { int y_in_lcu = (y & ((LCU_WIDTH)-1)); coord_y = ((y + state->tile->lcu_offset_y * LCU_WIDTH) + mv[1]) * ref->width; // pre-calculate for (x = xpos; x < xpos + width; x+=sizeof(int32_t)/sizeof(kvz_pixel)) { int x_in_lcu = (x & ((LCU_WIDTH)-1)); kvz_pixel *dst = &(lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu]); kvz_pixel *src = &(ref->y[coord_y + (x + state->tile->lcu_offset_x * LCU_WIDTH) + mv[0]]); //Copy one or many pixels simultaneously *(int32_t*)dst = *(int32_t*)src; } } if(!chroma_halfpel) { // Copy Chroma // TODO: chroma fractional pixel interpolation for (y = ypos>>1; y < (ypos + height)>>1; y++) { int y_in_lcu = (y & ((LCU_WIDTH>>1)-1)); coord_y = ((y + state->tile->lcu_offset_y * (LCU_WIDTH>>1)) + (mv[1]>>1)) * ref_width_c; // pre-calculate for (x = xpos>>1; x < (xpos + width)>>1; x++) { int x_in_lcu = (x & ((LCU_WIDTH>>1)-1)); lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = ref->u[coord_y + (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1)]; lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = ref->v[coord_y + (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1)]; } } } } } } /** * \brief Reconstruct bi-pred inter block * * \param state encoder state * \param ref1 reference picture to copy the data from * \param ref2 other reference picture to copy the data from * \param xpos block x position * \param ypos block y position * \param width block width * \param height block height * \param mv_param motion vectors * \param lcu destination lcu */ void kvz_inter_recon_lcu_bipred(const encoder_state_t * const state, const kvz_picture * ref1, const kvz_picture * ref2, int32_t xpos, int32_t ypos, int32_t width, int32_t height, int16_t mv_param[2][2], lcu_t* lcu) { kvz_pixel temp_lcu_y[LCU_WIDTH*LCU_WIDTH]; kvz_pixel temp_lcu_u[LCU_WIDTH_C*LCU_WIDTH_C]; kvz_pixel temp_lcu_v[LCU_WIDTH_C*LCU_WIDTH_C]; int temp_x, temp_y; int shift = 15 - KVZ_BIT_DEPTH; int offset = 1 << (shift - 1); const int hi_prec_luma_rec0 = mv_param[0][0] & 3 || mv_param[0][1] & 3; const int hi_prec_luma_rec1 = mv_param[1][0] & 3 || mv_param[1][1] & 3; const int hi_prec_chroma_rec0 = mv_param[0][0] & 7 || mv_param[0][1] & 7; const int hi_prec_chroma_rec1 = mv_param[1][0] & 7 || mv_param[1][1] & 7; hi_prec_buf_t* high_precision_rec0 = 0; hi_prec_buf_t* high_precision_rec1 = 0; if (hi_prec_chroma_rec0) high_precision_rec0 = kvz_hi_prec_buf_t_alloc(LCU_WIDTH*LCU_WIDTH); if (hi_prec_chroma_rec1) high_precision_rec1 = kvz_hi_prec_buf_t_alloc(LCU_WIDTH*LCU_WIDTH); //Reconstruct both predictors kvz_inter_recon_lcu(state, ref1, xpos, ypos, width, height, mv_param[0], lcu, high_precision_rec0); if (!hi_prec_luma_rec0){ memcpy(temp_lcu_y, lcu->rec.y, sizeof(kvz_pixel) * 64 * 64); } if (!hi_prec_chroma_rec0){ memcpy(temp_lcu_u, lcu->rec.u, sizeof(kvz_pixel) * 32 * 32); memcpy(temp_lcu_v, lcu->rec.v, sizeof(kvz_pixel) * 32 * 32); } kvz_inter_recon_lcu(state, ref2, xpos, ypos, width, height, mv_param[1], lcu, high_precision_rec1); // After reconstruction, merge the predictors by taking an average of each pixel for (temp_y = 0; temp_y < height; ++temp_y) { int y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1)); for (temp_x = 0; temp_x < width; ++temp_x) { int x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1)); int16_t sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift); } } for (temp_y = 0; temp_y < height >> 1; ++temp_y) { int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1)); for (temp_x = 0; temp_x < width >> 1; ++temp_x) { int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1)); int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift); int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH))); lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift); } } if (high_precision_rec0 != 0) kvz_hi_prec_buf_t_free(high_precision_rec0); if (high_precision_rec1 != 0) kvz_hi_prec_buf_t_free(high_precision_rec1); } /** * \brief Clear unused L0/L1 motion vectors and reference * \param cu coding unit to clear */ static void inter_clear_cu_unused(cu_info_t* cu) { for (unsigned i = 0; i < 2; ++i) { if (cu->inter.mv_dir & (1 << i)) continue; cu->inter.mv[i][0] = 0; cu->inter.mv[i][1] = 0; cu->inter.mv_ref[i] = 255; } } /** * \brief Check whether a0 mv cand block is coded before the current block. * \param x x-coordinate of the current block (in pixels) * \param y y-coordinate of the current block (in pixels) * \param width width of the current block (in pixels) * \param height height of the current block (in pixels) * \return True, if the a0 mv candidate block is coded before the * current block. Otherwise false. */ static bool is_a0_cand_coded(int x, int y, int width, int height) { int size = MIN(width & ~(width - 1), height & ~(height - 1)); if (height != size) { // For SMP and AMP blocks the situation is equivalent to a square block // at the lower left corner of the PU. y = y + height - size; } while (size < LCU_WIDTH) { const int parent_size = 2 * size; const int cu_index = (x % parent_size != 0) + 2 * (y % parent_size != 0); switch (cu_index) { case 0: // A0 is in the CU directly left of the parent CU so it has been // coded already. // +---+---+ // | X | | // |---+---+ // A0 | | | // +---+---+ return true; case 1: // A0 is in the CU that will be coded after the current CU. // +---+---+ // | | X | // |---+---+ // |A0 | | // +---+---+ return false; case 2: // +---+---+ // | | | // |---+---+ // | X | | // +---+---+ // A0 // Move to the parent block. y -= size; size = parent_size; break; case 3: // A0 is in the CU directly down of the parent CU so is has not // been coded yet. // +---+---+ // | | | // |---+---+ // | | X | // +---+---+ // A0 return false; } } // For 64x64 blocks A0 candidate is located outside the LCU. return false; } /** * \brief Check whether b0 mv cand block is coded before the current block. * \param x x-coordinate of the current block (in pixels) * \param y y-coordinate of the current block (in pixels) * \param width width of the current block (in pixels) * \param height height of the current block (in pixels) * \return True, if the b0 mv candidate block is coded before the * current block. Otherwise false. */ static bool is_b0_cand_coded(int x, int y, int width, int height) { int size = MIN(width & ~(width - 1), height & ~(height - 1)); if (width != size) { // For SMP and AMP blocks the situation is equivalent to a square block // at the upper right corner of the PU. x = x + width - size; } while (size < LCU_WIDTH) { const int parent_size = 2 * size; const int cu_index = (x % parent_size != 0) + 2 * (y % parent_size != 0); switch (cu_index) { case 0: // B0 is in the CU directly above the parent CU so it has been // coded already. // B0 // +---+---+ // | X | | // |---+---+ // | | | // +---+---+ return true; case 1: // B0 // +---+---+ // | | X | // |---+---+ // | | | // +---+---+ // Move to the parent block. x -= size; size = parent_size; break; case 2: // +---+---+ // | |B0 | // |---+---+ // | X | | // +---+---+ return true; case 3: // B0 is in the CU directly right of the parent CU so is has not // been coded yet. // +---+---+ // | | | B0 // |---+---+ // | | X | // +---+---+ return false; } } // The LCU to the right and up of the current LCU has been coded already. return true; } /** * \brief Get merge candidates for current block * \param encoder encoder control struct to use * \param x block x position in SCU * \param y block y position in SCU * \param width current block width * \param height current block height * \param H candidate H * \param C1 candidate C1 */ void kvz_inter_get_temporal_merge_candidates(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, cu_info_t **C3, cu_info_t **H) { /* Predictor block locations _________ |CurrentPU| | |C0|__ | | |C3| | |_________|_ |H| */ *C3 = NULL; *H = NULL; // Find temporal reference, closest POC if (state->global->ref->used_size) { uint32_t poc_diff = UINT_MAX; int32_t closest_ref = 0; for (int temporal_cand = 0; temporal_cand < state->global->ref->used_size; temporal_cand++) { int td = state->global->poc - state->global->ref->pocs[temporal_cand]; td = td < 0 ? -td : td; if (td < poc_diff) { closest_ref = temporal_cand; poc_diff = td; } } cu_array_t *ref_cu_array = state->global->ref->cu_arrays[closest_ref]; int cu_per_width = ref_cu_array->width / SCU_WIDTH; uint32_t xColBr = x + width; uint32_t yColBr = y + height; // H must be available if (xColBr < state->encoder_control->in.width && yColBr < state->encoder_control->in.height) { int32_t H_offset = -1; // Y inside the current CTU / LCU if (yColBr % LCU_WIDTH != 0) { H_offset = ((xColBr >> 4) << 4) / SCU_WIDTH + (((yColBr >> 4) << 4) / SCU_WIDTH) * cu_per_width; } if (H_offset >= 0) { // Only use when it's inter block if (ref_cu_array->data[H_offset].type == CU_INTER) { *H = &ref_cu_array->data[H_offset]; } } } uint32_t xColCtr = x + (width / 2); uint32_t yColCtr = y + (height / 2); // C3 must be inside the LCU, in the center position of current CU if (xColCtr < state->encoder_control->in.width && yColCtr < state->encoder_control->in.height) { uint32_t C3_offset = ((xColCtr >> 4) << 4) / SCU_WIDTH + ((((yColCtr >> 4) << 4) / SCU_WIDTH) * cu_per_width); if (ref_cu_array->data[C3_offset].type == CU_INTER) { *C3 = &ref_cu_array->data[C3_offset]; } } } } /** * \brief Get merge candidates for current block. * * The output parameters b0, b1, b2, a0, a1 are pointed to the * corresponding cu_info_t struct in lcu->cu, or set to NULL, if the * candidate is not available. * * \param x block x position in pixels * \param y block y position in pixels * \param width block width in pixels * \param height block height in pixels * \param picture_width tile width in pixels * \param picture_height tile height in pixels * \param b0 Returns the b0 candidate. * \param b1 Returns the b1 candidate. * \param b2 Returns the b2 candidate. * \param a0 Returns the a0 candidate. * \param a1 Returns the a1 candidate. * \param lcu current LCU */ static void get_spatial_merge_candidates(int32_t x, int32_t y, int32_t width, int32_t height, int32_t picture_width, int32_t picture_height, cu_info_t **b0, cu_info_t **b1, cu_info_t **b2, cu_info_t **a0, cu_info_t **a1, lcu_t *lcu) { /* Predictor block locations ____ _______ |B2|______|B1|B0| | | | Cur CU | __| | |A1|_________| |A0| */ int32_t x_local = SUB_SCU(x); //!< coordinates from top-left of this LCU int32_t y_local = SUB_SCU(y); // A0 and A1 availability testing if (x != 0) { *a1 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local + height - 1); // Do not check (*a1)->coded because the block above is always coded before // the current one and the flag is not set when searching an SMP block. if ((*a1)->type == CU_INTER) { inter_clear_cu_unused(*a1); } else { *a1 = NULL; } if (y_local + height < LCU_WIDTH && y + height < picture_height) { *a0 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local + height); if ((*a0)->type == CU_INTER && is_a0_cand_coded(x, y, width, height)) { inter_clear_cu_unused(*a0); } else { *a0 = NULL; } } } // B0, B1 and B2 availability testing if (y != 0) { if (x + width < picture_width) { if (x_local + width < LCU_WIDTH) { *b0 = LCU_GET_CU_AT_PX(lcu, x_local + width, y_local - 1); } else if (y_local == 0) { // Special case, top-right CU *b0 = LCU_GET_TOP_RIGHT_CU(lcu); } } if ((*b0) && (*b0)->type == CU_INTER && is_b0_cand_coded(x, y, width, height)) { inter_clear_cu_unused(*b0); } else { *b0 = NULL; } *b1 = LCU_GET_CU_AT_PX(lcu, x_local + width - 1, y_local - 1); // Do not check (*b1)->coded because the block to the left is always coded // before the current one and the flag is not set when searching an SMP // block. if ((*b1)->type == CU_INTER) { inter_clear_cu_unused(*b1); } else { *b1 = NULL; } if (x != 0) { *b2 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local - 1); // Do not check (*b2)->coded because the block above and to the left is // always coded before the current one. if ((*b2)->type == CU_INTER) { inter_clear_cu_unused(*b2); } else { *b2 = NULL; } } } } /** * \brief Get merge candidates for current block. * * The output parameters b0, b1, b2, a0, a1 are pointed to the * corresponding cu_info_t struct in lcu->cu, or set to NULL, if the * candidate is not available. * * \param cua cu information * \param x block x position in pixels * \param y block y position in pixels * \param width block width in pixels * \param height block height in pixels * \param picture_width tile width in pixels * \param picture_height tile height in pixels * \param b0 Returns the b0 candidate. * \param b1 Returns the b1 candidate. * \param b2 Returns the b2 candidate. * \param a0 Returns the a0 candidate. * \param a1 Returns the a1 candidate. */ static void get_spatial_merge_candidates_cua(const cu_array_t *cua, int32_t x, int32_t y, int32_t width, int32_t height, int32_t picture_width, int32_t picture_height, const cu_info_t **b0, const cu_info_t **b1, const cu_info_t **b2, const cu_info_t **a0, const cu_info_t **a1) { /* Predictor block locations ____ _______ |B2|______|B1|B0| | | | Cur CU | __| | |A1|_________| |A0| */ int32_t x_local = SUB_SCU(x); //!< coordinates from top-left of this LCU int32_t y_local = SUB_SCU(y); // A0 and A1 availability testing if (x != 0) { *a1 = kvz_cu_array_at_const(cua, x - 1, y + height - 1); // The block above is always coded before the current one. if ((*a1)->type != CU_INTER) { *a1 = NULL; } if (y_local + height < LCU_WIDTH && y + height < picture_height) { *a0 = kvz_cu_array_at_const(cua, x - 1, y + height); if ((*a0)->type != CU_INTER || !is_a0_cand_coded(x, y, width, height)) { *a0 = NULL; } } } // B0, B1 and B2 availability testing if (y != 0) { if (x + width < picture_width && (x_local + width < LCU_WIDTH || y_local == 0)) { *b0 = kvz_cu_array_at_const(cua, x + width, y - 1); if ((*b0)->type != CU_INTER || !is_b0_cand_coded(x, y, width, height)) { *b0 = NULL; } } *b1 = kvz_cu_array_at_const(cua, x + width - 1, y - 1); // The block to the left is always coded before the current one. if ((*b1)->type != CU_INTER) { *b1 = NULL; } if (x != 0) { *b2 = kvz_cu_array_at_const(cua, x - 1, y - 1); // The block above and to the left is always coded before the current // one. if ((*b2)->type != CU_INTER) { *b2 = NULL; } } } } /** * \brief Pick two mv candidates from the spatial candidates. */ static void get_mv_cand_from_spatial(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, const cu_info_t *b0, const cu_info_t *b1, const cu_info_t *b2, const cu_info_t *a0, const cu_info_t *a1, const cu_info_t *c3, const cu_info_t *h, const cu_info_t *cur_cu, int8_t reflist, int16_t mv_cand[2][2]) { uint8_t candidates = 0; uint8_t b_candidates = 0; int8_t reflist2nd = !reflist; #define CALCULATE_SCALE(cu,tb,td) ((tb * ((0x4000 + (abs(td)>>1))/td) + 32) >> 6) #define APPLY_MV_SCALING(cu, cand, list) {int td = state->frame->poc - state->frame->ref->pocs[(cu)->inter.mv_ref[list]];\ int tb = state->frame->poc - state->frame->ref->pocs[cur_cu->inter.mv_ref[reflist]];\ if (td != tb) { \ int scale = CALCULATE_SCALE(cu,tb,td); \ mv_cand[cand][0] = ((scale * (cu)->inter.mv[list][0] + 127 + (scale * (cu)->inter.mv[list][0] < 0)) >> 8 ); \ mv_cand[cand][1] = ((scale * (cu)->inter.mv[list][1] + 127 + (scale * (cu)->inter.mv[list][1] < 0)) >> 8 ); }} // Left predictors if (a0 && ( ((a0->inter.mv_dir & 1) && a0->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) || ((a0->inter.mv_dir & 2) && a0->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) { if (a0->inter.mv_dir & (1 << reflist) && a0->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) { mv_cand[candidates][0] = a0->inter.mv[reflist][0]; mv_cand[candidates][1] = a0->inter.mv[reflist][1]; } else { mv_cand[candidates][0] = a0->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = a0->inter.mv[reflist2nd][1]; } candidates++; } else if (a1 && ( ((a1->inter.mv_dir & 1) && a1->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) || ((a1->inter.mv_dir & 2) && a1->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) { if (a1->inter.mv_dir & (1 << reflist) && a1->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) { mv_cand[candidates][0] = a1->inter.mv[reflist][0]; mv_cand[candidates][1] = a1->inter.mv[reflist][1]; } else { mv_cand[candidates][0] = a1->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = a1->inter.mv[reflist2nd][1]; } candidates++; } if(!candidates) { // Left predictors if (a0) { if (a0->inter.mv_dir & (1 << reflist)) { mv_cand[candidates][0] = a0->inter.mv[reflist][0]; mv_cand[candidates][1] = a0->inter.mv[reflist][1]; APPLY_MV_SCALING(a0, candidates, reflist); } else { mv_cand[candidates][0] = a0->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = a0->inter.mv[reflist2nd][1]; APPLY_MV_SCALING(a0, candidates, reflist2nd); } candidates++; } else if (a1) { if (a1->inter.mv_dir & (1 << reflist)) { mv_cand[candidates][0] = a1->inter.mv[reflist][0]; mv_cand[candidates][1] = a1->inter.mv[reflist][1]; APPLY_MV_SCALING(a1, candidates, reflist); } else { mv_cand[candidates][0] = a1->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = a1->inter.mv[reflist2nd][1]; APPLY_MV_SCALING(a1, candidates, reflist2nd); } candidates++; } } // Top predictors if (b0 && ( ((b0->inter.mv_dir & 1) && b0->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) || ((b0->inter.mv_dir & 2) && b0->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) { if (b0->inter.mv_dir & (1 << reflist) && b0->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) { mv_cand[candidates][0] = b0->inter.mv[reflist][0]; mv_cand[candidates][1] = b0->inter.mv[reflist][1]; } else { mv_cand[candidates][0] = b0->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = b0->inter.mv[reflist2nd][1]; } b_candidates++; } else if (b1 && ( ((b1->inter.mv_dir & 1) && b1->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) || ((b1->inter.mv_dir & 2) && b1->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) { if (b1->inter.mv_dir & (1 << reflist) && b1->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) { mv_cand[candidates][0] = b1->inter.mv[reflist][0]; mv_cand[candidates][1] = b1->inter.mv[reflist][1]; } else { mv_cand[candidates][0] = b1->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = b1->inter.mv[reflist2nd][1]; } b_candidates++; } else if (b2 && ( ((b2->inter.mv_dir & 1) && b2->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) || ((b2->inter.mv_dir & 2) && b2->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) { if (b2->inter.mv_dir & (1 << reflist) && b2->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) { mv_cand[candidates][0] = b2->inter.mv[reflist][0]; mv_cand[candidates][1] = b2->inter.mv[reflist][1]; } else { mv_cand[candidates][0] = b2->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = b2->inter.mv[reflist2nd][1]; } b_candidates++; } candidates += b_candidates; // When a1 or a0 is available, we dont check for secondary B candidates if (a1 || a0) { b_candidates = 1; } else if(candidates != 2) { b_candidates = 0; } if(!b_candidates) { // Top predictors if (b0) { if (b0->inter.mv_dir & (1 << reflist)) { mv_cand[candidates][0] = b0->inter.mv[reflist][0]; mv_cand[candidates][1] = b0->inter.mv[reflist][1]; APPLY_MV_SCALING(b0, candidates, reflist); } else { mv_cand[candidates][0] = b0->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = b0->inter.mv[reflist2nd][1]; APPLY_MV_SCALING(b0, candidates, reflist2nd); } candidates++; } else if (b1) { if (b1->inter.mv_dir & (1 << reflist)) { mv_cand[candidates][0] = b1->inter.mv[reflist][0]; mv_cand[candidates][1] = b1->inter.mv[reflist][1]; APPLY_MV_SCALING(b1, candidates, reflist); } else { mv_cand[candidates][0] = b1->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = b1->inter.mv[reflist2nd][1]; APPLY_MV_SCALING(b1, candidates, reflist2nd); } candidates++; } else if (b2) { if (b2->inter.mv_dir & (1 << reflist)) { mv_cand[candidates][0] = b2->inter.mv[reflist][0]; mv_cand[candidates][1] = b2->inter.mv[reflist][1]; APPLY_MV_SCALING(b2, candidates, reflist); } else { mv_cand[candidates][0] = b2->inter.mv[reflist2nd][0]; mv_cand[candidates][1] = b2->inter.mv[reflist2nd][1]; APPLY_MV_SCALING(b2, candidates, reflist2nd); } candidates++; } } // Remove identical candidate if(candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) { candidates = 1; } #if ENABLE_TEMPORAL_MVP /* Predictor block locations _________ |CurrentPU| | |C0|__ | | |C3| | |_________|_ |H| */ // Find temporal reference, closest POC if (state->global->poc > 1 && state->global->ref->used_size && candidates < AMVP_MAX_NUM_CANDS) { uint32_t poc_diff = UINT_MAX; int32_t closest_ref = 0; for (int temporal_cand = 0; temporal_cand < state->global->ref->used_size; temporal_cand++) { int td = state->global->poc - state->global->ref->pocs[temporal_cand]; td = td < 0 ? -td : td; if (td < poc_diff) { closest_ref = temporal_cand; poc_diff = td; } } cu_info_t *selected_CU = NULL; if (h != NULL) { selected_CU = h; } else if (c3 != NULL) { selected_CU = c3; } if (selected_CU) { int td = state->global->poc - state->global->ref->pocs[closest_ref]; int tb = state->global->poc - state->global->ref->pocs[cur_cu->inter.mv_ref[reflist]]; int scale = 256;// CALCULATE_SCALE(NULL, tb, td); mv_cand[candidates][0] = ((scale * selected_CU->inter.mv[0][0] + 127 + (scale * selected_CU->inter.mv[0][0] < 0)) >> 8); mv_cand[candidates][1] = ((scale * selected_CU->inter.mv[0][1] + 127 + (scale * selected_CU->inter.mv[0][1] < 0)) >> 8); candidates++; } } #endif // Fill with (0,0) while (candidates < AMVP_MAX_NUM_CANDS) { mv_cand[candidates][0] = 0; mv_cand[candidates][1] = 0; candidates++; } #undef CALCULATE_SCALE #undef APPLY_MV_SCALING } /** * \brief Get MV prediction for current block. * * \param state encoder state * \param x block x position in pixels * \param y block y position in pixels * \param width block width in pixels * \param height block height in pixels * \param mv_cand Return the motion vector candidates. * \param cur_cu current CU * \param lcu current LCU * \param reflist reflist index (either 0 or 1) */ void kvz_inter_get_mv_cand(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, int16_t mv_cand[2][2], cu_info_t* cur_cu, lcu_t *lcu, int8_t reflist) { cu_info_t *b0, *b1, *b2, *a0, *a1, *c3, *h; b0 = b1 = b2 = a0 = a1 = c3 = h = NULL; get_spatial_merge_candidates(x, y, width, height, state->tile->frame->width, state->tile->frame->height, &b0, &b1, &b2, &a0, &a1, lcu); kvz_inter_get_temporal_merge_candidates(state, x, y, width, height, &c3, &h); get_mv_cand_from_spatial(state, x, y, width, height, b0, b1, b2, a0, a1, c3, h, cur_cu, reflist, mv_cand); } /** * \brief Get MV prediction for current block using state->tile->frame->cu_array. * * \param state encoder state * \param x block x position in pixels * \param y block y position in pixels * \param width block width in pixels * \param height block height in pixels * \param mv_cand Return the motion vector candidates. * \param cur_cu current CU * \param reflist reflist index (either 0 or 1) */ void kvz_inter_get_mv_cand_cua(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, int16_t mv_cand[2][2], const cu_info_t* cur_cu, int8_t reflist) { const cu_info_t *b0, *b1, *b2, *a0, *a1, *c3, *h; b0 = b1 = b2 = a0 = a1 = c3 = h = NULL; const cu_array_t *cua = state->tile->frame->cu_array; get_spatial_merge_candidates_cua(cua, x, y, width, height, state->tile->frame->width, state->tile->frame->height, &b0, &b1, &b2, &a0, &a1); kvz_inter_get_temporal_merge_candidates(state, x, y, width, height, &c3, &h); get_mv_cand_from_spatial(state, x, y, width, height, b0, b1, b2, a0, a1, c3, h, cur_cu, reflist, mv_cand); } /** * \brief Get merge predictions for current block * \param state the encoder state * \param x block x position in SCU * \param y block y position in SCU * \param width block width * \param height block height * \param use_a1 true, if candidate a1 can be used * \param use_b1 true, if candidate b1 can be used * \param mv_cand Returns the merge candidates. * \param lcu lcu containing the block * \return number of merge candidates */ uint8_t kvz_inter_get_merge_cand(const encoder_state_t * const state, int32_t x, int32_t y, int32_t width, int32_t height, bool use_a1, bool use_b1, inter_merge_cand_t mv_cand[MRG_MAX_NUM_CANDS], lcu_t *lcu) { uint8_t candidates = 0; int8_t duplicate = 0; cu_info_t *b0, *b1, *b2, *a0, *a1; int8_t zero_idx = 0; b0 = b1 = b2 = a0 = a1 = NULL; get_spatial_merge_candidates(x, y, width, height, state->tile->frame->width, state->tile->frame->height, &b0, &b1, &b2, &a0, &a1, lcu); if (!use_a1) a1 = NULL; if (!use_b1) b1 = NULL; #define CHECK_DUPLICATE(CU1,CU2) {duplicate = 0; if ((CU2) && \ (CU1)->inter.mv_dir == (CU2)->inter.mv_dir && \ (!(((CU1)->inter.mv_dir & 1) && ((CU2)->inter.mv_dir & 1)) || \ ((CU1)->inter.mv[0][0] == (CU2)->inter.mv[0][0] && \ (CU1)->inter.mv[0][1] == (CU2)->inter.mv[0][1] && \ (CU1)->inter.mv_ref[0] == (CU2)->inter.mv_ref[0]) ) && \ (!(((CU1)->inter.mv_dir & 2) && ((CU2)->inter.mv_dir & 2) ) || \ ((CU1)->inter.mv[1][0] == (CU2)->inter.mv[1][0] && \ (CU1)->inter.mv[1][1] == (CU2)->inter.mv[1][1] && \ (CU1)->inter.mv_ref[1] == (CU2)->inter.mv_ref[1]) ) \ ) duplicate = 1; } if (a1) { mv_cand[candidates].mv[0][0] = a1->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = a1->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = a1->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = a1->inter.mv[1][1]; mv_cand[candidates].ref[0] = a1->inter.mv_ref[0]; mv_cand[candidates].ref[1] = a1->inter.mv_ref[1]; mv_cand[candidates].dir = a1->inter.mv_dir; candidates++; } if (b1) { if(candidates) CHECK_DUPLICATE(b1, a1); if(!duplicate) { mv_cand[candidates].mv[0][0] = b1->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = b1->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = b1->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = b1->inter.mv[1][1]; mv_cand[candidates].ref[0] = b1->inter.mv_ref[0]; mv_cand[candidates].ref[1] = b1->inter.mv_ref[1]; mv_cand[candidates].dir = b1->inter.mv_dir; candidates++; } } if (b0) { if(candidates) CHECK_DUPLICATE(b0,b1); if(!duplicate) { mv_cand[candidates].mv[0][0] = b0->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = b0->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = b0->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = b0->inter.mv[1][1]; mv_cand[candidates].ref[0] = b0->inter.mv_ref[0]; mv_cand[candidates].ref[1] = b0->inter.mv_ref[1]; mv_cand[candidates].dir = b0->inter.mv_dir; candidates++; } } if (a0) { if(candidates) CHECK_DUPLICATE(a0,a1); if(!duplicate) { mv_cand[candidates].mv[0][0] = a0->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = a0->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = a0->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = a0->inter.mv[1][1]; mv_cand[candidates].ref[0] = a0->inter.mv_ref[0]; mv_cand[candidates].ref[1] = a0->inter.mv_ref[1]; mv_cand[candidates].dir = a0->inter.mv_dir; candidates++; } } if (candidates != 4) { if (b2) { CHECK_DUPLICATE(b2,a1); if(!duplicate) { CHECK_DUPLICATE(b2,b1); if(!duplicate) { mv_cand[candidates].mv[0][0] = b2->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = b2->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = b2->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = b2->inter.mv[1][1]; mv_cand[candidates].ref[0] = b2->inter.mv_ref[0]; mv_cand[candidates].ref[1] = b2->inter.mv_ref[1]; mv_cand[candidates].dir = b2->inter.mv_dir; candidates++; } } } } #if ENABLE_TEMPORAL_MVP if (candidates < MRG_MAX_NUM_CANDS && state->global->ref->used_size) { uint32_t poc_diff = UINT_MAX; int32_t closest_ref = 0; for (int temporal_cand = 0; temporal_cand < state->global->ref->used_size; temporal_cand++) { int td = state->global->poc - state->global->ref->pocs[temporal_cand]; td = td < 0 ? -td : td; if (td < poc_diff) { closest_ref = temporal_cand; poc_diff = td; } } cu_info_t *C3 = NULL; cu_info_t *H = NULL; cu_info_t *selected_CU = NULL; kvz_inter_get_temporal_merge_candidates(state, x, y, width, height, &C3, &H); if (H != NULL) { selected_CU = H; } else if (C3 != NULL) { selected_CU = C3; } if (selected_CU) { mv_cand[candidates].mv[0][0] = selected_CU->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = selected_CU->inter.mv[0][1]; mv_cand[candidates].dir = 1; mv_cand[candidates].ref[0] = 0; candidates++; } } #endif if (candidates < MRG_MAX_NUM_CANDS && state->frame->slicetype == KVZ_SLICE_B) { #define NUM_PRIORITY_LIST 12; static const uint8_t priorityList0[] = { 0, 1, 0, 2, 1, 2, 0, 3, 1, 3, 2, 3 }; static const uint8_t priorityList1[] = { 1, 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2 }; uint8_t cutoff = candidates; for (int32_t idx = 0; idx= candidates || j >= candidates) break; // Find one L0 and L1 candidate according to the priority list if ((mv_cand[i].dir & 0x1) && (mv_cand[j].dir & 0x2)) { mv_cand[candidates].dir = 3; // get Mv from cand[i] and cand[j] mv_cand[candidates].mv[0][0] = mv_cand[i].mv[0][0]; mv_cand[candidates].mv[0][1] = mv_cand[i].mv[0][1]; mv_cand[candidates].mv[1][0] = mv_cand[j].mv[1][0]; mv_cand[candidates].mv[1][1] = mv_cand[j].mv[1][1]; mv_cand[candidates].ref[0] = mv_cand[i].ref[0]; mv_cand[candidates].ref[1] = mv_cand[j].ref[1]; if (mv_cand[i].ref[0] == mv_cand[j].ref[1] && mv_cand[i].mv[0][0] == mv_cand[j].mv[1][0] && mv_cand[i].mv[0][1] == mv_cand[j].mv[1][1]) { // Not a candidate } else { candidates++; } } } } int num_ref = state->frame->ref->used_size; if (candidates < MRG_MAX_NUM_CANDS && state->frame->slicetype == KVZ_SLICE_B) { int j; int ref_negative = 0; int ref_positive = 0; for (j = 0; j < state->frame->ref->used_size; j++) { if (state->frame->ref->pocs[j] < state->frame->poc) { ref_negative++; } else { ref_positive++; } } num_ref = MIN(ref_negative, ref_positive); } // Add (0,0) prediction while (candidates != MRG_MAX_NUM_CANDS) { mv_cand[candidates].mv[0][0] = 0; mv_cand[candidates].mv[0][1] = 0; mv_cand[candidates].ref[0] = (zero_idx>=num_ref-1)?0:zero_idx; mv_cand[candidates].ref[1] = mv_cand[candidates].ref[0]; mv_cand[candidates].dir = 1; if (state->frame->slicetype == KVZ_SLICE_B) { mv_cand[candidates].mv[1][0] = 0; mv_cand[candidates].mv[1][1] = 0; mv_cand[candidates].dir = 3; } zero_idx++; candidates++; } return candidates; }