/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "search.h" #include #include #include "cabac.h" #include "encoder.h" #include "imagelist.h" #include "inter.h" #include "intra.h" #include "kvazaar.h" #include "rdo.h" #include "search_inter.h" #include "search_intra.h" #include "threadqueue.h" #include "transform.h" #include "videoframe.h" #include "strategies/strategies-picture.h" #include "strategies/strategies-quant.h" #define IN_FRAME(x, y, width, height, block_width, block_height) \ ((x) >= 0 && (y) >= 0 \ && (x) + (block_width) <= (width) \ && (y) + (block_height) <= (height)) // Cost threshold for doing intra search in inter frames with --rd=0. static const int INTRA_THRESHOLD = 8; // Modify weight of luma SSD. #ifndef LUMA_MULT # define LUMA_MULT 1 #endif // Modify weight of chroma SSD. #ifndef CHROMA_MULT # define CHROMA_MULT 1 #endif static INLINE void copy_cu_info(int x_local, int y_local, int width, lcu_t *from, lcu_t *to) { for (int y = y_local; y < y_local + width; y += SCU_WIDTH) { for (int x = x_local; x < x_local + width; x += SCU_WIDTH) { *LCU_GET_CU_AT_PX(to, x, y) = *LCU_GET_CU_AT_PX(from, x, y); } } } static INLINE void copy_cu_pixels(int x_local, int y_local, int width, lcu_t *from, lcu_t *to) { const int luma_index = x_local + y_local * LCU_WIDTH; const int chroma_index = (x_local / 2) + (y_local / 2) * (LCU_WIDTH / 2); kvz_pixels_blit(&from->rec.y[luma_index], &to->rec.y[luma_index], width, width, LCU_WIDTH, LCU_WIDTH); if (from->rec.chroma_format != KVZ_CSP_400) { kvz_pixels_blit(&from->rec.u[chroma_index], &to->rec.u[chroma_index], width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); kvz_pixels_blit(&from->rec.v[chroma_index], &to->rec.v[chroma_index], width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } static INLINE void copy_cu_coeffs(int x_local, int y_local, int width, lcu_t *from, lcu_t *to) { const int luma_z = xy_to_zorder(LCU_WIDTH, x_local, y_local); copy_coeffs(&from->coeff.y[luma_z], &to->coeff.y[luma_z], width); if (from->rec.chroma_format != KVZ_CSP_400) { const int chroma_z = xy_to_zorder(LCU_WIDTH_C, x_local >> 1, y_local >> 1); copy_coeffs(&from->coeff.u[chroma_z], &to->coeff.u[chroma_z], width >> 1); copy_coeffs(&from->coeff.v[chroma_z], &to->coeff.v[chroma_z], width >> 1); } } /** * Copy all non-reference CU data from next level to current level. */ static void work_tree_copy_up(int x_local, int y_local, int depth, lcu_t *work_tree) { const int width = LCU_WIDTH >> depth; copy_cu_info (x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]); copy_cu_pixels(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]); copy_cu_coeffs(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]); } /** * Copy all non-reference CU data from current level to all lower levels. */ static void work_tree_copy_down(int x_local, int y_local, int depth, lcu_t *work_tree) { const int width = LCU_WIDTH >> depth; for (int i = depth + 1; i <= MAX_PU_DEPTH; i++) { copy_cu_info (x_local, y_local, width, &work_tree[depth], &work_tree[i]); copy_cu_pixels(x_local, y_local, width, &work_tree[depth], &work_tree[i]); } } void kvz_lcu_fill_trdepth(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth) { const int x_local = SUB_SCU(x_px); const int y_local = SUB_SCU(y_px); const int width = LCU_WIDTH >> depth; for (unsigned y = 0; y < width; y += SCU_WIDTH) { for (unsigned x = 0; x < width; x += SCU_WIDTH) { LCU_GET_CU_AT_PX(lcu, x_local + x, y_local + y)->tr_depth = tr_depth; } } } static void lcu_fill_cu_info(lcu_t *lcu, int x_local, int y_local, int width, int height, cu_info_t *cu) { // Set mode in every CU covered by part_mode in this depth. for (int y = y_local; y < y_local + height; y += SCU_WIDTH) { for (int x = x_local; x < x_local + width; x += SCU_WIDTH) { cu_info_t *to = LCU_GET_CU_AT_PX(lcu, x, y); to->type = cu->type; to->depth = cu->depth; to->part_size = cu->part_size; to->qp = cu->qp; //to->tr_idx = cu->tr_idx; if (cu->type == CU_INTRA) { to->intra.mode = cu->intra.mode; to->intra.mode_chroma = cu->intra.mode_chroma; } else { to->skipped = cu->skipped; to->merged = cu->merged; to->merge_idx = cu->merge_idx; to->inter = cu->inter; } } } } static void lcu_fill_inter(lcu_t *lcu, int x_local, int y_local, int cu_width) { const part_mode_t part_mode = LCU_GET_CU_AT_PX(lcu, x_local, y_local)->part_size; const int num_pu = kvz_part_mode_num_parts[part_mode]; for (int i = 0; i < num_pu; ++i) { const int x_pu = PU_GET_X(part_mode, cu_width, x_local, i); const int y_pu = PU_GET_Y(part_mode, cu_width, y_local, i); const int width_pu = PU_GET_W(part_mode, cu_width, i); const int height_pu = PU_GET_H(part_mode, cu_width, i); cu_info_t *pu = LCU_GET_CU_AT_PX(lcu, x_pu, y_pu); pu->type = CU_INTER; lcu_fill_cu_info(lcu, x_pu, y_pu, width_pu, height_pu, pu); } } static void lcu_fill_cbf(lcu_t *lcu, int x_local, int y_local, int width, cu_info_t *cur_cu) { const uint32_t tr_split = cur_cu->tr_depth - cur_cu->depth; const uint32_t mask = ~((width >> tr_split)-1); // Set coeff flags in every CU covered by part_mode in this depth. for (uint32_t y = y_local; y < y_local + width; y += SCU_WIDTH) { for (uint32_t x = x_local; x < x_local + width; x += SCU_WIDTH) { // Use TU top-left CU to propagate coeff flags cu_info_t *cu_from = LCU_GET_CU_AT_PX(lcu, x & mask, y & mask); cu_info_t *cu_to = LCU_GET_CU_AT_PX(lcu, x, y); if (cu_from != cu_to) { // Chroma coeff data is not used, luma is needed for deblocking cbf_copy(&cu_to->cbf, cu_from->cbf, COLOR_Y); } } } } //Calculates cost for all zero coeffs static double cu_zero_coeff_cost(const encoder_state_t *state, lcu_t *work_tree, const int x, const int y, const int depth) { int x_local = SUB_SCU(x); int y_local = SUB_SCU(y); int cu_width = LCU_WIDTH >> depth; lcu_t *const lcu = &work_tree[depth]; const int luma_index = y_local * LCU_WIDTH + x_local; const int chroma_index = (y_local / 2) * LCU_WIDTH_C + (x_local / 2); double ssd = 0.0; ssd += LUMA_MULT * kvz_pixels_calc_ssd( &lcu->ref.y[luma_index], &lcu->rec.y[luma_index], LCU_WIDTH, LCU_WIDTH, cu_width ); if (x % 8 == 0 && y % 8 == 0 && state->encoder_control->chroma_format != KVZ_CSP_400) { ssd += state->c_lambda / state->lambda * kvz_pixels_calc_ssd( &lcu->ref.u[chroma_index], &lcu->rec.u[chroma_index], LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2 ); ssd += state->c_lambda / state->lambda * kvz_pixels_calc_ssd( &lcu->ref.v[chroma_index], &lcu->rec.v[chroma_index], LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2 ); } // Save the pixels at a lower level of the working tree. copy_cu_pixels(x_local, y_local, cu_width, lcu, &work_tree[depth + 1]); return ssd; } /** * Calculate RD cost for a Coding Unit. * \return Cost of block * \param ref_cu CU used for prediction parameters. * * Calculates the RDO cost of a single CU that will not be split further. * Takes into account SSD of reconstruction and the cost of encoding whatever * prediction unit data needs to be coded. */ double kvz_cu_rd_cost_luma(const encoder_state_t *const state, const int x_px, const int y_px, const int depth, const cu_info_t *const pred_cu, lcu_t *const lcu) { const int width = LCU_WIDTH >> depth; // cur_cu is used for TU parameters. cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px); double coeff_bits = 0; double tr_tree_bits = 0; // Check that lcu is not in assert(x_px >= 0 && x_px < LCU_WIDTH); assert(y_px >= 0 && y_px < LCU_WIDTH); const uint8_t tr_depth = tr_cu->tr_depth - depth; // Add transform_tree split_transform_flag bit cost. bool intra_split_flag = pred_cu->type == CU_INTRA && pred_cu->part_size == SIZE_NxN && depth == 3; if (width <= TR_MAX_WIDTH && width > TR_MIN_WIDTH && !intra_split_flag) { // ToDo: check cost //const cabac_ctx_t *ctx = &(state->cabac.ctx.trans_subdiv_model[5 - (6 - depth)]); //tr_tree_bits += CTX_ENTROPY_FBITS(ctx, tr_depth > 0); } if (tr_depth > 0) { int offset = width / 2; double sum = 0; sum += kvz_cu_rd_cost_luma(state, x_px, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_luma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu); return sum + tr_tree_bits * state->lambda; } // Add transform_tree cbf_luma bit cost. if (pred_cu->type == CU_INTRA || tr_depth > 0 || cbf_is_set(tr_cu->cbf, depth, COLOR_U) || cbf_is_set(tr_cu->cbf, depth, COLOR_V)) { const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_luma[0]); tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf, depth, COLOR_Y)); } // SSD between reconstruction and original int ssd = 0; if (!state->encoder_control->cfg.lossless) { int index = y_px * LCU_WIDTH + x_px; ssd = kvz_pixels_calc_ssd(&lcu->ref.y[index], &lcu->rec.y[index], LCU_WIDTH, LCU_WIDTH, width); } { int8_t luma_scan_mode = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode, depth); const coeff_t *coeffs = &lcu->coeff.y[xy_to_zorder(LCU_WIDTH, x_px, y_px)]; coeff_bits += kvz_get_coeff_cost(state, coeffs, width, 0, luma_scan_mode); } double bits = tr_tree_bits + coeff_bits; return (double)ssd * LUMA_MULT + bits * state->lambda; } double kvz_cu_rd_cost_chroma(const encoder_state_t *const state, const int x_px, const int y_px, const int depth, const cu_info_t *const pred_cu, lcu_t *const lcu) { const vector2d_t lcu_px = { x_px / 2, y_px / 2 }; const int width = (depth <= MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth; cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px); double tr_tree_bits = 0; double coeff_bits = 0; assert(x_px >= 0 && x_px < LCU_WIDTH); assert(y_px >= 0 && y_px < LCU_WIDTH); if (x_px % 8 != 0 || y_px % 8 != 0) { // For MAX_PU_DEPTH calculate chroma for previous depth for the first // block and return 0 cost for all others. return 0; } if (depth < MAX_PU_DEPTH) { const int tr_depth = depth - pred_cu->depth; // ToDo: Update for VVC contexts const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_cb[0]); if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_U)) { tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf, depth, COLOR_U)); } int is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_U); ctx = &(state->cabac.ctx.qt_cbf_model_cr[is_set]); if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_V)) { tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf, depth, COLOR_V)); } } if (MIN(tr_cu->tr_depth, 3) > depth) { int offset = LCU_WIDTH >> (depth + 1); int sum = 0; sum += kvz_cu_rd_cost_chroma(state, x_px, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_chroma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu); sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu); return sum + tr_tree_bits * state->lambda; } // Chroma SSD int ssd = 0; if (!state->encoder_control->cfg.lossless) { int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x; int ssd_u = kvz_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.u[index], LCU_WIDTH_C, LCU_WIDTH_C, width); int ssd_v = kvz_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.v[index], LCU_WIDTH_C, LCU_WIDTH_C, width); ssd = ssd_u + ssd_v; } { int8_t scan_order = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode_chroma, depth); const int index = xy_to_zorder(LCU_WIDTH_C, lcu_px.x, lcu_px.y); coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.u[index], width, 2, scan_order); coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.v[index], width, 2, scan_order); } double bits = tr_tree_bits + coeff_bits; return (double)ssd + bits * state->c_lambda; } // Return estimate of bits used to code prediction mode of cur_cu. static double calc_mode_bits(const encoder_state_t *state, const lcu_t *lcu, const cu_info_t * cur_cu, int x, int y) { int x_local = SUB_SCU(x); int y_local = SUB_SCU(y); assert(cur_cu->type == CU_INTRA); int8_t candidate_modes[INTRA_MPM_COUNT]; { const cu_info_t *left_cu = ((x >= SCU_WIDTH) ? LCU_GET_CU_AT_PX(lcu, x_local - SCU_WIDTH, y_local) : NULL); const cu_info_t *above_cu = ((y >= SCU_WIDTH) ? LCU_GET_CU_AT_PX(lcu, x_local, y_local - SCU_WIDTH) : NULL); kvz_intra_get_dir_luma_predictor(x, y, candidate_modes, cur_cu, left_cu, above_cu); } double mode_bits = kvz_luma_mode_bits(state, cur_cu->intra.mode, candidate_modes); if (x % 8 == 0 && y % 8 == 0 && state->encoder_control->chroma_format != KVZ_CSP_400) { mode_bits += kvz_chroma_mode_bits(state, cur_cu->intra.mode_chroma, cur_cu->intra.mode); } return mode_bits; } /** * \brief Sort modes and costs to ascending order according to costs. */ void kvz_sort_modes(int8_t *__restrict modes, double *__restrict costs, uint8_t length) { // Length for intra is always between 5 and 23, and is either 21, 17, 9 or 8 about // 60% of the time, so there should be no need for anything more complex // than insertion sort. // Length for merge is 5 or less. for (uint8_t i = 1; i < length; ++i) { const double cur_cost = costs[i]; const int8_t cur_mode = modes[i]; uint8_t j = i; while (j > 0 && cur_cost < costs[j - 1]) { costs[j] = costs[j - 1]; modes[j] = modes[j - 1]; --j; } costs[j] = cur_cost; modes[j] = cur_mode; } } /** * \brief Sort modes and costs to ascending order according to costs. */ void kvz_sort_modes_intra_luma(int8_t *__restrict modes, int8_t *__restrict trafo, double *__restrict costs, uint8_t length) { // Length for intra is always between 5 and 23, and is either 21, 17, 9 or 8 about // 60% of the time, so there should be no need for anything more complex // than insertion sort. // Length for merge is 5 or less. for (uint8_t i = 1; i < length; ++i) { const double cur_cost = costs[i]; const int8_t cur_mode = modes[i]; const int8_t cur_tr = trafo[i]; uint8_t j = i; while (j > 0 && cur_cost < costs[j - 1]) { costs[j] = costs[j - 1]; modes[j] = modes[j - 1]; trafo[j] = trafo[j - 1]; --j; } costs[j] = cur_cost; modes[j] = cur_mode; trafo[j] = cur_tr; } } static uint8_t get_ctx_cu_split_model(const lcu_t *lcu, int x, int y, int depth) { vector2d_t lcu_cu = { SUB_SCU(x), SUB_SCU(y) }; bool condA = x >= 8 && LCU_GET_CU_AT_PX(lcu, lcu_cu.x - 1, lcu_cu.y )->depth > depth; bool condL = y >= 8 && LCU_GET_CU_AT_PX(lcu, lcu_cu.x, lcu_cu.y - 1)->depth > depth; return condA + condL; } /** * Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode. * - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH. * - Data structure work_tree is maintained such that the neighbouring SCUs * and pixels to the left and up of current CU are the final CUs decided * via the search. This is done by copying the relevant data to all * relevant levels whenever a decision is made whether to split or not. * - All the final data for the LCU gets eventually copied to depth 0, which * will be the final output of the recursion. */ static double search_cu(encoder_state_t * const state, int x, int y, int depth, lcu_t *work_tree) { const encoder_control_t* ctrl = state->encoder_control; const videoframe_t * const frame = state->tile->frame; int cu_width = LCU_WIDTH >> depth; double cost = MAX_INT; double inter_zero_coeff_cost = MAX_INT; uint32_t inter_bitcost = MAX_INT; cu_info_t *cur_cu; struct { int32_t min; int32_t max; } pu_depth_inter, pu_depth_intra; lcu_t *const lcu = &work_tree[depth]; int x_local = SUB_SCU(x); int y_local = SUB_SCU(y); // Stop recursion if the CU is completely outside the frame. if (x >= frame->width || y >= frame->height) { // Return zero cost because this CU does not have to be coded. return 0; } int gop_layer = ctrl->cfg.gop_len != 0 ? ctrl->cfg.gop[state->frame->gop_offset].layer - 1 : 0; // Assign correct depth limit constraint_t* constr = state->constraint; if(constr->ml_intra_depth_ctu) { pu_depth_intra.min = constr->ml_intra_depth_ctu->_mat_upper_depth[(x_local >> 3) + (y_local >> 3) * 8]; pu_depth_intra.max = constr->ml_intra_depth_ctu->_mat_lower_depth[(x_local >> 3) + (y_local >> 3) * 8]; } else { pu_depth_intra.min = ctrl->cfg.pu_depth_intra.min[gop_layer] >= 0 ? ctrl->cfg.pu_depth_intra.min[gop_layer] : ctrl->cfg.pu_depth_intra.min[0]; pu_depth_intra.max = ctrl->cfg.pu_depth_intra.max[gop_layer] >= 0 ? ctrl->cfg.pu_depth_intra.max[gop_layer] : ctrl->cfg.pu_depth_intra.max[0]; } pu_depth_inter.min = ctrl->cfg.pu_depth_inter.min[gop_layer] >= 0 ? ctrl->cfg.pu_depth_inter.min[gop_layer] : ctrl->cfg.pu_depth_inter.min[0]; pu_depth_inter.max = ctrl->cfg.pu_depth_inter.max[gop_layer] >= 0 ? ctrl->cfg.pu_depth_inter.max[gop_layer] : ctrl->cfg.pu_depth_inter.max[0]; cur_cu = LCU_GET_CU_AT_PX(lcu, x_local, y_local); // Assign correct depth cur_cu->depth = (depth > MAX_DEPTH) ? MAX_DEPTH : depth; cur_cu->tr_depth = (depth > 0) ? depth : 1; cur_cu->type = CU_NOTSET; cur_cu->part_size = SIZE_2Nx2N; cur_cu->qp = state->qp; cur_cu->intra.multi_ref_idx = 0; cur_cu->bdpcmMode = 0; cur_cu->tr_idx = 0; cur_cu->violates_mts_coeff_constraint = 0; cur_cu->mts_last_scan_pos = 0; // If the CU is completely inside the frame at this depth, search for // prediction modes at this depth. if (x + cu_width <= frame->width && y + cu_width <= frame->height) { int cu_width_inter_min = LCU_WIDTH >> pu_depth_inter.max; bool can_use_inter = state->frame->slicetype != KVZ_SLICE_I && depth <= MAX_DEPTH && ( WITHIN(depth, pu_depth_inter.min, pu_depth_inter.max) || // When the split was forced because the CTU is partially outside the // frame, we permit inter coding even if pu_depth_inter would // otherwise forbid it. (x & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame->width || (y & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame->height ); if (can_use_inter) { double mode_cost; uint32_t mode_bitcost; kvz_search_cu_inter(state, x, y, depth, lcu, &mode_cost, &mode_bitcost); if (mode_cost < cost) { cost = mode_cost; inter_bitcost = mode_bitcost; cur_cu->type = CU_INTER; } if (!(ctrl->cfg.early_skip && cur_cu->skipped)) { // Try SMP and AMP partitioning. static const part_mode_t mp_modes[] = { // SMP SIZE_2NxN, SIZE_Nx2N, // AMP SIZE_2NxnU, SIZE_2NxnD, SIZE_nLx2N, SIZE_nRx2N, }; const int first_mode = ctrl->cfg.smp_enable ? 0 : 2; const int last_mode = (ctrl->cfg.amp_enable && cu_width >= 16) ? 5 : 1; for (int i = first_mode; i <= last_mode; ++i) { kvz_search_cu_smp(state, x, y, depth, mp_modes[i], &work_tree[depth + 1], &mode_cost, &mode_bitcost); if (mode_cost < cost) { cost = mode_cost; inter_bitcost = mode_bitcost; // Copy inter prediction info to current level. copy_cu_info(x_local, y_local, cu_width, &work_tree[depth + 1], lcu); } } } } // Try to skip intra search in rd==0 mode. // This can be quite severe on bdrate. It might be better to do this // decision after reconstructing the inter frame. bool skip_intra = (state->encoder_control->cfg.rdo == 0 && cur_cu->type != CU_NOTSET && cost / (cu_width * cu_width) < INTRA_THRESHOLD) || (ctrl->cfg.early_skip && cur_cu->skipped); int32_t cu_width_intra_min = LCU_WIDTH >> pu_depth_intra.max; bool can_use_intra = WITHIN(depth, pu_depth_intra.min, pu_depth_intra.max) || // When the split was forced because the CTU is partially outside // the frame, we permit intra coding even if pu_depth_intra would // otherwise forbid it. (x & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame->width || (y & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame->height; if (can_use_intra && !skip_intra) { int8_t intra_mode; int8_t intra_trafo; double intra_cost; kvz_search_cu_intra(state, x, y, depth, lcu, &intra_mode, &intra_trafo, &intra_cost); if (intra_cost < cost) { cost = intra_cost; cur_cu->type = CU_INTRA; cur_cu->part_size = depth > MAX_DEPTH ? SIZE_NxN : SIZE_2Nx2N; cur_cu->intra.mode = intra_mode; //If the CU is not split from 64x64 block, the MTS is disabled for that CU. cur_cu->tr_idx = (depth > 0) ? intra_trafo : 0; } } // Reconstruct best mode because we need the reconstructed pixels for // mode search of adjacent CUs. if (cur_cu->type == CU_INTRA) { assert(cur_cu->part_size == SIZE_2Nx2N || cur_cu->part_size == SIZE_NxN); cur_cu->intra.mode_chroma = cur_cu->intra.mode; lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu); kvz_intra_recon_cu(state, x, y, depth, cur_cu->intra.mode, -1, // skip chroma NULL, lcu); // TODO: This heavily relies to square CUs if ((depth != 4 || (x % 8 && y % 8)) && state->encoder_control->chroma_format != KVZ_CSP_400) { // There is almost no benefit to doing the chroma mode search for // rd2. Possibly because the luma mode search already takes chroma // into account, so there is less of a chanse of luma mode being // really bad for chroma. if (ctrl->cfg.rdo == 3) { cur_cu->intra.mode_chroma = kvz_search_cu_intra_chroma(state, x, y, depth, lcu); lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu); } kvz_intra_recon_cu(state, x & ~7, y & ~7, // TODO: as does this depth, -1, cur_cu->intra.mode_chroma, // skip luma NULL, lcu); } } else if (cur_cu->type == CU_INTER) { if (!cur_cu->skipped) { // Reset transform depth because intra messes with them. // This will no longer be necessary if the transform depths are not shared. int tr_depth = MAX(1, depth); if (cur_cu->part_size != SIZE_2Nx2N) { tr_depth = depth + 1; } kvz_lcu_fill_trdepth(lcu, x, y, depth, tr_depth); const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400; kvz_inter_recon_cu(state, lcu, x, y, cu_width, true, has_chroma); if (ctrl->cfg.zero_coeff_rdo && !ctrl->cfg.lossless && !ctrl->cfg.rdoq_enable) { //Calculate cost for zero coeffs inter_zero_coeff_cost = cu_zero_coeff_cost(state, work_tree, x, y, depth) + inter_bitcost * state->lambda; } kvz_quantize_lcu_residual(state, true, has_chroma, x, y, depth, NULL, lcu, false); int cbf = cbf_is_set_any(cur_cu->cbf, depth); if (cur_cu->merged && !cbf && cur_cu->part_size == SIZE_2Nx2N) { cur_cu->merged = 0; cur_cu->skipped = 1; // Selecting skip reduces bits needed to code the CU if (inter_bitcost > 1) { inter_bitcost -= 1; } } } lcu_fill_inter(lcu, x_local, y_local, cu_width); lcu_fill_cbf(lcu, x_local, y_local, cu_width, cur_cu); } } if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) { cost = kvz_cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, lcu); if (state->encoder_control->chroma_format != KVZ_CSP_400) { cost += kvz_cu_rd_cost_chroma(state, x_local, y_local, MIN(depth, 3), cur_cu, lcu); } double mode_bits; if (cur_cu->type == CU_INTRA) { mode_bits = calc_mode_bits(state, lcu, cur_cu, x, y); } else { mode_bits = inter_bitcost; } cost += mode_bits * state->lambda; if (ctrl->cfg.zero_coeff_rdo && inter_zero_coeff_cost <= cost) { cost = inter_zero_coeff_cost; // Restore saved pixels from lower level of the working tree. copy_cu_pixels(x_local, y_local, cu_width, &work_tree[depth + 1], lcu); if (cur_cu->merged && cur_cu->part_size == SIZE_2Nx2N) { cur_cu->merged = 0; cur_cu->skipped = 1; lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu); } if (cur_cu->tr_depth != depth) { // Reset transform depth since there are no coefficients. This // ensures that CBF is cleared for the whole area of the CU. kvz_lcu_fill_trdepth(lcu, x, y, depth, depth); } cur_cu->cbf = 0; lcu_fill_cbf(lcu, x_local, y_local, cu_width, cur_cu); } } bool can_split_cu = // If the CU is partially outside the frame, we need to split it even // if pu_depth_intra and pu_depth_inter would not permit it. cur_cu->type == CU_NOTSET || depth < pu_depth_intra.max || (state->frame->slicetype != KVZ_SLICE_I && depth < pu_depth_inter.max); // Recursively split all the way to max search depth. if (can_split_cu) { int half_cu = cu_width / 2; double split_cost = 0.0; int cbf = cbf_is_set_any(cur_cu->cbf, depth); if (depth < MAX_DEPTH) { // Add cost of cu_split_flag. uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth); const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]); cost += CTX_ENTROPY_FBITS(ctx, 0) * state->lambda; split_cost += CTX_ENTROPY_FBITS(ctx, 1) * state->lambda; } if (cur_cu->type == CU_INTRA && depth == MAX_DEPTH) { // Add cost of intra part_size. const cabac_ctx_t *ctx = &(state->cabac.ctx.part_size_model[0]); cost += CTX_ENTROPY_FBITS(ctx, 1) * state->lambda; // 2Nx2N split_cost += CTX_ENTROPY_FBITS(ctx, 0) * state->lambda; // NxN } // If skip mode was selected for the block, skip further search. // Skip mode means there's no coefficients in the block, so splitting // might not give any better results but takes more time to do. // It is ok to interrupt the search as soon as it is known that // the split costs at least as much as not splitting. if (cur_cu->type == CU_NOTSET || cbf || state->encoder_control->cfg.cu_split_termination == KVZ_CU_SPLIT_TERMINATION_OFF) { if (split_cost < cost) split_cost += search_cu(state, x, y, depth + 1, work_tree); if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y, depth + 1, work_tree); if (split_cost < cost) split_cost += search_cu(state, x, y + half_cu, depth + 1, work_tree); if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y + half_cu, depth + 1, work_tree); } else { split_cost = INT_MAX; } // If no search is not performed for this depth, try just the best mode // of the top left CU from the next depth. This should ensure that 64x64 // gets used, at least in the most obvious cases, while avoiding any // searching. if (cur_cu->type == CU_NOTSET && depth < MAX_PU_DEPTH && x + cu_width <= frame->width && y + cu_width <= frame->height) { cu_info_t *cu_d1 = LCU_GET_CU_AT_PX(&work_tree[depth + 1], x_local, y_local); // If the best CU in depth+1 is intra and the biggest it can be, try it. if (cu_d1->type == CU_INTRA && cu_d1->depth == depth + 1) { cost = 0; cur_cu->intra = cu_d1->intra; cur_cu->type = CU_INTRA; cur_cu->part_size = SIZE_2Nx2N; kvz_lcu_fill_trdepth(lcu, x, y, depth, cur_cu->tr_depth); lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu); const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400; const int8_t mode_chroma = has_chroma ? cur_cu->intra.mode_chroma : -1; kvz_intra_recon_cu(state, x, y, depth, cur_cu->intra.mode, mode_chroma, NULL, lcu); cost += kvz_cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, lcu); if (has_chroma) { cost += kvz_cu_rd_cost_chroma(state, x_local, y_local, depth, cur_cu, lcu); } // Add the cost of coding no-split. uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth); const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]); cost += CTX_ENTROPY_FBITS(ctx, 0) * state->lambda; // Add the cost of coding intra mode only once. double mode_bits = calc_mode_bits(state, lcu, cur_cu, x, y); cost += mode_bits * state->lambda; } } if (split_cost < cost) { // Copy split modes to this depth. cost = split_cost; work_tree_copy_up(x_local, y_local, depth, work_tree); #if KVZ_DEBUG //debug_split = 1; #endif } else if (depth > 0) { // Copy this CU's mode all the way down for use in adjacent CUs mode // search. work_tree_copy_down(x_local, y_local, depth, work_tree); } } else if (depth >= 0 && depth < MAX_PU_DEPTH) { // Need to copy modes down since the lower level of the work tree is used // when searching SMP and AMP blocks. work_tree_copy_down(x_local, y_local, depth, work_tree); } assert(cur_cu->type != CU_NOTSET); return cost; } /** * Initialize lcu_t for search. * - Copy reference CUs. * - Copy reference pixels from neighbouring LCUs. * - Copy reference pixels from this LCU. */ static void init_lcu_t(const encoder_state_t * const state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf) { const videoframe_t * const frame = state->tile->frame; FILL(*lcu, 0); lcu->rec.chroma_format = state->encoder_control->chroma_format; lcu->ref.chroma_format = state->encoder_control->chroma_format; // Copy reference cu_info structs from neighbouring LCUs. // Copy top CU row. if (y > 0) { for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) { const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x + i, y - 1); cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, i, -1); memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy left CU column. if (x > 0) { for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) { const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y + i); cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, i); memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy top-left CU. if (x > 0 && y > 0) { const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y - 1); cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, -1); memcpy(to_cu, from_cu, sizeof(*to_cu)); } // Copy top-right CU. if (y > 0 && x + LCU_WIDTH < frame->width) { const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x + LCU_WIDTH, y - 1); cu_info_t *to_cu = LCU_GET_TOP_RIGHT_CU(lcu); memcpy(to_cu, from_cu, sizeof(*to_cu)); } // Copy reference pixels. { const int pic_width = frame->width; // Copy top reference pixels. if (y > 0) { // hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH // number of allocated pixels left. int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x); int x_min_in_lcu = (x>0) ? 0 : 1; int luma_offset = OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu - 1); int chroma_offset = OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu - 1); int luma_bytes = (x_max + (1 - x_min_in_lcu))*sizeof(kvz_pixel); int chroma_bytes = (x_max / 2 + (1 - x_min_in_lcu))*sizeof(kvz_pixel); memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[luma_offset], luma_bytes); if (state->encoder_control->chroma_format != KVZ_CSP_400) { memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[chroma_offset], chroma_bytes); memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[chroma_offset], chroma_bytes); } } // Copy left reference pixels. if (x > 0) { int y_min_in_lcu = (y>0) ? 0 : 1; int luma_offset = OFFSET_VER_BUF(x, y, frame, y_min_in_lcu - 1); int chroma_offset = OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu - 1); int luma_bytes = (LCU_WIDTH + (1 - y_min_in_lcu)) * sizeof(kvz_pixel); int chroma_bytes = (LCU_WIDTH / 2 + (1 - y_min_in_lcu)) * sizeof(kvz_pixel); memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[luma_offset], luma_bytes); if (state->encoder_control->chroma_format != KVZ_CSP_400) { memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[chroma_offset], chroma_bytes); memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[chroma_offset], chroma_bytes); } } } // Copy LCU pixels. { const videoframe_t * const frame = state->tile->frame; int x_max = MIN(x + LCU_WIDTH, frame->width) - x; int y_max = MIN(y + LCU_WIDTH, frame->height) - y; int x_c = x / 2; int y_c = y / 2; int x_max_c = x_max / 2; int y_max_c = y_max / 2; kvz_pixels_blit(&frame->source->y[x + y * frame->source->stride], lcu->ref.y, x_max, y_max, frame->source->stride, LCU_WIDTH); if (state->encoder_control->chroma_format != KVZ_CSP_400) { kvz_pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride / 2], lcu->ref.u, x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2); kvz_pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride / 2], lcu->ref.v, x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2); } } } /** * Copy CU and pixel data to it's place in picture datastructure. */ static void copy_lcu_to_cu_data(const encoder_state_t * const state, int x_px, int y_px, const lcu_t *lcu) { // Copy non-reference CUs to picture. kvz_cu_array_copy_from_lcu(state->tile->frame->cu_array, x_px, y_px, lcu); // Copy pixels to picture. { videoframe_t * const pic = state->tile->frame; const int pic_width = pic->width; const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px; const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px; kvz_pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride], x_max, y_max, LCU_WIDTH, pic->rec->stride); if (state->encoder_control->chroma_format != KVZ_CSP_400) { kvz_pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); kvz_pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); } } } /** * Search LCU for modes. * - Best mode gets copied to current picture. */ void kvz_search_lcu(encoder_state_t * const state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf) { assert(x % LCU_WIDTH == 0); assert(y % LCU_WIDTH == 0); // Initialize the same starting state to every depth. The search process // will use these as temporary storage for predictions before making // a decision on which to use, and they get updated during the search // process. lcu_t work_tree[MAX_PU_DEPTH + 1]; init_lcu_t(state, x, y, &work_tree[0], hor_buf, ver_buf); for (int depth = 1; depth <= MAX_PU_DEPTH; ++depth) { work_tree[depth] = work_tree[0]; } // If the ML depth prediction is enabled, // generate the depth prediction interval // for the current lcu constraint_t* constr = state->constraint; if (constr->ml_intra_depth_ctu) { kvz_lcu_luma_depth_pred(constr->ml_intra_depth_ctu, work_tree[0].ref.y, state->qp); } // Start search from depth 0. double cost = search_cu(state, x, y, 0, work_tree); // Save squared cost for rate control. if(state->encoder_control->cfg.rc_algorithm == KVZ_LAMBDA) { kvz_get_lcu_stats(state, x / LCU_WIDTH, y / LCU_WIDTH)->weight = cost * cost; } // The best decisions through out the LCU got propagated back to depth 0, // so copy those back to the frame. copy_lcu_to_cu_data(state, x, y, &work_tree[0]); // Copy coeffs to encoder state. copy_coeffs(work_tree[0].coeff.y, state->coeff->y, LCU_WIDTH); copy_coeffs(work_tree[0].coeff.u, state->coeff->u, LCU_WIDTH_C); copy_coeffs(work_tree[0].coeff.v, state->coeff->v, LCU_WIDTH_C); }