/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "search.h" #include #include #include #include #include "config.h" #include "bitstream.h" #include "image.h" #include "strategies/strategies-picture.h" #include "strategies/strategies-ipol.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "rdo.h" #include "transform.h" #include "encoder.h" // Temporarily for debugging. #define SEARCH_MV_FULL_RADIUS 0 #define IN_FRAME(x, y, width, height, block_width, block_height) \ ((x) >= 0 && (y) >= 0 \ && (x) + (block_width) <= (width) \ && (y) + (block_height) <= (height)) // Cost treshold for doing intra search in inter frames with --rd=0. #ifndef INTRA_TRESHOLD # define INTRA_TRESHOLD 20 #endif // Extra cost for CU split. // Compensates for missing or incorrect bit costs. Must be recalculated if // bits are added or removed from cu-tree search. #ifndef CU_COST # define CU_COST 3 #endif // Disable early cu-split pruning. #ifndef FULL_CU_SPLIT_SEARCH # define FULL_CU_SPLIT_SEARCH false #endif // Modify weight of luma SSD. #ifndef LUMA_MULT # define LUMA_MULT 0.8 #endif // Modify weight of chroma SSD. #ifndef CHROMA_MULT # define CHROMA_MULT 1.5 #endif // Normalize SAD for comparison against SATD to estimate transform skip // for 4x4 blocks. #ifndef TRSKIP_RATIO # define TRSKIP_RATIO 1.7 #endif /** * This is used in the hexagon_search to select 3 points to search. * * The start of the hexagonal pattern has been repeated at the end so that * the indices between 1-6 can be used as the start of a 3-point list of new * points to search. * * 6 o-o 1 / 7 * / \ * 5 o 0 o 2 / 8 * \ / * 4 o-o 3 */ const vector2d_t large_hexbs[10] = { { 0, 0 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 }, { 1, -2 }, { 2, 0 } }; /** * This is used as the last step of the hexagon search. */ const vector2d_t small_hexbs[5] = { { 0, 0 }, { -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 } }; /* * 6 7 8 * 3 4 5 * 0 1 2 */ const vector2d_t square[9] = { { -1, 1 }, { 0, 1 }, { 1, 1 }, { -1, 0 }, { 0, 0 }, { 1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 } }; static uint32_t get_ep_ex_golomb_bitcost(uint32_t symbol, uint32_t count) { int32_t num_bins = 0; while (symbol >= (uint32_t)(1 << count)) { ++num_bins; symbol -= 1 << count; ++count; } num_bins ++; return num_bins; } static uint32_t get_mvd_coding_cost(vector2d_t *mvd) { uint32_t bitcost = 0; const int32_t mvd_hor = mvd->x; const int32_t mvd_ver = mvd->y; const int8_t hor_abs_gr0 = mvd_hor != 0; const int8_t ver_abs_gr0 = mvd_ver != 0; const uint32_t mvd_hor_abs = abs(mvd_hor); const uint32_t mvd_ver_abs = abs(mvd_ver); // Greater than 0 for x/y bitcost += 2; if (hor_abs_gr0) { if (mvd_hor_abs > 1) { bitcost += get_ep_ex_golomb_bitcost(mvd_hor_abs-2, 1) - 2; // TODO: tune the costs } // Greater than 1 + sign bitcost += 2; } if (ver_abs_gr0) { if (mvd_ver_abs > 1) { bitcost += get_ep_ex_golomb_bitcost(mvd_ver_abs-2, 1) - 2; // TODO: tune the costs } // Greater than 1 + sign bitcost += 2; } return bitcost; } static int calc_mvd_cost(const encoder_state_t * const state, int x, int y, int mv_shift, int16_t mv_cand[2][2], inter_merge_cand_t merge_cand[MRG_MAX_NUM_CANDS], int16_t num_cand,int32_t ref_idx, uint32_t *bitcost) { uint32_t temp_bitcost = 0; uint32_t merge_idx; int cand1_cost,cand2_cost; vector2d_t mvd_temp1, mvd_temp2; int8_t merged = 0; int8_t cur_mv_cand = 0; x <<= mv_shift; y <<= mv_shift; // Check every candidate to find a match for(merge_idx = 0; merge_idx < (uint32_t)num_cand; merge_idx++) { if (merge_cand[merge_idx].dir == 3) continue; if (merge_cand[merge_idx].mv[merge_cand[merge_idx].dir - 1][0] == x && merge_cand[merge_idx].mv[merge_cand[merge_idx].dir - 1][1] == y && merge_cand[merge_idx].ref[merge_cand[merge_idx].dir - 1] == ref_idx) { temp_bitcost += merge_idx; merged = 1; break; } } // Check mvd cost only if mv is not merged if(!merged) { mvd_temp1.x = x - mv_cand[0][0]; mvd_temp1.y = y - mv_cand[0][1]; cand1_cost = get_mvd_coding_cost(&mvd_temp1); mvd_temp2.x = x - mv_cand[1][0]; mvd_temp2.y = y - mv_cand[1][1]; cand2_cost = get_mvd_coding_cost(&mvd_temp2); // Select candidate 1 if it has lower cost if (cand2_cost < cand1_cost) { cur_mv_cand = 1; } temp_bitcost += cur_mv_cand ? cand2_cost : cand1_cost; } *bitcost = temp_bitcost; return temp_bitcost*(int32_t)(state->global->cur_lambda_cost_sqrt+0.5); } unsigned tz_pattern_search(const encoder_state_t * const state, const image_t *pic, const image_t *ref, unsigned pattern_type, const vector2d_t *orig, const int iDist, vector2d_t *mv, unsigned best_cost, int *best_dist, int16_t mv_cand[2][2], inter_merge_cand_t merge_cand[MRG_MAX_NUM_CANDS], int16_t num_cand, int32_t ref_idx, uint32_t *best_bitcost, int block_width, int max_lcu_below) { int n_points; int best_index = -1; int i; vector2d_t mv_best = { 0, 0 }; //implemented search patterns vector2d_t pattern[4][8] = { //diamond (8 points) //[ ][ ][ ][ ][1][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][8][ ][ ][ ][5][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[4][ ][ ][ ][o][ ][ ][ ][2] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][7][ ][ ][ ][6][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][3][ ][ ][ ][ ] { { 0, iDist }, { iDist, 0 }, { 0, -iDist }, { -iDist, 0 }, { iDist / 2, iDist / 2 }, { iDist / 2, -iDist / 2 }, { -iDist / 2, -iDist / 2 }, { -iDist / 2, iDist / 2 } }, //square (8 points) //[8][ ][ ][ ][1][ ][ ][ ][2] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[7][ ][ ][ ][o][ ][ ][ ][3] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[6][ ][ ][ ][5][ ][ ][ ][4] { { 0, iDist }, { iDist, iDist }, { iDist, 0 }, { iDist, -iDist }, { 0, -iDist }, { -iDist, -iDist }, { -iDist, 0 }, { -iDist, iDist } }, //octagon (8 points) //[ ][ ][5][ ][ ][ ][1][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][2] //[4][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][o][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[8][ ][ ][ ][ ][ ][ ][ ][6] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][7][ ][ ][ ][3][ ][ ] { { iDist / 2, iDist }, { iDist, iDist / 2 }, { iDist / 2, -iDist }, { -iDist, iDist / 2 }, { -iDist / 2, iDist }, { iDist, -iDist / 2 }, { -iDist / 2, -iDist }, { -iDist, -iDist / 2 } }, //hexagon (6 points) //[ ][ ][5][ ][ ][ ][1][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[4][ ][ ][ ][o][ ][ ][ ][2] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][ ][ ][ ][ ][ ][ ][ ] //[ ][ ][6][ ][ ][ ][3][ ][ ] { { iDist / 2, iDist }, { iDist, 0 }, { iDist / 2, -iDist }, { -iDist, 0 }, { iDist / 2, iDist }, { -iDist / 2, -iDist }, { 0, 0 }, { 0, 0 } } }; //make sure parameter pattern_type is within correct range if (pattern_type > sizeof pattern - 1) { pattern_type = sizeof pattern - 1; } //set the number of points to be checked if (iDist == 1) { switch (pattern_type) { case 0: n_points = 4; break; case 2: n_points = 4; break; case 3: n_points = 4; break; default: n_points = 8; break; }; } else { switch (pattern_type) { case 3: n_points = 6; break; default: n_points = 8; break; }; } //compute SAD values for all chosen points for (i = 0; i < n_points; i++) { vector2d_t *current = &pattern[pattern_type][i]; unsigned cost; uint32_t bitcost; { PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS); cost = image_calc_sad(pic, ref, orig->x, orig->y, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv->x + current->x, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv->y + current->y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(state, mv->x + current->x, mv->y + current->y, 2, mv_cand, merge_cand, num_cand, ref_idx, &bitcost); PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, state->encoder_control->threadqueue, "type=sad,step=large_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", state->global->frame, state->tile->id, ref->poc - state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv->x + current->x, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv->x + current->x + block_width, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv->y + current->y, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv->y + current->y + block_width); } if (cost < best_cost) { best_cost = cost; *best_bitcost = bitcost; best_index = i; } } if (best_index >= 0) { mv_best = pattern[pattern_type][best_index]; *best_dist = iDist; } mv->x += mv_best.x; mv->y += mv_best.y; return best_cost; } unsigned tz_raster_search(const encoder_state_t * const state, const image_t *pic, const image_t *ref, const vector2d_t *orig, vector2d_t *mv, unsigned best_cost, int16_t mv_cand[2][2], inter_merge_cand_t merge_cand[MRG_MAX_NUM_CANDS], int16_t num_cand, int32_t ref_idx, uint32_t *best_bitcost, int block_width, int iSearchRange, int iRaster, int max_lcu_below) { int i; int k; vector2d_t mv_best = { 0, 0 }; //compute SAD values for every point in the iRaster downsampled version of the current search area for (i = iSearchRange; i >= -iSearchRange; i -= iRaster) { for (k = -iSearchRange; k <= iSearchRange; k += iRaster) { vector2d_t current = { k, i }; unsigned cost; uint32_t bitcost; { PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS); cost = image_calc_sad(pic, ref, orig->x, orig->y, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv->x + k, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv->y + i, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(state, mv->x + k, mv->y + i, 2, mv_cand, merge_cand, num_cand, ref_idx, &bitcost); PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, state->encoder_control->threadqueue, "type=sad,step=large_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", state->global->frame, state->tile->id, ref->poc - state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv->x + k, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv->x + k + block_width, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv->y + i, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv->y + i + block_width); } if (cost < best_cost) { best_cost = cost; *best_bitcost = bitcost; mv_best = current; } } } mv->x += mv_best.x; mv->y += mv_best.y; return best_cost; } static unsigned tz_search(const encoder_state_t * const state, unsigned depth, const image_t *pic, const image_t *ref, const vector2d_t *orig, vector2d_t *mv_in_out, int16_t mv_cand[2][2], inter_merge_cand_t merge_cand[MRG_MAX_NUM_CANDS], int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out) { //TZ parameters int iSearchRange = 96; // search range for each stage int iRaster = 5; // search distance limit and downsampling factor for step 3 unsigned step2_type = 0; // search patterns for steps 2 and 4 unsigned step4_type = 0; bool bRasterRefinementEnable = true; // enable step 4 mode 1 bool bStarRefinementEnable = false; // enable step 4 mode 2 (only one mode will be executed) int block_width = CU_WIDTH_FROM_DEPTH(depth); vector2d_t mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; unsigned best_cost = UINT32_MAX; uint32_t best_bitcost = 0; int iDist; int best_dist = 0; unsigned best_index = num_cand; int max_lcu_below = -1; if (state->encoder_control->owf) { max_lcu_below = 1; } //step 1, compare (0,0) vector to predicted vectors // Check whatever input vector we got, unless its (0, 0) which will be checked later. if (mv.x || mv.y) { PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS); best_cost = image_calc_sad(pic, ref, orig->x, orig->y, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y, block_width, block_width, max_lcu_below); best_cost += calc_mvd_cost(state, mv.x, mv.y, 2, mv_cand, merge_cand, num_cand, ref_idx, &best_bitcost); PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, state->encoder_control->threadqueue, "type=sad,step=large_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", state->global->frame, state->tile->id, ref->poc - state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + block_width, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + block_width); } int i; // Select starting point from among merge candidates. These should include // both mv_cand vectors and (0, 0). for (i = 0; i < num_cand; ++i) { if (merge_cand[i].dir == 3) continue; mv.x = merge_cand[i].mv[merge_cand[i].dir - 1][0] >> 2; mv.y = merge_cand[i].mv[merge_cand[i].dir - 1][1] >> 2; PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS); uint32_t bitcost; unsigned cost = image_calc_sad(pic, ref, orig->x, orig->y, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(state, mv.x, mv.y, 2, mv_cand, merge_cand, num_cand, ref_idx, &bitcost); PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, state->encoder_control->threadqueue, "type=sad,step=large_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", state->global->frame, state->tile->id, ref->poc - state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + block_width, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + block_width); if (cost < best_cost) { best_cost = cost; best_index = i; best_bitcost = bitcost; } } if (best_index < (unsigned)num_cand) { mv.x = merge_cand[best_index].mv[merge_cand[best_index].dir - 1][0] >> 2; mv.y = merge_cand[best_index].mv[merge_cand[best_index].dir - 1][1] >> 2; } else { mv.x = mv_in_out->x >> 2; mv.y = mv_in_out->y >> 2; } //step 2, grid search for (iDist = 1; iDist <= iSearchRange; iDist *= 2) { best_cost = tz_pattern_search(state, pic, ref, step2_type, orig, iDist, &mv, best_cost, &best_dist, mv_cand, merge_cand, num_cand, ref_idx, &best_bitcost, block_width, max_lcu_below); } //step 3, raster scan if (best_dist > iRaster) { best_dist = iRaster; best_cost = tz_raster_search(state, pic, ref, orig, &mv, best_cost, mv_cand, merge_cand, num_cand, ref_idx, &best_bitcost, block_width, iSearchRange, iRaster, max_lcu_below); } //step 4 //raster refinement if (bRasterRefinementEnable && best_dist > 0) { iDist = best_dist >> 1; while (iDist > 0) { best_cost = tz_pattern_search(state, pic, ref, step4_type, orig, iDist, &mv, best_cost, &best_dist, mv_cand, merge_cand, num_cand, ref_idx, &best_bitcost, block_width, max_lcu_below); iDist = iDist >> 1; } } //star refinement (repeat step 2 for the current starting point) if (bStarRefinementEnable && best_dist > 0) { for (iDist = 1; iDist <= iSearchRange; iDist *= 2) { best_cost = tz_pattern_search(state, pic, ref, step4_type, orig, iDist, &mv, best_cost, &best_dist, mv_cand, merge_cand, num_cand, ref_idx, &best_bitcost, block_width, max_lcu_below); } } mv.x = mv.x << 2; mv.y = mv.y << 2; *mv_in_out = mv; *bitcost_out = best_bitcost; return best_cost; } /** * \brief Do motion search using the HEXBS algorithm. * * \param depth log2 depth of the search * \param pic Picture motion vector is searched for. * \param ref Picture motion vector is searched from. * \param orig Top left corner of the searched for block. * \param mv_in_out Predicted mv in and best out. Quarter pixel precision. * * \returns Cost of the motion vector. * * Motion vector is searched by first searching iteratively with the large * hexagon pattern until the best match is at the center of the hexagon. * As a final step a smaller hexagon is used to check the adjacent pixels. * * If a non 0,0 predicted motion vector predictor is given as mv_in_out, * the 0,0 vector is also tried. This is hoped to help in the case where * the predicted motion vector is way off. In the future even more additional * points like 0,0 might be used, such as vectors from top or left. */ static unsigned hexagon_search(const encoder_state_t * const state, unsigned depth, const image_t *pic, const image_t *ref, const vector2d_t *orig, vector2d_t *mv_in_out, int16_t mv_cand[2][2], inter_merge_cand_t merge_cand[MRG_MAX_NUM_CANDS], int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out) { vector2d_t mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = UINT32_MAX; uint32_t best_bitcost = 0, bitcost; unsigned i; unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs. int max_lcu_below = -1; if (state->encoder_control->owf) { max_lcu_below = 1; } // Check mv_in, if it's not in merge candidates. bool mv_in_merge_cand = false; for (int i = 0; i < num_cand; ++i) { if (merge_cand[i].dir == 3) continue; if (merge_cand[i].mv[merge_cand[i].dir - 1][0] >> 2 == mv.x && merge_cand[i].mv[merge_cand[i].dir - 1][1] >> 2 == mv.y) { mv_in_merge_cand = true; break; } } if (!mv_in_merge_cand) { PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS); best_cost = image_calc_sad(pic, ref, orig->x, orig->y, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y, block_width, block_width, max_lcu_below); best_cost += calc_mvd_cost(state, mv.x, mv.y, 2, mv_cand, merge_cand, num_cand, ref_idx, &bitcost); best_bitcost = bitcost; best_index = num_cand; PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, state->encoder_control->threadqueue, "type=sad,step=large_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", state->global->frame, state->tile->id, ref->poc - state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + block_width, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + block_width); } // Select starting point from among merge candidates. These should include // both mv_cand vectors and (0, 0). for (i = 0; i < num_cand; ++i) { if (merge_cand[i].dir == 3) continue; mv.x = merge_cand[i].mv[merge_cand[i].dir - 1][0] >> 2; mv.y = merge_cand[i].mv[merge_cand[i].dir - 1][1] >> 2; PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS); unsigned cost = image_calc_sad(pic, ref, orig->x, orig->y, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(state, mv.x, mv.y, 2, mv_cand, merge_cand, num_cand, ref_idx, &bitcost); PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, state->encoder_control->threadqueue, "type=sad,step=large_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", state->global->frame, state->tile->id, ref->poc - state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + block_width, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + block_width); if (cost < best_cost) { best_cost = cost; best_index = i; best_bitcost = bitcost; } } if (best_index < num_cand) { mv.x = merge_cand[best_index].mv[merge_cand[best_index].dir - 1][0] >> 2; mv.y = merge_cand[best_index].mv[merge_cand[best_index].dir - 1][1] >> 2; } else { mv.x = mv_in_out->x >> 2; mv.y = mv_in_out->y >> 2; } // Search the initial 7 points of the hexagon. best_index = 0; for (i = 0; i < 7; ++i) { const vector2d_t *pattern = &large_hexbs[i]; unsigned cost; { PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS); cost = image_calc_sad(pic, ref, orig->x, orig->y, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + pattern->x, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + pattern->y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(state, mv.x + pattern->x, mv.y + pattern->y, 2, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, state->encoder_control->threadqueue, "type=sad,step=large_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", state->global->frame, state->tile->id, ref->poc - state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + pattern->x, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + pattern->x + block_width, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + pattern->y, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + pattern->y + block_width); } if (cost < best_cost) { best_cost = cost; best_index = i; best_bitcost = bitcost; } } // Iteratively search the 3 new points around the best match, until the best // match is in the center. while (best_index != 0) { unsigned start; // Starting point of the 3 offsets to be searched. if (best_index == 1) { start = 6; } else if (best_index == 8) { start = 1; } else { start = best_index - 1; } // Move the center to the best match. mv.x += large_hexbs[best_index].x; mv.y += large_hexbs[best_index].y; best_index = 0; // Iterate through the next 3 points. for (i = 0; i < 3; ++i) { const vector2d_t *offset = &large_hexbs[start + i]; unsigned cost; { PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS); cost = image_calc_sad(pic, ref, orig->x, orig->y, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(state, mv.x + offset->x, mv.y + offset->y, 2, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, state->encoder_control->threadqueue, "type=sad,step=large_hexbs_iterative,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", state->global->frame, state->tile->id, ref->poc - state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x + block_width, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y + block_width); } if (cost < best_cost) { best_cost = cost; best_index = start + i; best_bitcost = bitcost; } ++offset; } } // Move the center to the best match. mv.x += large_hexbs[best_index].x; mv.y += large_hexbs[best_index].y; best_index = 0; // Do the final step of the search with a small pattern. for (i = 1; i < 5; ++i) { const vector2d_t *offset = &small_hexbs[i]; unsigned cost; { PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_PIXELS); cost = image_calc_sad(pic, ref, orig->x, orig->y, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y, block_width, block_width, max_lcu_below); cost += calc_mvd_cost(state, mv.x + offset->x, mv.y + offset->y, 2, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_PIXELS, state->encoder_control->threadqueue, "type=sad,step=small_hexbs,frame=%d,tile=%d,ref=%d,px_x=%d-%d,px_y=%d-%d,ref_px_x=%d-%d,ref_px_y=%d-%d", state->global->frame, state->tile->id, ref->poc - state->global->poc, orig->x, orig->x + block_width, orig->y, orig->y + block_width, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x, (state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x + block_width, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y, (state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y + block_width); } if (cost > 0 && cost < best_cost) { best_cost = cost; best_index = i; best_bitcost = bitcost; } } // Adjust the movement vector according to the final best match. mv.x += small_hexbs[best_index].x; mv.y += small_hexbs[best_index].y; // Return final movement vector in quarter-pixel precision. mv_in_out->x = mv.x << 2; mv_in_out->y = mv.y << 2; *bitcost_out = best_bitcost; return best_cost; } #if SEARCH_MV_FULL_RADIUS static unsigned search_mv_full(unsigned depth, const picture *pic, const picture *ref, const vector2d *orig, vector2d *mv_in_out, int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3], int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out) { vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = UINT32_MAX; int x, y; uint32_t best_bitcost = 0, bitcost; vector2d min_mv, max_mv; /*if (abs(mv.x) > SEARCH_MV_FULL_RADIUS || abs(mv.y) > SEARCH_MV_FULL_RADIUS) { best_cost = calc_sad(pic, ref, orig->x, orig->y, orig->x, orig->y, block_width, block_width); mv.x = 0; mv.y = 0; }*/ min_mv.x = mv.x - SEARCH_MV_FULL_RADIUS; min_mv.y = mv.y - SEARCH_MV_FULL_RADIUS; max_mv.x = mv.x + SEARCH_MV_FULL_RADIUS; max_mv.y = mv.y + SEARCH_MV_FULL_RADIUS; for (y = min_mv.y; y < max_mv.y; ++y) { for (x = min_mv.x; x < max_mv.x; ++x) { unsigned cost = calc_sad(pic, ref, orig->x, orig->y, orig->x + x, orig->y + y, block_width, block_width); cost += calc_mvd_cost(x, y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); if (cost < best_cost) { best_cost = cost; best_bitcost = bitcost; mv.x = x; mv.y = y; } } } mv_in_out->x = mv.x << 2; mv_in_out->y = mv.y << 2; *bitcost_out = best_bitcost; return best_cost; } #endif /** * \brief Do fractional motion estimation * * \param depth log2 depth of the search * \param pic Picture motion vector is searched for. * \param ref Picture motion vector is searched from. * \param orig Top left corner of the searched for block. * \param mv_in_out Predicted mv in and best out. Quarter pixel precision. * * \returns Cost of the motion vector. * * Algoritm first searches 1/2-pel positions around integer mv and after best match is found, * refines the search by searching best 1/4-pel postion around best 1/2-pel position. */ static unsigned search_frac(const encoder_state_t * const state, unsigned depth, const image_t *pic, const image_t *ref, const vector2d_t *orig, vector2d_t *mv_in_out, int16_t mv_cand[2][2], inter_merge_cand_t merge_cand[MRG_MAX_NUM_CANDS], int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out) { //Set mv to halfpel precision vector2d_t mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 }; int block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned best_cost = UINT32_MAX; uint32_t best_bitcost = 0, bitcost; unsigned i; unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs. unsigned cost = 0; cost_pixel_nxn_func *satd = pixels_get_satd_func(block_width); vector2d_t halfpel_offset; #define FILTER_SIZE 8 #define HALF_FILTER (FILTER_SIZE>>1) //create buffer for block + extra for filter int src_stride = block_width+FILTER_SIZE+1; pixel_t src[(LCU_WIDTH+FILTER_SIZE+1) * (LCU_WIDTH+FILTER_SIZE+1)]; pixel_t* src_off = &src[HALF_FILTER+HALF_FILTER*(block_width+FILTER_SIZE+1)]; //destination buffer for interpolation int dst_stride = (block_width+1)*4; pixel_t dst[(LCU_WIDTH+1) * (LCU_WIDTH+1) * 16]; pixel_t* dst_off = &dst[dst_stride*4+4]; extend_borders(orig->x, orig->y, mv.x-1, mv.y-1, state->tile->lcu_offset_x * LCU_WIDTH, state->tile->lcu_offset_y * LCU_WIDTH, ref->y, ref->width, ref->height, FILTER_SIZE, block_width+1, block_width+1, src); filter_inter_quarterpel_luma(state->encoder_control, src_off, src_stride, block_width+1, block_width+1, dst, dst_stride, 1, 1); //Set mv to half-pixel precision mv.x <<= 1; mv.y <<= 1; // Search halfpel positions around best integer mv for (i = 0; i < 9; ++i) { const vector2d_t *pattern = &square[i]; pixel_t tmp_filtered[LCU_WIDTH*LCU_WIDTH]; pixel_t tmp_pic[LCU_WIDTH*LCU_WIDTH]; int y,x; for(y = 0; y < block_width; ++y) { int dst_y = y*4+pattern->y*2; for(x = 0; x < block_width; ++x) { int dst_x = x*4+pattern->x*2; tmp_filtered[y*block_width+x] = dst_off[dst_y*dst_stride+dst_x]; tmp_pic[y*block_width+x] = pic->y[orig->x+x + (orig->y+y)*pic->width]; } } cost = satd(tmp_pic,tmp_filtered); cost += calc_mvd_cost(state, mv.x + pattern->x, mv.y + pattern->y, 1, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); if (cost < best_cost) { best_cost = cost; best_index = i; best_bitcost = bitcost; } } //Set mv to best match mv.x += square[best_index].x; mv.y += square[best_index].y; halfpel_offset.x = square[best_index].x*2; halfpel_offset.y = square[best_index].y*2; //Set mv to quarterpel precision mv.x <<= 1; mv.y <<= 1; //Search quarterpel points around best halfpel mv for (i = 0; i < 9; ++i) { const vector2d_t *pattern = &square[i]; pixel_t tmp_filtered[LCU_WIDTH*LCU_WIDTH]; pixel_t tmp_pic[LCU_WIDTH*LCU_WIDTH]; int y,x; for(y = 0; y < block_width; ++y) { int dst_y = y*4+halfpel_offset.y+pattern->y; for(x = 0; x < block_width; ++x) { int dst_x = x*4+halfpel_offset.x+pattern->x; tmp_filtered[y*block_width+x] = dst_off[dst_y*dst_stride+dst_x]; tmp_pic[y*block_width+x] = pic->y[orig->x+x + (orig->y+y)*pic->width]; } } cost = satd(tmp_pic,tmp_filtered); cost += calc_mvd_cost(state, mv.x + pattern->x, mv.y + pattern->y, 0, mv_cand,merge_cand,num_cand,ref_idx, &bitcost); if (cost < best_cost) { best_cost = cost; best_index = i; best_bitcost = bitcost; } } //Set mv to best final best match mv.x += square[best_index].x; mv.y += square[best_index].y; mv_in_out->x = mv.x; mv_in_out->y = mv.y; *bitcost_out = best_bitcost; return best_cost; } /** * Update lcu to have best modes at this depth. * \return Cost of best mode. */ static int search_cu_inter(const encoder_state_t * const state, int x, int y, int depth, lcu_t *lcu) { const videoframe_t * const frame = state->tile->frame; uint32_t ref_idx = 0; int x_local = (x&0x3f), y_local = (y&0x3f); int x_cu = x>>3; int y_cu = y>>3; int cu_pos = LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH; cu_info_t *cur_cu = &lcu->cu[cu_pos]; int16_t mv_cand[2][2]; // Search for merge mode candidate inter_merge_cand_t merge_cand[MRG_MAX_NUM_CANDS]; // Get list of candidates int16_t num_cand = inter_get_merge_cand(state, x, y, depth, merge_cand, lcu); // Select better candidate cur_cu->inter.mv_cand = 0; // Default to candidate 0 cur_cu->inter.cost = UINT_MAX; for (ref_idx = 0; ref_idx < state->global->ref->used_size; ref_idx++) { image_t *ref_image = state->global->ref->images[ref_idx]; uint32_t temp_bitcost = 0; uint32_t temp_cost = 0; vector2d_t orig, mvd; int32_t merged = 0; uint8_t cu_mv_cand = 0; int8_t merge_idx = 0; int8_t ref_list = state->global->refmap[ref_idx].list-1; int8_t temp_ref_idx = cur_cu->inter.mv_ref[ref_list]; orig.x = x_cu * CU_MIN_SIZE_PIXELS; orig.y = y_cu * CU_MIN_SIZE_PIXELS; // Get MV candidates cur_cu->inter.mv_ref[ref_list] = ref_idx; inter_get_mv_cand(state, x, y, depth, mv_cand, cur_cu, lcu, ref_list); cur_cu->inter.mv_ref[ref_list] = temp_ref_idx; vector2d_t mv = { 0, 0 }; { // Take starting point for MV search from previous frame. // When temporal motion vector candidates are added, there is probably // no point to this anymore, but for now it helps. int mid_x_cu = (x + (LCU_WIDTH >> (depth+1))) / 8; int mid_y_cu = (y + (LCU_WIDTH >> (depth+1))) / 8; cu_info_t *ref_cu = &state->global->ref->cu_arrays[ref_idx]->data[mid_x_cu + mid_y_cu * (frame->width_in_lcu << MAX_DEPTH)]; if (ref_cu->type == CU_INTER) { if (ref_cu->inter.mv_dir & 1) { mv.x = ref_cu->inter.mv[0][0]; mv.y = ref_cu->inter.mv[0][1]; } else { mv.x = ref_cu->inter.mv[1][0]; mv.y = ref_cu->inter.mv[1][1]; } } } #if SEARCH_MV_FULL_RADIUS temp_cost += search_mv_full(depth, frame, ref_pic, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost); #else switch (state->encoder_control->cfg->ime_algorithm) { case IME_TZ : temp_cost += tz_search(state, depth, frame->source, ref_image, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost); break; default: temp_cost += hexagon_search(state, depth, frame->source, ref_image, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost); break; } #endif if (state->encoder_control->cfg->fme_level > 0) { temp_cost = search_frac(state, depth, frame->source, ref_image, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost); } merged = 0; // Check every candidate to find a match for(merge_idx = 0; merge_idx < num_cand; merge_idx++) { if (merge_cand[merge_idx].dir != 3 && merge_cand[merge_idx].mv[merge_cand[merge_idx].dir - 1][0] == mv.x && merge_cand[merge_idx].mv[merge_cand[merge_idx].dir - 1][1] == mv.y && (uint32_t)merge_cand[merge_idx].ref == ref_idx) { merged = 1; break; } } // Only check when candidates are different if (!merged && (mv_cand[0][0] != mv_cand[1][0] || mv_cand[0][1] != mv_cand[1][1])) { vector2d_t mvd_temp1, mvd_temp2; int cand1_cost,cand2_cost; mvd_temp1.x = mv.x - mv_cand[0][0]; mvd_temp1.y = mv.y - mv_cand[0][1]; cand1_cost = get_mvd_coding_cost(&mvd_temp1); mvd_temp2.x = mv.x - mv_cand[1][0]; mvd_temp2.y = mv.y - mv_cand[1][1]; cand2_cost = get_mvd_coding_cost(&mvd_temp2); // Select candidate 1 if it has lower cost if (cand2_cost < cand1_cost) { cu_mv_cand = 1; } } mvd.x = mv.x - mv_cand[cu_mv_cand][0]; mvd.y = mv.y - mv_cand[cu_mv_cand][1]; if(temp_cost < cur_cu->inter.cost) { // Map reference index to L0/L1 pictures cur_cu->inter.mv_dir = ref_list+1; cur_cu->inter.mv_ref_coded[ref_list] = state->global->refmap[ref_idx].idx; cur_cu->merged = merged; cur_cu->merge_idx = merge_idx; cur_cu->inter.mv_ref[ref_list] = ref_idx; cur_cu->inter.mv[ref_list][0] = (int16_t)mv.x; cur_cu->inter.mv[ref_list][1] = (int16_t)mv.y; cur_cu->inter.mvd[ref_list][0] = (int16_t)mvd.x; cur_cu->inter.mvd[ref_list][1] = (int16_t)mvd.y; cur_cu->inter.cost = temp_cost; cur_cu->inter.bitcost = temp_bitcost + cur_cu->inter.mv_dir - 1 + cur_cu->inter.mv_ref_coded[ref_list]; cur_cu->inter.mv_cand = cu_mv_cand; } } // Search bi-pred positions if (state->global->slicetype == SLICE_B) { #define NUM_PRIORITY_LIST 12; static const uint8_t priorityList0[] = { 0, 1, 0, 2, 1, 2, 0, 3, 1, 3, 2, 3 }; static const uint8_t priorityList1[] = { 1, 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2 }; uint8_t cutoff = num_cand; for (int32_t idx = 0; idx= num_cand || j >= num_cand) break; // Find one L0 and L1 candidate according to the priority list if ((merge_cand[i].dir & 0x1) && (merge_cand[j].dir & 0x2)) { if (merge_cand[i].ref[0] != merge_cand[j].ref[1] || merge_cand[i].mv[0][0] != merge_cand[j].mv[1][0] || merge_cand[i].mv[0][1] != merge_cand[j].mv[1][1]) { int8_t cu_mv_cand = 0; // Force L0 and L1 references if (state->global->refmap[merge_cand[i].ref[0]].list == 2 || state->global->refmap[merge_cand[j].ref[1]].list == 1) continue; cur_cu->inter.mv_dir = 3; cur_cu->inter.mv_ref_coded[0] = state->global->refmap[merge_cand[i].ref[0]].idx; cur_cu->inter.mv_ref_coded[1] = state->global->refmap[merge_cand[j].ref[1]].idx; cur_cu->merged = 0; cur_cu->inter.mv_ref[0] = merge_cand[i].ref[0]; cur_cu->inter.mv_ref[1] = merge_cand[j].ref[1]; cur_cu->inter.mv[0][0] = merge_cand[i].mv[0][0]; cur_cu->inter.mv[0][1] = merge_cand[i].mv[0][1]; cur_cu->inter.mv[1][0] = merge_cand[j].mv[1][0]; cur_cu->inter.mv[1][1] = merge_cand[j].mv[1][1]; for (int reflist = 0; reflist < 2; reflist++) { cu_mv_cand = 0; inter_get_mv_cand(state, x, y, depth, mv_cand, cur_cu, lcu, reflist); if ((mv_cand[0][0] != mv_cand[1][0] || mv_cand[0][1] != mv_cand[1][1])) { vector2d_t mvd_temp1, mvd_temp2; int cand1_cost, cand2_cost; mvd_temp1.x = cur_cu->inter.mv[reflist][0] - mv_cand[0][0]; mvd_temp1.y = cur_cu->inter.mv[reflist][1] - mv_cand[0][1]; cand1_cost = get_mvd_coding_cost(&mvd_temp1); mvd_temp2.x = cur_cu->inter.mv[reflist][0] - mv_cand[1][0]; mvd_temp2.y = cur_cu->inter.mv[reflist][1] - mv_cand[1][1]; cand2_cost = get_mvd_coding_cost(&mvd_temp2); // Select candidate 1 if it has lower cost if (cand2_cost < cand1_cost) { //cu_mv_cand = 1; cu_mv_cand = 0; } } cur_cu->inter.mvd[reflist][0] = cur_cu->inter.mv[reflist][0] - mv_cand[cu_mv_cand][0]; cur_cu->inter.mvd[reflist][1] = cur_cu->inter.mv[reflist][1] - mv_cand[cu_mv_cand][1]; } cur_cu->inter.cost = 0; cur_cu->inter.bitcost = 10 + cur_cu->inter.mv_dir - 1 + cur_cu->inter.mv_ref_coded[0] + cur_cu->inter.mv_ref_coded[1]; cur_cu->inter.mv_cand = cu_mv_cand; break; } } } } return cur_cu->inter.cost; } /** * Copy all non-reference CU data from depth+1 to depth. */ static void work_tree_copy_up(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1]) { // Copy non-reference CUs. { const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; const int width_cu = LCU_WIDTH >> MAX_DEPTH >> depth; int x, y; for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { const cu_info_t *from_cu = &work_tree[depth + 1].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; cu_info_t *to_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy reconstructed pixels. { const int x = SUB_SCU(x_px); const int y = SUB_SCU(y_px); const int width_px = LCU_WIDTH >> depth; const int luma_index = x + y * LCU_WIDTH; const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2); const lcu_yuv_t *from = &work_tree[depth + 1].rec; lcu_yuv_t *to = &work_tree[depth].rec; const lcu_coeff_t *from_coeff = &work_tree[depth + 1].coeff; lcu_coeff_t *to_coeff = &work_tree[depth].coeff; pixels_blit(&from->y[luma_index], &to->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); pixels_blit(&from->u[chroma_index], &to->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); pixels_blit(&from->v[chroma_index], &to->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); // Copy coefficients up. They do not have to be copied down because they // are not used for the search. coefficients_blit(&from_coeff->y[luma_index], &to_coeff->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); coefficients_blit(&from_coeff->u[chroma_index], &to_coeff->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); coefficients_blit(&from_coeff->v[chroma_index], &to_coeff->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } /** * Copy all non-reference CU data from depth to depth+1..MAX_PU_DEPTH. */ static void work_tree_copy_down(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1]) { // TODO: clean up to remove the copy pasta const int width_px = LCU_WIDTH >> depth; int d; for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) { const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; const int width_cu = width_px >> MAX_DEPTH; int x, y; for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { const cu_info_t *from_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; cu_info_t *to_cu = &work_tree[d].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy reconstructed pixels. for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) { const int x = SUB_SCU(x_px); const int y = SUB_SCU(y_px); const int luma_index = x + y * LCU_WIDTH; const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2); lcu_yuv_t *from = &work_tree[depth].rec; lcu_yuv_t *to = &work_tree[d].rec; pixels_blit(&from->y[luma_index], &to->y[luma_index], width_px, width_px, LCU_WIDTH, LCU_WIDTH); pixels_blit(&from->u[chroma_index], &to->u[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); pixels_blit(&from->v[chroma_index], &to->v[chroma_index], width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2); } } static void lcu_set_trdepth(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth) { const int width_cu = LCU_CU_WIDTH >> depth; const vector2d_t lcu_cu = { (x_px & (LCU_WIDTH - 1)) / 8, (y_px & (LCU_WIDTH - 1)) / 8 }; cu_info_t *const cur_cu = &lcu->cu[lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH + LCU_CU_OFFSET]; int x, y; // Depth 4 doesn't go inside the loop. Set the top-left CU. cur_cu->tr_depth = tr_depth; for (y = 0; y < width_cu; ++y) { for (x = 0; x < width_cu; ++x) { cu_info_t *cu = &cur_cu[x + y * LCU_T_CU_WIDTH]; cu->tr_depth = tr_depth; } } } static void lcu_set_intra_mode(lcu_t *lcu, int x_px, int y_px, int depth, int pred_mode, int chroma_mode, int part_mode) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; // NxN can only be applied to a single CU at a time. if (part_mode == SIZE_NxN) { cu_info_t *cu = &lcu_cu[x_cu + y_cu * LCU_T_CU_WIDTH]; cu->depth = MAX_DEPTH; cu->type = CU_INTRA; cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode = pred_mode; cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode_chroma = chroma_mode; cu->part_size = part_mode; return; } // Set mode in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info_t *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; cu->depth = depth; cu->type = CU_INTRA; cu->intra[0].mode = pred_mode; cu->intra[1].mode = pred_mode; cu->intra[2].mode = pred_mode; cu->intra[3].mode = pred_mode; cu->intra[0].mode_chroma = chroma_mode; cu->part_size = part_mode; cu->coded = 1; } } } static void lcu_set_inter(lcu_t *lcu, int x_px, int y_px, int depth, cu_info_t *cur_cu) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; // Set mode in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info_t *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; //Check if this could be moved inside the if cu->coded = 1; if (cu != cur_cu) { cu->depth = cur_cu->depth; cu->type = CU_INTER; cu->tr_depth = cur_cu->tr_depth; cu->merged = cur_cu->merged; cu->skipped = cur_cu->skipped; memcpy(&cu->inter, &cur_cu->inter, sizeof(cur_cu->inter)); } } } } static void lcu_set_coeff(lcu_t *lcu, int x_px, int y_px, int depth, cu_info_t *cur_cu) { const int width_cu = LCU_CU_WIDTH >> depth; const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH; const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH; cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; int tr_split = cur_cu->tr_depth-cur_cu->depth; // Set coeff flags in every CU covered by part_mode in this depth. for (y = y_cu; y < y_cu + width_cu; ++y) { for (x = x_cu; x < x_cu + width_cu; ++x) { cu_info_t *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; // Use TU top-left CU to propagate coeff flags uint32_t mask = ~((width_cu>>tr_split)-1); cu_info_t *cu_from = &lcu_cu[(x & mask) + (y & mask) * LCU_T_CU_WIDTH]; if (cu != cu_from) { // Chroma coeff data is not used, luma is needed for deblocking cu->cbf.y = cu_from->cbf.y; } } } } /** * Calculate RD cost for a Coding Unit. * \return Cost of block * \param ref_cu CU used for prediction parameters. * * Calculates the RDO cost of a single CU that will not be split further. * Takes into account SSD of reconstruction and the cost of encoding whatever * prediction unit data needs to be coded. */ static double cu_rd_cost_luma(const encoder_state_t *const state, const int x_px, const int y_px, const int depth, const cu_info_t *const pred_cu, lcu_t *const lcu) { const int width = LCU_WIDTH >> depth; const uint8_t pu_index = PU_INDEX(x_px / 4, y_px / 4); // cur_cu is used for TU parameters. cu_info_t *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (x_px / 8) + (y_px / 8) * LCU_T_CU_WIDTH]; double coeff_bits = 0; double tr_tree_bits = 0; // Check that lcu is not in assert(x_px >= 0 && x_px < LCU_WIDTH); assert(y_px >= 0 && y_px < LCU_WIDTH); const uint8_t tr_depth = tr_cu->tr_depth - depth; // Add transform_tree split_transform_flag bit cost. bool intra_split_flag = pred_cu->type == CU_INTRA && pred_cu->part_size == SIZE_NxN && depth == 3; if (width <= TR_MAX_WIDTH && width > TR_MIN_WIDTH && !intra_split_flag) { const cabac_ctx_t *ctx = &(state->cabac.ctx.trans_subdiv_model[5 - (6 - depth)]); tr_tree_bits += CTX_ENTROPY_FBITS(ctx, tr_depth > 0); } if (tr_depth > 0) { int offset = width / 2; double sum = 0; sum += cu_rd_cost_luma(state, x_px, y_px, depth + 1, pred_cu, lcu); sum += cu_rd_cost_luma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu); sum += cu_rd_cost_luma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu); sum += cu_rd_cost_luma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu); return sum + tr_tree_bits * state->global->cur_lambda_cost; } // Add transform_tree cbf_luma bit cost. if (pred_cu->type == CU_INTRA || tr_depth > 0 || cbf_is_set(tr_cu->cbf.u, depth) || cbf_is_set(tr_cu->cbf.v, depth)) { const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_luma[!tr_depth]); tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.y, depth + pu_index)); } unsigned ssd = 0; // SSD between reconstruction and original for (int y = y_px; y < y_px + width; ++y) { for (int x = x_px; x < x_px + width; ++x) { int diff = (int)lcu->rec.y[y * LCU_WIDTH + x] - (int)lcu->ref.y[y * LCU_WIDTH + x]; ssd += diff*diff; } } { coeff_t coeff_temp[32 * 32]; int8_t luma_scan_mode = get_scan_order(pred_cu->type, pred_cu->intra[PU_INDEX(x_px / 4, y_px / 4)].mode, depth); // Code coeffs using cabac to get a better estimate of real coding costs. coefficients_blit(&lcu->coeff.y[(y_px*LCU_WIDTH) + x_px], coeff_temp, width, width, LCU_WIDTH, width); coeff_bits += get_coeff_cost(state, coeff_temp, width, 0, luma_scan_mode); } double bits = tr_tree_bits + coeff_bits; return (double)ssd * LUMA_MULT + bits * state->global->cur_lambda_cost; } static double cu_rd_cost_chroma(const encoder_state_t *const state, const int x_px, const int y_px, const int depth, const cu_info_t *const pred_cu, lcu_t *const lcu) { const vector2d_t lcu_px = { x_px / 2, y_px / 2 }; const int width = (depth <= MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth; cu_info_t *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x / 4) + (lcu_px.y / 4)*LCU_T_CU_WIDTH]; double tr_tree_bits = 0; double coeff_bits = 0; assert(x_px >= 0 && x_px < LCU_WIDTH); assert(y_px >= 0 && y_px < LCU_WIDTH); if (PU_INDEX(x_px / 4, y_px / 4) != 0) { // For MAX_PU_DEPTH calculate chroma for previous depth for the first // block and return 0 cost for all others. return 0; } if (depth < MAX_PU_DEPTH) { const int tr_depth = depth - pred_cu->depth; const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_chroma[tr_depth]); if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.u, depth - 1)) { tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.u, depth)); } if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.v, depth - 1)) { tr_tree_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.v, depth)); } } if (tr_cu->tr_depth > depth) { int offset = LCU_WIDTH >> (depth + 1); int sum = 0; sum += cu_rd_cost_chroma(state, x_px, y_px, depth + 1, pred_cu, lcu); sum += cu_rd_cost_chroma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu); sum += cu_rd_cost_chroma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu); sum += cu_rd_cost_chroma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu); return sum + tr_tree_bits * state->global->cur_lambda_cost; } // Chroma SSD int ssd = 0; for (int y = lcu_px.y; y < lcu_px.y + width; ++y) { for (int x = lcu_px.x; x < lcu_px.x + width; ++x) { int diff = (int)lcu->rec.u[y * LCU_WIDTH_C + x] - (int)lcu->ref.u[y * LCU_WIDTH_C + x]; ssd += diff * diff; } } for (int y = lcu_px.y; y < lcu_px.y + width; ++y) { for (int x = lcu_px.x; x < lcu_px.x + width; ++x) { int diff = (int)lcu->rec.v[y * LCU_WIDTH_C + x] - (int)lcu->ref.v[y * LCU_WIDTH_C + x]; ssd += diff * diff; } } { coeff_t coeff_temp[16 * 16]; int8_t scan_order = get_scan_order(pred_cu->type, pred_cu->intra[0].mode_chroma, depth); coefficients_blit(&lcu->coeff.u[(lcu_px.y*(LCU_WIDTH_C)) + lcu_px.x], coeff_temp, width, width, LCU_WIDTH_C, width); coeff_bits += get_coeff_cost(state, coeff_temp, width, 2, scan_order); coefficients_blit(&lcu->coeff.v[(lcu_px.y*(LCU_WIDTH_C)) + lcu_px.x], coeff_temp, width, width, LCU_WIDTH_C, width); coeff_bits += get_coeff_cost(state, coeff_temp, width, 2, scan_order); } double bits = tr_tree_bits + coeff_bits; return (double)ssd * CHROMA_MULT + bits * state->global->cur_lambda_cost; } /** * \brief Perform search for best intra transform split configuration. * * This function does a recursive search for the best intra transform split * configuration for a given intra prediction mode. * * \return RD cost of best transform split configuration. Splits in lcu->cu. * \param depth Current transform depth. * \param max_depth Depth to which TR split will be tried. * \param intra_mode Intra prediction mode. * \param cost_treshold RD cost at which search can be stopped. */ static double search_intra_trdepth(encoder_state_t * const state, int x_px, int y_px, int depth, int max_depth, int intra_mode, int cost_treshold, cu_info_t *const pred_cu, lcu_t *const lcu) { const int width = LCU_WIDTH >> depth; const int width_c = width > TR_MIN_WIDTH ? width / 2 : width; const int offset = width / 2; const vector2d_t lcu_px = { x_px & 0x3f, y_px & 0x3f }; cu_info_t *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x >> 3) + (lcu_px.y >> 3)*LCU_T_CU_WIDTH]; const bool reconstruct_chroma = !(x_px & 4 || y_px & 4); struct { pixel_t y[TR_MAX_WIDTH*TR_MAX_WIDTH]; pixel_t u[TR_MAX_WIDTH*TR_MAX_WIDTH]; pixel_t v[TR_MAX_WIDTH*TR_MAX_WIDTH]; } nosplit_pixels; cu_cbf_t nosplit_cbf; double split_cost = INT32_MAX; double nosplit_cost = INT32_MAX; assert(width >= TR_MIN_WIDTH); if (depth > 0) { tr_cu->tr_depth = depth; pred_cu->tr_depth = depth; nosplit_cost = 0.0; cbf_clear(&pred_cu->cbf.y, depth + PU_INDEX(x_px / 4, y_px / 4)); intra_recon_lcu_luma(state, x_px, y_px, depth, intra_mode, pred_cu, lcu); nosplit_cost += cu_rd_cost_luma(state, lcu_px.x, lcu_px.y, depth, pred_cu, lcu); if (reconstruct_chroma) { cbf_clear(&pred_cu->cbf.u, depth); cbf_clear(&pred_cu->cbf.v, depth); intra_recon_lcu_chroma(state, x_px, y_px, depth, intra_mode, pred_cu, lcu); nosplit_cost += cu_rd_cost_chroma(state, lcu_px.x, lcu_px.y, depth, pred_cu, lcu); } // Early stop codition for the recursive search. // If the cost of any 1/4th of the transform is already larger than the // whole transform, assume that splitting further is a bad idea. if (nosplit_cost >= cost_treshold) { return nosplit_cost; } nosplit_cbf = pred_cu->cbf; pixels_blit(lcu->rec.y, nosplit_pixels.y, width, width, LCU_WIDTH, width); if (reconstruct_chroma) { pixels_blit(lcu->rec.u, nosplit_pixels.u, width_c, width_c, LCU_WIDTH_C, width_c); pixels_blit(lcu->rec.v, nosplit_pixels.v, width_c, width_c, LCU_WIDTH_C, width_c); } } // Recurse further if all of the following: // - Current depth is less than maximum depth of the search (max_depth). // - Maximum transform hierarchy depth is constrained by clipping // max_depth. // - Min transform size hasn't been reached (MAX_PU_DEPTH). if (depth < max_depth && depth < MAX_PU_DEPTH) { split_cost = 3 * state->global->cur_lambda_cost; split_cost += search_intra_trdepth(state, x_px, y_px, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu); if (split_cost < nosplit_cost) { split_cost += search_intra_trdepth(state, x_px + offset, y_px, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu); } if (split_cost < nosplit_cost) { split_cost += search_intra_trdepth(state, x_px, y_px + offset, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu); } if (split_cost < nosplit_cost) { split_cost += search_intra_trdepth(state, x_px + offset, y_px + offset, depth + 1, max_depth, intra_mode, nosplit_cost, pred_cu, lcu); } double tr_split_bit = 0.0; double cbf_bits = 0.0; // Add bits for split_transform_flag = 1, because transform depth search bypasses // the normal recursion in the cost functions. if (depth >= 1 && depth <= 3) { const cabac_ctx_t *ctx = &(state->cabac.ctx.trans_subdiv_model[5 - (6 - depth)]); tr_split_bit += CTX_ENTROPY_FBITS(ctx, 1); } // Add cost of cbf chroma bits on transform tree. // All cbf bits are accumulated to pred_cu.cbf and cbf_is_set returns true // if cbf is set at any level >= depth, so cbf chroma is assumed to be 0 // if this and any previous transform block has no chroma coefficients. // When searching the first block we don't actually know the real values, // so this will code cbf as 0 and not code the cbf at all for descendants. { const uint8_t tr_depth = depth - pred_cu->depth; const cabac_ctx_t *ctx = &(state->cabac.ctx.qt_cbf_model_chroma[tr_depth]); if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.u, depth - 1)) { cbf_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.u, depth)); } if (tr_depth == 0 || cbf_is_set(pred_cu->cbf.v, depth - 1)) { cbf_bits += CTX_ENTROPY_FBITS(ctx, cbf_is_set(pred_cu->cbf.v, depth)); } } double bits = tr_split_bit + cbf_bits; split_cost += bits * state->global->cur_lambda_cost; } else { assert(width <= TR_MAX_WIDTH); } if (depth == 0 || split_cost < nosplit_cost) { return split_cost; } else { lcu_set_trdepth(lcu, x_px, y_px, depth, depth); pred_cu->cbf = nosplit_cbf; // We only restore the pixel data and not coefficients or cbf data. // The only thing we really need are the border pixels.intra_get_dir_luma_predictor pixels_blit(nosplit_pixels.y, lcu->rec.y, width, width, width, LCU_WIDTH); if (reconstruct_chroma) { pixels_blit(nosplit_pixels.u, lcu->rec.u, width_c, width_c, width_c, LCU_WIDTH_C); pixels_blit(nosplit_pixels.v, lcu->rec.v, width_c, width_c, width_c, LCU_WIDTH_C); } return nosplit_cost; } } static double luma_mode_bits(const encoder_state_t *state, int8_t luma_mode, const int8_t *intra_preds) { double mode_bits; bool mode_in_preds = false; for (int i = 0; i < 3; ++i) { if (luma_mode == intra_preds[i]) { mode_in_preds = true; } } const cabac_ctx_t *ctx = &(state->cabac.ctx.intra_mode_model); mode_bits = CTX_ENTROPY_FBITS(ctx, mode_in_preds); if (mode_in_preds) { mode_bits += ((luma_mode == intra_preds[0]) ? 1 : 2); } else { mode_bits += 5; } return mode_bits; } static double chroma_mode_bits(const encoder_state_t *state, int8_t chroma_mode, int8_t luma_mode) { const cabac_ctx_t *ctx = &(state->cabac.ctx.chroma_pred_model[0]); double mode_bits; if (chroma_mode == luma_mode) { mode_bits = CTX_ENTROPY_FBITS(ctx, 0); } else { mode_bits = 2.0 + CTX_ENTROPY_FBITS(ctx, 1); } return mode_bits; } static int8_t search_intra_chroma(encoder_state_t * const state, int x_px, int y_px, int depth, int8_t intra_mode, int8_t modes[5], int8_t num_modes, lcu_t *const lcu) { const bool reconstruct_chroma = !(x_px & 4 || y_px & 4); if (reconstruct_chroma) { const vector2d_t lcu_px = { x_px & 0x3f, y_px & 0x3f }; cu_info_t *const tr_cu = &lcu->cu[LCU_CU_OFFSET + (lcu_px.x >> 3) + (lcu_px.y >> 3)*LCU_T_CU_WIDTH]; struct { double cost; int8_t mode; } chroma, best_chroma; best_chroma.mode = 0; best_chroma.cost = MAX_INT; for (int8_t chroma_mode_i = 0; chroma_mode_i < num_modes; ++chroma_mode_i) { chroma.mode = modes[chroma_mode_i]; intra_recon_lcu_chroma(state, x_px, y_px, depth, chroma.mode, NULL, lcu); chroma.cost = cu_rd_cost_chroma(state, lcu_px.x, lcu_px.y, depth, tr_cu, lcu); double mode_bits = chroma_mode_bits(state, chroma.mode, intra_mode); chroma.cost += mode_bits * state->global->cur_lambda_cost; if (chroma.cost < best_chroma.cost) { best_chroma = chroma; } } return best_chroma.mode; } return 100; } /** * \brief Sort modes and costs to ascending order according to costs. */ static INLINE void sort_modes(int8_t *__restrict modes, double *__restrict costs, uint8_t length) { // Length is always between 5 and 23, and is either 21, 17, 9 or 8 about // 60% of the time, so there should be no need for anything more complex // than insertion sort. for (uint8_t i = 1; i < length; ++i) { const double cur_cost = costs[i]; const int8_t cur_mode = modes[i]; uint8_t j = i; while (j > 0 && cur_cost < costs[j - 1]) { costs[j] = costs[j - 1]; modes[j] = modes[j - 1]; --j; } costs[j] = cur_cost; modes[j] = cur_mode; } } /** * \brief Select mode with the smallest cost. */ static INLINE int8_t select_best_mode(const int8_t *modes, const double *costs, uint8_t length) { double best_mode = modes[0]; double best_cost = costs[0]; for (uint8_t i = 1; i < length; ++i) { if (costs[i] < best_cost) { best_cost = costs[i]; best_mode = modes[i]; } } return best_mode; } /** * \brief Calculate quality of the reconstruction. * * \param pred Predicted pixels in continous memory. * \param orig_block Orignal (target) pixels in continous memory. * \param satd_func SATD function for this block size. * \param sad_func SAD function this block size. * \param width Pixel width of the block. * * \return Estimated RD cost of the reconstruction and signaling the * coefficients of the residual. */ static double get_cost(encoder_state_t * const state, pixel_t *pred, pixel_t *orig_block, cost_pixel_nxn_func *satd_func, cost_pixel_nxn_func *sad_func, int width) { double satd_cost = satd_func(pred, orig_block); if (TRSKIP_RATIO != 0 && width == 4) { // If the mode looks better with SAD than SATD it might be a good // candidate for transform skip. How much better SAD has to be is // controlled by TRSKIP_RATIO. // Add the offset bit costs of signaling 'luma and chroma use trskip', // versus signaling 'luma and chroma don't use trskip' to the SAD cost. const cabac_ctx_t *ctx = &state->cabac.ctx.transform_skip_model_luma; double trskip_bits = CTX_ENTROPY_FBITS(ctx, 1) - CTX_ENTROPY_FBITS(ctx, 0); ctx = &state->cabac.ctx.transform_skip_model_chroma; trskip_bits += 2.0 * (CTX_ENTROPY_FBITS(ctx, 1) - CTX_ENTROPY_FBITS(ctx, 0)); double sad_cost = TRSKIP_RATIO * sad_func(pred, orig_block) + state->global->cur_lambda_cost_sqrt * trskip_bits; if (sad_cost < satd_cost) { return sad_cost; } } return satd_cost; } static void search_intra_chroma_rough(encoder_state_t * const state, int x_px, int y_px, int depth, const pixel_t *orig_u, const pixel_t *orig_v, int16_t origstride, const pixel_t *rec_u, const pixel_t *rec_v, int16_t recstride, int8_t luma_mode, int8_t modes[5], double costs[5]) { const bool reconstruct_chroma = !(x_px & 4 || y_px & 4); if (!reconstruct_chroma) return; const unsigned width = MAX(LCU_WIDTH_C >> depth, TR_MIN_WIDTH); for (int i = 0; i < 5; ++i) { costs[i] = 0; } cost_pixel_nxn_func *const satd_func = pixels_get_satd_func(width); //cost_pixel_nxn_func *const sad_func = pixels_get_sad_func(width); pixel_t _pred[LCU_WIDTH * LCU_WIDTH + 1 + SIMD_ALIGNMENT]; pixel_t *pred = ALIGNED_POINTER(_pred, SIMD_ALIGNMENT); pixel_t _orig_block[LCU_WIDTH * LCU_WIDTH + 1 + SIMD_ALIGNMENT]; pixel_t *orig_block = ALIGNED_POINTER(_orig_block, SIMD_ALIGNMENT); pixels_blit(orig_u, orig_block, width, width, origstride, width); for (int i = 0; i < 5; ++i) { if (modes[i] == luma_mode) continue; intra_get_pred(state->encoder_control, rec_u, NULL, recstride, pred, width, modes[i], 1); //costs[i] += get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width); costs[i] += satd_func(pred, orig_block); } pixels_blit(orig_v, orig_block, width, width, origstride, width); for (int i = 0; i < 5; ++i) { if (modes[i] == luma_mode) continue; intra_get_pred(state->encoder_control, rec_v, NULL, recstride, pred, width, modes[i], 2); //costs[i] += get_cost(encoder_state, pred, orig_block, satd_func, sad_func, width); costs[i] += satd_func(pred, orig_block); } sort_modes(modes, costs, 5); } /** * \brief Order the intra prediction modes according to a fast criteria. * * This function uses SATD to order the intra prediction modes. For 4x4 modes * SAD might be used instead, if the cost given by SAD is much better than the * one given by SATD, to take into account that 4x4 modes can be coded with * transform skip. * * The modes are searched using halving search and the total number of modes * that are tried is dependent on size of the predicted block. More modes * are tried for smaller blocks. * * \param orig Pointer to the top-left corner of current CU in the picture * being encoded. * \param orig_stride Stride of param orig. * \param rec Pointer to the top-left corner of current CU in the picture * being encoded. * \param rec_stride Stride of param rec. * \param width Width of the prediction block. * \param intra_preds Array of the 3 predicted intra modes. * * \param[out] modes The modes ordered according to their RD costs, from best * to worst. The number of modes and costs output is given by parameter * modes_to_check. * \param[out] costs The RD costs of corresponding modes in param modes. * * \return Number of prediction modes in param modes. */ static int8_t search_intra_rough(encoder_state_t * const state, pixel_t *orig, int32_t origstride, pixel_t *rec, int16_t recstride, int width, int8_t *intra_preds, int8_t modes[35], double costs[35]) { cost_pixel_nxn_func *satd_func = pixels_get_satd_func(width); cost_pixel_nxn_func *sad_func = pixels_get_sad_func(width); // Temporary block arrays pixel_t _pred[LCU_WIDTH * LCU_WIDTH + 1 + SIMD_ALIGNMENT]; pixel_t *pred = ALIGNED_POINTER(_pred, SIMD_ALIGNMENT); pixel_t _orig_block[LCU_WIDTH * LCU_WIDTH + 1 + SIMD_ALIGNMENT]; pixel_t *orig_block = ALIGNED_POINTER(_orig_block, SIMD_ALIGNMENT); pixel_t rec_filtered_temp[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8) + 1]; pixel_t *recf = &rec_filtered_temp[recstride + 1]; assert(width == 4 || width == 8 || width == 16 || width == 32); // Store original block for SAD computation pixels_blit(orig, orig_block, width, width, origstride, width); // Generate filtered reference pixels. { int16_t x, y; for (y = -1; y < recstride; y++) { recf[y*recstride - 1] = rec[y*recstride - 1]; } for (x = 0; x < recstride; x++) { recf[x - recstride] = rec[x - recstride]; } intra_filter(recf, recstride, width, 0); } int8_t modes_selected = 0; unsigned min_cost = UINT_MAX; unsigned max_cost = 0; // Initial offset decides how many modes are tried before moving on to the // recursive search. int offset; if (state->encoder_control->full_intra_search) { offset = 1; } else if (width == 4) { offset = 2; } else if (width == 8) { offset = 4; } else { offset = 8; } // Calculate SAD for evenly spaced modes to select the starting point for // the recursive search. for (int mode = 2; mode <= 34; mode += offset) { intra_get_pred(state->encoder_control, rec, recf, recstride, pred, width, mode, 0); costs[modes_selected] = get_cost(state, pred, orig_block, satd_func, sad_func, width); modes[modes_selected] = mode; min_cost = MIN(min_cost, costs[modes_selected]); max_cost = MAX(max_cost, costs[modes_selected]); ++modes_selected; } int8_t best_mode = select_best_mode(modes, costs, modes_selected); double best_cost = min_cost; // Skip recursive search if all modes have the same cost. if (min_cost != max_cost) { // Do a recursive search to find the best mode, always centering on the // current best mode. while (offset > 1) { offset >>= 1; int8_t center_node = best_mode; int8_t mode = center_node - offset; if (mode >= 2) { intra_get_pred(state->encoder_control, rec, recf, recstride, pred, width, mode, 0); costs[modes_selected] = get_cost(state, pred, orig_block, satd_func, sad_func, width); modes[modes_selected] = mode; if (costs[modes_selected] < best_cost) { best_cost = costs[modes_selected]; best_mode = modes[modes_selected]; } ++modes_selected; } mode = center_node + offset; if (mode <= 34) { intra_get_pred(state->encoder_control, rec, recf, recstride, pred, width, mode, 0); costs[modes_selected] = get_cost(state, pred, orig_block, satd_func, sad_func, width); modes[modes_selected] = mode; if (costs[modes_selected] < best_cost) { best_cost = costs[modes_selected]; best_mode = modes[modes_selected]; } ++modes_selected; } } } int8_t add_modes[5] = {intra_preds[0], intra_preds[1], intra_preds[2], 0, 1}; // Add DC, planar and missing predicted modes. for (int8_t pred_i = 0; pred_i < 5; ++pred_i) { bool has_mode = false; int8_t mode = add_modes[pred_i]; for (int mode_i = 0; mode_i < modes_selected; ++mode_i) { if (modes[mode_i] == add_modes[pred_i]) { has_mode = true; break; } } if (!has_mode) { intra_get_pred(state->encoder_control, rec, recf, recstride, pred, width, mode, 0); costs[modes_selected] = get_cost(state, pred, orig_block, satd_func, sad_func, width); modes[modes_selected] = mode; ++modes_selected; } } // Add prediction mode coding cost as the last thing. We don't want this // affecting the halving search. int lambda_cost = (int)(state->global->cur_lambda_cost_sqrt + 0.5); for (int mode_i = 0; mode_i < modes_selected; ++mode_i) { costs[mode_i] += lambda_cost * luma_mode_bits(state, modes[mode_i], intra_preds); } return modes_selected; } /** * \brief Find best intra mode out of the ones listed in parameter modes. * * This function perform intra search by doing full quantization, * reconstruction and CABAC coding of coefficients. It is very slow * but results in better RD quality than using just the rough search. * * \param x_px Luma picture coordinate. * \param y_px Luma picture coordinate. * \param orig Pointer to the top-left corner of current CU in the picture * being encoded. * \param orig_stride Stride of param orig. * \param rec Pointer to the top-left corner of current CU in the picture * being encoded. * \param rec_stride Stride of param rec. * \param intra_preds Array of the 3 predicted intra modes. * \param modes_to_check How many of the modes in param modes are checked. * \param[in] modes The intra prediction modes that are to be checked. * * \param[out] modes The modes ordered according to their RD costs, from best * to worst. The number of modes and costs output is given by parameter * modes_to_check. * \param[out] costs The RD costs of corresponding modes in param modes. * \param[out] lcu If transform split searching is used, the transform split * information for the best mode is saved in lcu.cu structure. */ static int8_t search_intra_rdo(encoder_state_t * const state, int x_px, int y_px, int depth, pixel_t *orig, int32_t origstride, pixel_t *rec, int16_t recstride, int8_t *intra_preds, int modes_to_check, int8_t modes[35], double costs[35], lcu_t *lcu) { const int tr_depth = CLIP(1, MAX_PU_DEPTH, depth + state->encoder_control->tr_depth_intra); const int width = LCU_WIDTH >> depth; pixel_t pred[LCU_WIDTH * LCU_WIDTH + 1]; pixel_t orig_block[LCU_WIDTH * LCU_WIDTH + 1]; int rdo_mode; int pred_mode; pixel_t rec_filtered_temp[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8) + 1]; pixel_t *recf = &rec_filtered_temp[recstride + 1]; // Generate filtered reference pixels. { int x, y; for (y = -1; y < recstride; y++) { recf[y*recstride - 1] = rec[y*recstride - 1]; } for (x = 0; x < recstride; x++) { recf[x - recstride] = rec[x - recstride]; } intra_filter(recf, recstride, width, 0); } pixels_blit(orig, orig_block, width, width, origstride, width); // Check that the predicted modes are in the RDO mode list for(pred_mode = 0; pred_mode < 3; pred_mode++) { int mode_found = 0; for(rdo_mode = 0; rdo_mode < modes_to_check; rdo_mode ++) { if(intra_preds[pred_mode] == modes[rdo_mode]) { mode_found = 1; break; } } // Add this prediction mode to RDO checking if(!mode_found) { modes[modes_to_check] = intra_preds[pred_mode]; modes_to_check++; } } for(rdo_mode = 0; rdo_mode < modes_to_check; rdo_mode ++) { int rdo_bitcost = luma_mode_bits(state, modes[rdo_mode], intra_preds); costs[rdo_mode] = rdo_bitcost * (int)(state->global->cur_lambda_cost + 0.5); if (0 && width != 4 && tr_depth == depth) { // This code path has been disabled for now because it increases bdrate // by 1-2 %. Possibly due to not taking chroma into account during luma // mode search. Enabling separate chroma search compensates a little, // but not enough. // The idea for this code path is, that it would do the same thing as // the more general search_intra_trdepth, but would only handle cases // where transform split or transform skip don't need to be handled. intra_get_pred(state->encoder_control, rec, recf, recstride, pred, width, modes[rdo_mode], 0); costs[rdo_mode] += rdo_cost_intra(state, pred, orig_block, width, modes[rdo_mode], width == 4 ? 1 : 0); } else { // Perform transform split search and save mode RD cost for the best one. cu_info_t pred_cu; pred_cu.depth = depth; pred_cu.type = CU_INTRA; pred_cu.part_size = ((depth == MAX_PU_DEPTH) ? SIZE_NxN : SIZE_2Nx2N); pred_cu.intra[0].mode = modes[rdo_mode]; pred_cu.intra[1].mode = modes[rdo_mode]; pred_cu.intra[2].mode = modes[rdo_mode]; pred_cu.intra[3].mode = modes[rdo_mode]; pred_cu.intra[0].mode_chroma = modes[rdo_mode]; FILL(pred_cu.cbf, 0); // Reset transform split data in lcu.cu for this area. lcu_set_trdepth(lcu, x_px, y_px, depth, depth); double mode_cost = search_intra_trdepth(state, x_px, y_px, depth, tr_depth, modes[rdo_mode], MAX_INT, &pred_cu, lcu); costs[rdo_mode] += mode_cost; } } // The best transform split hierarchy is not saved anywhere, so to get the // transform split hierarchy the search has to be performed again with the // best mode. if (tr_depth != depth) { cu_info_t pred_cu; pred_cu.depth = depth; pred_cu.type = CU_INTRA; pred_cu.part_size = ((depth == MAX_PU_DEPTH) ? SIZE_NxN : SIZE_2Nx2N); pred_cu.intra[0].mode = modes[0]; pred_cu.intra[1].mode = modes[0]; pred_cu.intra[2].mode = modes[0]; pred_cu.intra[3].mode = modes[0]; pred_cu.intra[0].mode_chroma = modes[0]; FILL(pred_cu.cbf, 0); search_intra_trdepth(state, x_px, y_px, depth, tr_depth, modes[0], MAX_INT, &pred_cu, lcu); } return modes_to_check; } /** * Update lcu to have best modes at this depth. * \return Cost of best mode. */ static double search_cu_intra(encoder_state_t * const state, const int x_px, const int y_px, const int depth, lcu_t *lcu) { const videoframe_t * const frame = state->tile->frame; const vector2d_t lcu_px = { x_px & 0x3f, y_px & 0x3f }; const vector2d_t lcu_cu = { lcu_px.x >> 3, lcu_px.y >> 3 }; const int8_t cu_width = (LCU_WIDTH >> (depth)); const int cu_index = LCU_CU_OFFSET + lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH; cu_info_t *cur_cu = &lcu->cu[cu_index]; pixel_t rec_buffer[(LCU_WIDTH * 2 + 1) * (LCU_WIDTH * 2 + 1)]; pixel_t *cu_in_rec_buffer = &rec_buffer[cu_width * 2 + 8 + 1]; int8_t candidate_modes[3]; cu_info_t *left_cu = 0; cu_info_t *above_cu = 0; // Select left and top CUs if they are available. // Top CU is not available across LCU boundary. if ((x_px >> 3) > 0) { left_cu = &lcu->cu[cu_index - 1]; } if ((y_px >> 3) > 0 && lcu_cu.y != 0) { above_cu = &lcu->cu[cu_index - LCU_T_CU_WIDTH]; } intra_get_dir_luma_predictor(x_px, y_px, candidate_modes, cur_cu, left_cu, above_cu); if (depth > 0) { // Build reconstructed block to use in prediction with extrapolated borders intra_build_reference_border(state->encoder_control, x_px, y_px, cu_width * 2 + 8, rec_buffer, cu_width * 2 + 8, 0, frame->width, frame->height, lcu); } int8_t modes[35]; double costs[35]; // Find best intra mode for 2Nx2N. { pixel_t *ref_pixels = &lcu->ref.y[lcu_px.x + lcu_px.y * LCU_WIDTH]; unsigned pu_index = PU_INDEX(x_px >> 2, y_px >> 2); int8_t number_of_modes; bool skip_rough_search = (depth == 0 || state->encoder_control->rdo >= 3); if (!skip_rough_search) { number_of_modes = search_intra_rough(state, ref_pixels, LCU_WIDTH, cu_in_rec_buffer, cu_width * 2 + 8, cu_width, candidate_modes, modes, costs); } else { number_of_modes = 35; for (int i = 0; i < number_of_modes; ++i) { modes[i] = i; costs[i] = MAX_INT; } } // Set transform depth to current depth, meaning no transform splits. lcu_set_trdepth(lcu, x_px, y_px, depth, depth); // Refine results with slower search or get some results if rough search was skipped. if (state->encoder_control->rdo >= 2 || skip_rough_search) { int number_of_modes_to_search; if (state->encoder_control->rdo == 3) { number_of_modes_to_search = 35; } else if (state->encoder_control->rdo == 2) { number_of_modes_to_search = (cu_width <= 8) ? 8 : 3; } else { // Check only the predicted modes. number_of_modes_to_search = 0; } int num_modes_to_check = MIN(number_of_modes, number_of_modes_to_search); sort_modes(modes, costs, number_of_modes); number_of_modes = search_intra_rdo(state, x_px, y_px, depth, ref_pixels, LCU_WIDTH, cu_in_rec_buffer, cu_width * 2 + 8, candidate_modes, num_modes_to_check, modes, costs, lcu); } int8_t best_mode = select_best_mode(modes, costs, number_of_modes); cur_cu->intra[pu_index].mode = best_mode; } return costs[0]; } // Return estimate of bits used to code prediction mode of cur_cu. static double calc_mode_bits(const encoder_state_t *state, const cu_info_t * cur_cu, int x, int y) { double mode_bits; if (cur_cu->type == CU_INTER) { mode_bits = cur_cu->inter.bitcost; } else { int8_t candidate_modes[3]; { const cu_info_t *left_cu = ((x > 8) ? &cur_cu[-1] : NULL); const cu_info_t *above_cu = ((y > 8) ? &cur_cu[-LCU_T_CU_WIDTH] : NULL); intra_get_dir_luma_predictor(x, y, candidate_modes, cur_cu, left_cu, above_cu); } mode_bits = luma_mode_bits(state, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode, candidate_modes); if (PU_INDEX(x >> 2, y >> 2) == 0) { mode_bits += chroma_mode_bits(state, cur_cu->intra[0].mode_chroma, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode); } } return mode_bits; } static uint8_t get_ctx_cu_split_model(const lcu_t *lcu, int x, int y, int depth) { vector2d_t lcu_cu = { (x & 0x3f) / 8, (y & 0x3f) / 8 }; const cu_info_t *cu_array = &(lcu)->cu[LCU_CU_OFFSET]; bool condA = x >= 8 && cu_array[(lcu_cu.x - 1) * lcu_cu.y * LCU_T_CU_WIDTH].depth > depth; bool condL = y >= 8 && cu_array[lcu_cu.x * (lcu_cu.y - 1) * LCU_T_CU_WIDTH].depth > depth; return condA + condL; } /** * Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode. * - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH. * - Data structure work_tree is maintained such that the neighbouring SCUs * and pixels to the left and up of current CU are the final CUs decided * via the search. This is done by copying the relevant data to all * relevant levels whenever a decision is made whether to split or not. * - All the final data for the LCU gets eventually copied to depth 0, which * will be the final output of the recursion. */ static double search_cu(encoder_state_t * const state, int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH]) { const encoder_control_t* ctrl = state->encoder_control; const videoframe_t * const frame = state->tile->frame; int cu_width = LCU_WIDTH >> depth; double cost = MAX_INT; cu_info_t *cur_cu; const vector2d_t lcu_px = { x & 0x3f, y & 0x3f }; lcu_t *const lcu = &work_tree[depth]; int x_local = (x&0x3f), y_local = (y&0x3f); #ifdef _DEBUG int debug_split = 0; #endif PERFORMANCE_MEASURE_START(_DEBUG_PERF_SEARCH_CU); // Stop recursion if the CU is completely outside the frame. if (x >= frame->width || y >= frame->height) { // Return zero cost because this CU does not have to be coded. return 0; } cur_cu = &(&work_tree[depth])->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH]; // Assign correct depth cur_cu->depth = depth > MAX_DEPTH ? MAX_DEPTH : depth; cur_cu->tr_depth = depth > 0 ? depth : 1; cur_cu->type = CU_NOTSET; cur_cu->part_size = depth > MAX_DEPTH ? SIZE_NxN : SIZE_2Nx2N; // If the CU is completely inside the frame at this depth, search for // prediction modes at this depth. if (x + cu_width <= frame->width && y + cu_width <= frame->height) { if (state->global->slicetype != SLICE_I && WITHIN(depth, ctrl->pu_depth_inter.min, ctrl->pu_depth_inter.max)) { int mode_cost = search_cu_inter(state, x, y, depth, &work_tree[depth]); if (mode_cost < cost) { cost = mode_cost; cur_cu->type = CU_INTER; } } // Try to skip intra search in rd==0 mode. // This can be quite severe on bdrate. It might be better to do this // decision after reconstructing the inter frame. bool skip_intra = state->encoder_control->rdo == 0 && cur_cu->type != CU_NOTSET && cost / (cu_width * cu_width) < INTRA_TRESHOLD; if (!skip_intra && WITHIN(depth, ctrl->pu_depth_intra.min, ctrl->pu_depth_intra.max)) { double mode_cost = search_cu_intra(state, x, y, depth, &work_tree[depth]); if (mode_cost < cost) { cost = mode_cost; cur_cu->type = CU_INTRA; } } // Reconstruct best mode because we need the reconstructed pixels for // mode search of adjacent CUs. if (cur_cu->type == CU_INTRA) { int8_t intra_mode = cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode; lcu_set_intra_mode(&work_tree[depth], x, y, depth, intra_mode, intra_mode, cur_cu->part_size); intra_recon_lcu_luma(state, x, y, depth, intra_mode, NULL, &work_tree[depth]); if (PU_INDEX(x >> 2, y >> 2) == 0) { int8_t intra_mode_chroma = intra_mode; // There is almost no benefit to doing the chroma mode search for // rd2. Possibly because the luma mode search already takes chroma // into account, so there is less of a chanse of luma mode being // really bad for chroma. if (state->encoder_control->rdo == 3) { const videoframe_t * const frame = state->tile->frame; double costs[5]; int8_t modes[5] = { 0, 26, 10, 1, 34 }; if (intra_mode != 0 && intra_mode != 26 && intra_mode != 10 && intra_mode != 1) { modes[4] = intra_mode; } // The number of modes to select for slower chroma search. Luma mode // is always one of the modes, so 2 means the final decision is made // between luma mode and one other mode that looks the best // according to search_intra_chroma_rough. const int8_t modes_in_depth[5] = { 1, 1, 1, 1, 2 }; int num_modes = modes_in_depth[depth]; if (state->encoder_control->rdo == 3) { num_modes = 5; } if (num_modes != 1 && num_modes != 5) { pixel_t rec_u[(LCU_WIDTH_C * 2 + 8) * (LCU_WIDTH_C * 2 + 8)]; pixel_t rec_v[(LCU_WIDTH_C * 2 + 8) * (LCU_WIDTH_C * 2 + 8)]; const int16_t width_c = MAX(LCU_WIDTH_C >> depth, TR_MIN_WIDTH); const int16_t rec_stride = width_c * 2 + 8; const int16_t out_stride = rec_stride; intra_build_reference_border(state->encoder_control, x, y, out_stride, rec_u, rec_stride, COLOR_U, frame->width / 2, frame->height / 2, lcu); intra_build_reference_border(state->encoder_control, x, y, out_stride, rec_v, rec_stride, COLOR_V, frame->width / 2, frame->height / 2, lcu); vector2d_t lcu_cpx = { lcu_px.x / 2, lcu_px.y / 2 }; pixel_t *ref_u = &lcu->ref.u[lcu_cpx.x + lcu_cpx.y * LCU_WIDTH_C]; pixel_t *ref_v = &lcu->ref.u[lcu_cpx.x + lcu_cpx.y * LCU_WIDTH_C]; search_intra_chroma_rough(state, x, y, depth, ref_u, ref_v, LCU_WIDTH_C, &rec_u[rec_stride + 1], &rec_v[rec_stride + 1], rec_stride, intra_mode, modes, costs); } if (num_modes > 1) { intra_mode_chroma = search_intra_chroma(state, x, y, depth, intra_mode, modes, num_modes, &work_tree[depth]); lcu_set_intra_mode(&work_tree[depth], x, y, depth, intra_mode, intra_mode_chroma, cur_cu->part_size); } } intra_recon_lcu_chroma(state, x, y, depth, intra_mode_chroma, NULL, &work_tree[depth]); } } else if (cur_cu->type == CU_INTER) { // Reset transform depth because intra messes with them. // This will no longer be necessary if the transform depths are not shared. int tr_depth = depth > 0 ? depth : 1; lcu_set_trdepth(&work_tree[depth], x, y, depth, tr_depth); if (cur_cu->inter.mv_dir == 3) { pixel_t *temp_lcu_y = MALLOC(pixel_t, 64 * 64); pixel_t *temp_lcu_u = MALLOC(pixel_t, 32 * 32); pixel_t *temp_lcu_v = MALLOC(pixel_t, 32 * 32); int temp_x, temp_y; inter_recon_lcu(state, state->global->ref->images[cur_cu->inter.mv_ref[0]], x, y, LCU_WIDTH >> depth, cur_cu->inter.mv[0], &work_tree[depth]); memcpy(temp_lcu_y, lcu->rec.y, sizeof(pixel_t) * 64 * 64); memcpy(temp_lcu_u, lcu->rec.u, sizeof(pixel_t) * 32 * 32); memcpy(temp_lcu_v, lcu->rec.v, sizeof(pixel_t) * 32 * 32); inter_recon_lcu(state, state->global->ref->images[cur_cu->inter.mv_ref[1]], x, y, LCU_WIDTH >> depth, cur_cu->inter.mv[1], &work_tree[depth]); for (temp_y = 0; temp_y < LCU_WIDTH >> depth; ++temp_y) { int y_in_lcu = ((y + temp_y) & ((LCU_WIDTH)-1)); for (temp_x = 0; temp_x < LCU_WIDTH >> depth; ++temp_x) { int x_in_lcu = ((x + temp_x) & ((LCU_WIDTH)-1)); lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (pixel_t)(((int)lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] + (int)temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu]) >> 1); } } for (temp_y = 0; temp_y < LCU_WIDTH >> (depth+1); ++temp_y) { int y_in_lcu = (((y >> 1) + temp_y) & ((LCU_WIDTH >> 1) - 1)); for (temp_x = 0; temp_x < LCU_WIDTH >> (depth+1); ++temp_x) { int x_in_lcu = (((x >> 1) + temp_x) & ((LCU_WIDTH>>1)-1)); lcu->rec.u[y_in_lcu * (LCU_WIDTH >> 1) + x_in_lcu] = (pixel_t)((int)(lcu->rec.u[y_in_lcu * (LCU_WIDTH >> 1) + x_in_lcu] + (int)temp_lcu_u[y_in_lcu * (LCU_WIDTH >> 1) + x_in_lcu]) >> 1); lcu->rec.v[y_in_lcu * (LCU_WIDTH >> 1) + x_in_lcu] = (pixel_t)(((int)lcu->rec.v[y_in_lcu * (LCU_WIDTH >> 1) + x_in_lcu] + (int)temp_lcu_v[y_in_lcu * (LCU_WIDTH >> 1) + x_in_lcu]) >> 1); } } FREE_POINTER(temp_lcu_y); FREE_POINTER(temp_lcu_u); FREE_POINTER(temp_lcu_v); } else { inter_recon_lcu(state, state->global->ref->images[cur_cu->inter.mv_ref[cur_cu->inter.mv_dir - 1]], x, y, LCU_WIDTH >> depth, cur_cu->inter.mv[cur_cu->inter.mv_dir - 1], &work_tree[depth]); } quantize_lcu_luma_residual(state, x, y, depth, NULL, &work_tree[depth]); quantize_lcu_chroma_residual(state, x, y, depth, NULL, &work_tree[depth]); int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth); if(cur_cu->merged && !cbf) { cur_cu->merged = 0; cur_cu->skipped = 1; // Selecting skip reduces bits needed to code the CU if (cur_cu->inter.bitcost > 1) { cur_cu->inter.bitcost -= 1; } } lcu_set_inter(&work_tree[depth], x, y, depth, cur_cu); lcu_set_coeff(&work_tree[depth], x, y, depth, cur_cu); } } if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) { cost = cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]); cost += cu_rd_cost_chroma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]); double mode_bits = calc_mode_bits(state, cur_cu, x, y); cost += mode_bits * state->global->cur_lambda_cost; } // Recursively split all the way to max search depth. if (depth < ctrl->pu_depth_intra.max || (depth < ctrl->pu_depth_inter.max && state->global->slicetype != SLICE_I)) { int half_cu = cu_width / 2; // Using Cost = lambda * 9 to compensate on the price of the split double split_cost = state->global->cur_lambda_cost * CU_COST; int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth); if (depth < MAX_DEPTH) { uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth); const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]); cost += CTX_ENTROPY_FBITS(ctx, 0); split_cost += CTX_ENTROPY_FBITS(ctx, 1); } if (cur_cu->type == CU_INTRA && depth == MAX_DEPTH) { const cabac_ctx_t *ctx = &(state->cabac.ctx.part_size_model[0]); cost += CTX_ENTROPY_FBITS(ctx, 1); // 2Nx2N split_cost += CTX_ENTROPY_FBITS(ctx, 0); // NxN } // If skip mode was selected for the block, skip further search. // Skip mode means there's no coefficients in the block, so splitting // might not give any better results but takes more time to do. if (cur_cu->type == CU_NOTSET || cbf || FULL_CU_SPLIT_SEARCH) { split_cost += search_cu(state, x, y, depth + 1, work_tree); split_cost += search_cu(state, x + half_cu, y, depth + 1, work_tree); split_cost += search_cu(state, x, y + half_cu, depth + 1, work_tree); split_cost += search_cu(state, x + half_cu, y + half_cu, depth + 1, work_tree); } else { split_cost = INT_MAX; } // If no search is not performed for this depth, try just the best mode // of the top left CU from the next depth. This should ensure that 64x64 // gets used, at least in the most obvious cases, while avoiding any // searching. if (cur_cu->type == CU_NOTSET && depth < MAX_PU_DEPTH && x + cu_width <= frame->width && y + cu_width <= frame->height) { vector2d_t lcu_cu = { x_local / 8, y_local / 8 }; cu_info_t *cu_array_d1 = &(&work_tree[depth + 1])->cu[LCU_CU_OFFSET]; cu_info_t *cu_d1 = &cu_array_d1[(lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH)]; // If the best CU in depth+1 is intra and the biggest it can be, try it. if (cu_d1->type == CU_INTRA && cu_d1->depth == depth + 1) { cost = 0; cur_cu->intra[0] = cu_d1->intra[0]; cur_cu->type = CU_INTRA; lcu_set_trdepth(&work_tree[depth], x, y, depth, cur_cu->tr_depth); lcu_set_intra_mode(&work_tree[depth], x, y, depth, cur_cu->intra[0].mode, cur_cu->intra[0].mode_chroma, cur_cu->part_size); intra_recon_lcu_luma(state, x, y, depth, cur_cu->intra[0].mode, NULL, &work_tree[depth]); intra_recon_lcu_chroma(state, x, y, depth, cur_cu->intra[0].mode_chroma, NULL, &work_tree[depth]); cost += cu_rd_cost_luma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]); cost += cu_rd_cost_chroma(state, x_local, y_local, depth, cur_cu, &work_tree[depth]); uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth); const cabac_ctx_t *ctx = &(state->cabac.ctx.split_flag_model[split_model]); cost += CTX_ENTROPY_FBITS(ctx, 0); double mode_bits = calc_mode_bits(state, cur_cu, x, y); cost += mode_bits * state->global->cur_lambda_cost; } } if (split_cost < cost) { // Copy split modes to this depth. cost = split_cost; work_tree_copy_up(x, y, depth, work_tree); #if _DEBUG debug_split = 1; #endif } else if (depth > 0) { // Copy this CU's mode all the way down for use in adjacent CUs mode // search. work_tree_copy_down(x, y, depth, work_tree); } } PERFORMANCE_MEASURE_END(_DEBUG_PERF_SEARCH_CU, state->encoder_control->threadqueue, "type=search_cu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d,depth=%d,split=%d,cur_cu_is_intra=%d", state->global->frame, state->tile->id, state->slice->id, (state->tile->lcu_offset_x * LCU_WIDTH) + x, (state->tile->lcu_offset_x * LCU_WIDTH) + x + (LCU_WIDTH >> depth), (state->tile->lcu_offset_y * LCU_WIDTH) + y, (state->tile->lcu_offset_y * LCU_WIDTH) + y + (LCU_WIDTH >> depth), depth, debug_split, (cur_cu->type==CU_INTRA)?1:0); return cost; } /** * Initialize lcu_t for search. * - Copy reference CUs. * - Copy reference pixels from neighbouring LCUs. * - Copy reference pixels from this LCU. */ static void init_lcu_t(const encoder_state_t * const state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf) { const videoframe_t * const frame = state->tile->frame; // Copy reference cu_info structs from neighbouring LCUs. { const int x_cu = x >> MAX_DEPTH; const int y_cu = y >> MAX_DEPTH; // Use top-left sub-cu of LCU as pointer to lcu->cu array to make things // simpler. cu_info_t *lcu_cu = &lcu->cu[LCU_CU_OFFSET]; // Copy top CU row. if (y_cu > 0) { int i; for (i = 0; i < LCU_CU_WIDTH; ++i) { const cu_info_t *from_cu = videoframe_get_cu_const(frame, x_cu + i, y_cu - 1); cu_info_t *to_cu = &lcu_cu[i - LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy left CU column. if (x_cu > 0) { int i; for (i = 0; i < LCU_CU_WIDTH; ++i) { const cu_info_t *from_cu = videoframe_get_cu_const(frame, x_cu - 1, y_cu + i); cu_info_t *to_cu = &lcu_cu[-1 + i * LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy top-left CU. if (x_cu > 0 && y_cu > 0) { const cu_info_t *from_cu = videoframe_get_cu_const(frame, x_cu - 1, y_cu - 1); cu_info_t *to_cu = &lcu_cu[-1 - LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } // Copy top-right CU. if (y_cu > 0 && x + LCU_WIDTH < frame->width) { const cu_info_t *from_cu = videoframe_get_cu_const(frame, x_cu + LCU_CU_WIDTH, y_cu - 1); cu_info_t *to_cu = &lcu->cu[LCU_T_CU_WIDTH*LCU_T_CU_WIDTH]; memcpy(to_cu, from_cu, sizeof(*to_cu)); } } // Copy reference pixels. { const int pic_width = frame->width; // Copy top reference pixels. if (y > 0) { // hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH // number of allocated pixels left. int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x); int x_min_in_lcu = (x>0) ? 0 : 1; memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu-1)], x_max + (1-x_min_in_lcu)); memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu-1)], x_max / 2 + (1-x_min_in_lcu)); memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu-1)], x_max / 2 + (1-x_min_in_lcu)); } // Copy left reference pixels. if (x > 0) { int y_min_in_lcu = (y>0) ? 0 : 1; memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[OFFSET_VER_BUF(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH + (1-y_min_in_lcu)); memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH / 2 + (1-y_min_in_lcu)); memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu-1)], LCU_WIDTH / 2 + (1-y_min_in_lcu)); } } // Copy LCU pixels. { const videoframe_t * const frame = state->tile->frame; int x_max = MIN(x + LCU_WIDTH, frame->width) - x; int y_max = MIN(y + LCU_WIDTH, frame->height) - y; int x_c = x / 2; int y_c = y / 2; int x_max_c = x_max / 2; int y_max_c = y_max / 2; pixels_blit(&frame->source->y[x + y * frame->source->stride], lcu->ref.y, x_max, y_max, frame->source->stride, LCU_WIDTH); pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride/2], lcu->ref.u, x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2); pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride/2], lcu->ref.v, x_max_c, y_max_c, frame->source->stride/2, LCU_WIDTH / 2); } } /** * Copy CU and pixel data to it's place in picture datastructure. */ static void copy_lcu_to_cu_data(const encoder_state_t * const state, int x_px, int y_px, const lcu_t *lcu) { // Copy non-reference CUs to picture. { const int x_cu = x_px >> MAX_DEPTH; const int y_cu = y_px >> MAX_DEPTH; videoframe_t * const frame = state->tile->frame; // Use top-left sub-cu of LCU as pointer to lcu->cu array to make things // simpler. const cu_info_t *const lcu_cu = &lcu->cu[LCU_CU_OFFSET]; int x, y; for (y = 0; y < LCU_CU_WIDTH; ++y) { for (x = 0; x < LCU_CU_WIDTH; ++x) { const cu_info_t *from_cu = &lcu_cu[x + y * LCU_T_CU_WIDTH]; cu_info_t *to_cu = videoframe_get_cu(frame, x_cu + x, y_cu + y); memcpy(to_cu, from_cu, sizeof(*to_cu)); } } } // Copy pixels to picture. { videoframe_t * const pic = state->tile->frame; const int pic_width = pic->width; const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px; const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px; const int luma_index = x_px + y_px * pic_width; const int chroma_index = (x_px / 2) + (y_px / 2) * (pic_width / 2); pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride], x_max, y_max, LCU_WIDTH, pic->rec->stride); coefficients_blit(lcu->coeff.y, &pic->coeff_y[luma_index], x_max, y_max, LCU_WIDTH, pic_width); pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2); coefficients_blit(lcu->coeff.u, &pic->coeff_u[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); coefficients_blit(lcu->coeff.v, &pic->coeff_v[chroma_index], x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2); } } /** * Search LCU for modes. * - Best mode gets copied to current picture. */ void search_lcu(encoder_state_t * const state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf) { lcu_t work_tree[MAX_PU_DEPTH + 1]; int depth; // Initialize work tree. for (depth = 0; depth <= MAX_PU_DEPTH; ++depth) { FILL(work_tree[depth], 0); init_lcu_t(state, x, y, &work_tree[depth], hor_buf, ver_buf); } // Start search from depth 0. search_cu(state, x, y, 0, work_tree); copy_lcu_to_cu_data(state, x, y, &work_tree[0]); }