#include "greatest/greatest.h" #include "src/image.h" #include "src/strategyselector.h" ////////////////////////////////////////////////////////////////////////// // MACROS #define NUM_TESTS 1 #define LCU_MAX_LOG_W 6 #define LCU_MIN_LOG_W 2 ////////////////////////////////////////////////////////////////////////// // GLOBALS static strategy_list strategies; pixel * bufs[NUM_TESTS][6][2]; static struct { int log_width; // for selecting dim from bufs cost_pixel_nxn_func * tested_func; } test_env; ////////////////////////////////////////////////////////////////////////// // SETUP, TEARDOWN AND HELPER FUNCTIONS static void init_strategies() { strategies.allocated = 0; strategies.count = 0; strategies.strategies = NULL; // Init strategyselector because it sets hardware flags. strategyselector_init(); // Collect all strategies. if (!strategy_register_picture(&strategies)) { fprintf(stderr, "strategy_register_picture failed!\n"); return; } } static void setup_tests() { init_strategies(); for (int test = 0; test < NUM_TESTS; ++test) { for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) { bufs[test][w][0] = 0; bufs[test][w][1] = 0; } for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) { unsigned size = 1 << (w * 2); bufs[test][w][0] = malloc(size * sizeof(pixel) + SIMD_ALIGNMENT); bufs[test][w][0] = ALIGNED_POINTER(bufs[test][w][0], SIMD_ALIGNMENT); bufs[test][w][1] = malloc(size * sizeof(pixel) + SIMD_ALIGNMENT); bufs[test][w][1] = ALIGNED_POINTER(bufs[test][w][1], SIMD_ALIGNMENT); } } int test = 0; for (int w = LCU_MIN_LOG_W; w <= LCU_MAX_LOG_W; ++w) { unsigned size = 1 << (w * 2); memset(bufs[test][w][0], 0, size); memset(bufs[test][w][1], 255, size); } } static void tear_down_tests() { for (int test = 0; test < NUM_TESTS; ++test) { for (int log_width = 2; log_width <= 6; ++log_width) { //free(bufs[test][log_width][0]); //free(bufs[test][log_width][1]); } } } static unsigned test_calc_sad(const pixel * buf1, const pixel * buf2, int dim) { unsigned result = 0; for (int i = 0; i < dim * dim; ++i) { result += abs(buf1[i] - buf2[i]); } return result; } ////////////////////////////////////////////////////////////////////////// // TESTS /** * Test that the maximum SAD value for a given buffer size doesn't overflow. */ TEST test_black_and_white(void) { const int test = 0; const int width = 1 << test_env.log_width; pixel * buf1 = bufs[test][test_env.log_width][0]; pixel * buf2 = bufs[test][test_env.log_width][1]; unsigned result1 = test_env.tested_func(buf1, buf2); unsigned result2 = test_env.tested_func(buf2, buf1); // Order of parameters must not matter. ASSERT_EQ(result1, result2); // Result matches trivial implementation. ASSERT_EQ(result1, 255 * width * width); PASS(); } void sad_intra_test_performance(void) { const int test = 0; const int width = 1 << test_env.log_width; pixel * buf1 = bufs[test][test_env.log_width][0]; pixel * buf2 = bufs[test][test_env.log_width][1]; unsigned result1 = test_env.tested_func(buf1, buf2); return; } ////////////////////////////////////////////////////////////////////////// // TEST FIXTURES SUITE(intra_sad_tests) { //SET_SETUP(sad_setup); //SET_TEARDOWN(sad_teardown); setup_tests(); // Loop through all strategies picking out the intra sad ones and run // selectec strategies though all tests. for (unsigned i = 0; i < strategies.count; ++i) { const char * type = strategies.strategies[i].type; if (strcmp(type, "sad_8bit_4x4") == 0) { test_env.log_width = 2; } else if (strcmp(type, "sad_8bit_8x8") == 0) { test_env.log_width = 3; } else if (strcmp(type, "sad_8bit_16x16") == 0) { test_env.log_width = 4; } else if (strcmp(type, "sad_8bit_32x32") == 0) { test_env.log_width = 5; } else if (strcmp(type, "sad_8bit_64x64") == 0) { test_env.log_width = 6; } else { continue; } test_env.tested_func = strategies.strategies[i].fptr; // Tests RUN_TEST(test_black_and_white); for (int i = 0; i < 100000; ++i){ sad_intra_test_performance(); } } tear_down_tests(); }