/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "rate_control.h" #include #include "encoder.h" #include "kvazaar.h" static const int SMOOTHING_WINDOW = 40; static const double MIN_LAMBDA = 0.1; static const double MAX_LAMBDA = 10000; /** * \brief Clip lambda value to a valid range. */ static double clip_lambda(double lambda) { if (isnan(lambda)) return MAX_LAMBDA; return CLIP(MIN_LAMBDA, MAX_LAMBDA, lambda); } /** * \brief Update alpha and beta parameters. * * \param bits number of bits spent for coding the area * \param pixels size of the area in pixels * \param lambda_real lambda used for coding the area * \param[in,out] alpha alpha parameter to update * \param[in,out] beta beta parameter to update */ static void update_parameters(uint32_t bits, uint32_t pixels, double lambda_real, double *alpha, double *beta) { const double bpp = bits / (double)pixels; const double lambda_comp = clip_lambda(*alpha * pow(bpp, *beta)); const double lambda_log_ratio = log(lambda_real) - log(lambda_comp); *alpha += 0.10 * lambda_log_ratio * (*alpha); *alpha = CLIP(0.05, 20, *alpha); *beta += 0.05 * lambda_log_ratio * CLIP(-5.0, -1.0, log(bpp)); *beta = CLIP(-3, -0.1, *beta); } /** * \brief Allocate bits for the current GOP. * \param state the main encoder state * \return target number of bits */ static double gop_allocate_bits(encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; // At this point, total_bits_coded of the current state contains the // number of bits written encoder->owf frames before the current frame. uint64_t bits_coded = state->frame->total_bits_coded; int pictures_coded = MAX(0, state->frame->num - encoder->cfg.owf); int gop_offset = (state->frame->gop_offset - encoder->cfg.owf) % MAX(1, encoder->cfg.gop_len); if (encoder->cfg.gop_len > 0 && gop_offset != encoder->cfg.gop_len - 1 && encoder->cfg.gop_lp_definition.d == 0) { // Subtract number of bits in the partially coded GOP. bits_coded -= state->frame->cur_gop_bits_coded; // Subtract number of pictures in the partially coded GOP. pictures_coded -= gop_offset + 1; } // Equation 12 from https://doi.org/10.1109/TIP.2014.2336550 double gop_target_bits = (encoder->target_avg_bppic * (pictures_coded + SMOOTHING_WINDOW) - bits_coded) * MAX(1, encoder->cfg.gop_len) / SMOOTHING_WINDOW; // Allocate at least 200 bits for each GOP like HM does. return MAX(200, gop_target_bits); } /** * Estimate number of bits used for headers of the current picture. * \param state the main encoder state * \return number of header bits */ static uint64_t pic_header_bits(encoder_state_t * const state) { const kvz_config* cfg = &state->encoder_control->cfg; // nal type and slice header uint64_t bits = 48 + 24; // entry points bits += 12 * state->encoder_control->in.height_in_lcu; switch (cfg->hash) { case KVZ_HASH_CHECKSUM: bits += 168; break; case KVZ_HASH_MD5: bits += 456; break; case KVZ_HASH_NONE: break; } if (encoder_state_must_write_vps(state)) { bits += 613; } if (state->frame->num == 0 && cfg->add_encoder_info) { bits += 1392; } return bits; } /** * Allocate bits for the current picture. * \param state the main encoder state * \return target number of bits, excluding headers */ static double pic_allocate_bits(encoder_state_t * const state) { const encoder_control_t * const encoder = state->encoder_control; if (encoder->cfg.gop_len == 0 || state->frame->gop_offset == 0 || state->frame->num == 0) { // A new GOP starts at this frame. state->frame->cur_gop_target_bits = gop_allocate_bits(state); state->frame->cur_gop_bits_coded = 0; } else { state->frame->cur_gop_target_bits = state->previous_encoder_state->frame->cur_gop_target_bits; } if (encoder->cfg.gop_len <= 0) { return state->frame->cur_gop_target_bits; } const double pic_weight = encoder->gop_layer_weights[ encoder->cfg.gop[state->frame->gop_offset].layer - 1]; const double pic_target_bits = state->frame->cur_gop_target_bits * pic_weight - pic_header_bits(state); // Allocate at least 100 bits for each picture like HM does. return MAX(100, pic_target_bits); } static int8_t lambda_to_qp(const double lambda) { const int8_t qp = 4.2005 * log(lambda) + 13.7223 + 0.5; return CLIP_TO_QP(qp); } static double qp_to_lambda(encoder_state_t * const state, int qp) { const int shift_qp = 12; double lambda = 0.57 * pow(2.0, (qp - shift_qp) / 3.0); // NOTE: HM adjusts lambda for inter according to Hadamard usage in ME. // SATD is currently always enabled for ME, so this has no effect. // bool hadamard_me = true; // if (!hadamard_me && state->frame->slicetype != KVZ_SLICE_I) { // lambda *= 0.95; // } return lambda; } /** * \brief Allocate bits and set lambda and QP for the current picture. * \param state the main encoder state */ void kvz_set_picture_lambda_and_qp(encoder_state_t * const state) { const encoder_control_t * const ctrl = state->encoder_control; if (ctrl->cfg.target_bitrate > 0) { // Rate control enabled if (state->frame->num > ctrl->cfg.owf) { // At least one frame has been written. update_parameters(state->stats_bitstream_length * 8, ctrl->in.pixels_per_pic, state->frame->lambda, &state->frame->rc_alpha, &state->frame->rc_beta); } const double pic_target_bits = pic_allocate_bits(state); const double target_bpp = pic_target_bits / ctrl->in.pixels_per_pic; double lambda = state->frame->rc_alpha * pow(target_bpp, state->frame->rc_beta); lambda = clip_lambda(lambda); state->frame->lambda = lambda; state->frame->QP = lambda_to_qp(lambda); state->frame->cur_pic_target_bits = pic_target_bits; } else { // Rate control disabled kvz_gop_config const * const gop = &ctrl->cfg.gop[state->frame->gop_offset]; const int gop_len = ctrl->cfg.gop_len; if (gop_len > 0 && state->frame->slicetype != KVZ_SLICE_I) { double qp = ctrl->cfg.qp; qp += gop->qp_offset; qp += CLIP(0.0, 3.0, qp * gop->qp_model_scale + gop->qp_model_offset); state->frame->QP = CLIP_TO_QP((int)(qp + 0.5)); } else { state->frame->QP = CLIP_TO_QP(ctrl->cfg.qp + ctrl->cfg.intra_qp_offset); } state->frame->lambda = qp_to_lambda(state, state->frame->QP); } } /** * \brief Allocate bits for a LCU. * \param state the main encoder state * \param pos location of the LCU as number of LCUs from top left * \return number of bits allocated for the LCU */ static double lcu_allocate_bits(encoder_state_t * const state, vector2d_t pos) { double lcu_weight; if (state->frame->num > state->encoder_control->cfg.owf) { lcu_weight = kvz_get_lcu_stats(state, pos.x, pos.y)->weight; } else { const uint32_t num_lcus = state->encoder_control->in.width_in_lcu * state->encoder_control->in.height_in_lcu; lcu_weight = 1.0 / num_lcus; } // Target number of bits for the current LCU. const double lcu_target_bits = state->frame->cur_pic_target_bits * lcu_weight; // Allocate at least one bit for each LCU. return MAX(1, lcu_target_bits); } void kvz_set_lcu_lambda_and_qp(encoder_state_t * const state, vector2d_t pos) { const encoder_control_t * const ctrl = state->encoder_control; if (ctrl->cfg.roi.dqps != NULL) { vector2d_t lcu = { pos.x + state->tile->lcu_offset_x, pos.y + state->tile->lcu_offset_y }; vector2d_t roi = { lcu.x * ctrl->cfg.roi.width / ctrl->in.width_in_lcu, lcu.y * ctrl->cfg.roi.height / ctrl->in.height_in_lcu }; int roi_index = roi.x + roi.y * ctrl->cfg.roi.width; int dqp = ctrl->cfg.roi.dqps[roi_index]; state->qp = CLIP_TO_QP(state->frame->QP + dqp); state->lambda = qp_to_lambda(state, state->qp); state->lambda_sqrt = sqrt(state->lambda); } else if (ctrl->cfg.target_bitrate > 0) { lcu_stats_t *lcu = kvz_get_lcu_stats(state, pos.x, pos.y); const uint32_t pixels = MIN(LCU_WIDTH, state->tile->frame->width - LCU_WIDTH * pos.x) * MIN(LCU_WIDTH, state->tile->frame->height - LCU_WIDTH * pos.y); if (state->frame->num > ctrl->cfg.owf) { update_parameters(lcu->bits, pixels, lcu->lambda, &lcu->rc_alpha, &lcu->rc_beta); } else { lcu->rc_alpha = state->frame->rc_alpha; lcu->rc_beta = state->frame->rc_beta; } const double target_bits = lcu_allocate_bits(state, pos); const double target_bpp = target_bits / pixels; double lambda = clip_lambda(lcu->rc_alpha * pow(target_bpp, lcu->rc_beta)); // Clip lambda according to the equations 24 and 26 in // https://doi.org/10.1109/TIP.2014.2336550 if (state->frame->num > ctrl->cfg.owf) { const double bpp = lcu->bits / (double)pixels; const double lambda_comp = clip_lambda(lcu->rc_alpha * pow(bpp, lcu->rc_beta)); lambda = CLIP(lambda_comp * 0.7937005259840998, lambda_comp * 1.2599210498948732, lambda); } lambda = CLIP(state->frame->lambda * 0.6299605249474366, state->frame->lambda * 1.5874010519681994, lambda); lambda = clip_lambda(lambda); lcu->lambda = lambda; state->lambda = lambda; state->lambda_sqrt = sqrt(lambda); state->qp = lambda_to_qp(lambda); } else { state->qp = state->frame->QP; state->lambda = state->frame->lambda; state->lambda_sqrt = sqrt(state->frame->lambda); } }