/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*/
#include
#include "quant-avx2.h"
#include "../generic/quant-generic.h"
#include "../strategies-common.h"
#include "strategyselector.h"
#include "encoder.h"
#include "transform.h"
#if COMPILE_INTEL_AVX2
#include
/**
* \brief quantize transformed coefficents
*
*/
void kvz_quant_flat_avx2(const encoder_state_t * const state, coeff_t *coef, coeff_t *q_coef, int32_t width,
int32_t height, int8_t type, int8_t scan_idx, int8_t block_type)
{
const encoder_control_t * const encoder = state->encoder_control;
const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2;
const uint32_t * const scan = kvz_g_sig_last_scan[scan_idx][log2_block_size - 1];
int32_t qp_scaled = kvz_get_scaled_qp(type, state->global->QP, (encoder->bitdepth - 8) * 6);
const uint32_t log2_tr_size = kvz_g_convert_to_bit[width] + 2;
const int32_t scalinglist_type = (block_type == CU_INTRA ? 0 : 3) + (int8_t)("\0\3\1\2"[type]);
const int32_t *quant_coeff = encoder->scaling_list.quant_coeff[log2_tr_size - 2][scalinglist_type][qp_scaled % 6];
const int32_t transform_shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; //!< Represents scaling through forward transform
const int32_t q_bits = QUANT_SHIFT + qp_scaled / 6 + transform_shift;
const int32_t add = ((state->global->slicetype == KVZ_SLICE_I) ? 171 : 85) << (q_bits - 9);
const int32_t q_bits8 = q_bits - 8;
assert(quant_coeff[0] <= (1 << 15) - 1 && quant_coeff[0] >= -(1 << 15)); //Assuming flat values to fit int16_t
uint32_t ac_sum = 0;
__m256i v_ac_sum = _mm256_setzero_si256();
__m256i v_quant_coeff = _mm256_set1_epi16(quant_coeff[0]);
for (int32_t n = 0; n < width * height; n += 16) {
__m256i v_level = _mm256_loadu_si256((__m256i*)&(coef[n]));
__m256i v_sign = _mm256_cmpgt_epi16(_mm256_setzero_si256(), v_level);
v_sign = _mm256_or_si256(v_sign, _mm256_set1_epi16(1));
v_level = _mm256_abs_epi16(v_level);
__m256i low_a = _mm256_unpacklo_epi16(v_level, _mm256_set1_epi16(0));
__m256i high_a = _mm256_unpackhi_epi16(v_level, _mm256_set1_epi16(0));
__m256i low_b = _mm256_unpacklo_epi16(v_quant_coeff, _mm256_set1_epi16(0));
__m256i high_b = _mm256_unpackhi_epi16(v_quant_coeff, _mm256_set1_epi16(0));
__m256i v_level32_a = _mm256_madd_epi16(low_a, low_b);
__m256i v_level32_b = _mm256_madd_epi16(high_a, high_b);
v_level32_a = _mm256_add_epi32(v_level32_a, _mm256_set1_epi32(add));
v_level32_b = _mm256_add_epi32(v_level32_b, _mm256_set1_epi32(add));
v_level32_a = _mm256_srai_epi32(v_level32_a, q_bits);
v_level32_b = _mm256_srai_epi32(v_level32_b, q_bits);
v_level = _mm256_packs_epi32(v_level32_a, v_level32_b);
v_level = _mm256_sign_epi16(v_level, v_sign);
_mm256_storeu_si256((__m256i*)&(q_coef[n]), v_level);
v_ac_sum = _mm256_add_epi32(v_ac_sum, v_level32_a);
v_ac_sum = _mm256_add_epi32(v_ac_sum, v_level32_b);
}
__m128i temp = _mm_add_epi32(_mm256_castsi256_si128(v_ac_sum), _mm256_extracti128_si256(v_ac_sum, 1));
temp = _mm_add_epi32(temp, _mm_shuffle_epi32(temp, KVZ_PERMUTE(2, 3, 0, 1)));
temp = _mm_add_epi32(temp, _mm_shuffle_epi32(temp, KVZ_PERMUTE(1, 0, 1, 0)));
ac_sum += _mm_cvtsi128_si32(temp);
if (!(encoder->sign_hiding && ac_sum >= 2)) return;
int32_t delta_u[LCU_WIDTH*LCU_WIDTH >> 2];
for (int32_t n = 0; n < width * height; n++) {
int32_t level;
level = coef[n];
level = ((int64_t)abs(level) * quant_coeff[n] + add) >> q_bits;
delta_u[n] = (int32_t)(((int64_t)abs(coef[n]) * quant_coeff[n] - (level << q_bits)) >> q_bits8);
}
if (ac_sum >= 2) {
#define SCAN_SET_SIZE 16
#define LOG2_SCAN_SET_SIZE 4
int32_t n, last_cg = -1, abssum = 0, subset, subpos;
for (subset = (width*height - 1) >> LOG2_SCAN_SET_SIZE; subset >= 0; subset--) {
int32_t first_nz_pos_in_cg = SCAN_SET_SIZE, last_nz_pos_in_cg = -1;
subpos = subset << LOG2_SCAN_SET_SIZE;
abssum = 0;
// Find last coeff pos
for (n = SCAN_SET_SIZE - 1; n >= 0; n--) {
if (q_coef[scan[n + subpos]]) {
last_nz_pos_in_cg = n;
break;
}
}
// First coeff pos
for (n = 0; n = 0 && last_cg == -1) {
last_cg = 1;
}
if (last_nz_pos_in_cg - first_nz_pos_in_cg >= 4) {
int32_t signbit = (q_coef[scan[subpos + first_nz_pos_in_cg]] > 0 ? 0 : 1);
if (signbit != (abssum & 0x1)) { // compare signbit with sum_parity
int32_t min_cost_inc = 0x7fffffff, min_pos = -1, cur_cost = 0x7fffffff;
int16_t final_change = 0, cur_change = 0;
for (n = (last_cg == 1 ? last_nz_pos_in_cg : SCAN_SET_SIZE - 1); n >= 0; n--) {
uint32_t blkPos = scan[n + subpos];
if (q_coef[blkPos] != 0) {
if (delta_u[blkPos] > 0) {
cur_cost = -delta_u[blkPos];
cur_change = 1;
}
else if (n == first_nz_pos_in_cg && abs(q_coef[blkPos]) == 1) {
cur_cost = 0x7fffffff;
}
else {
cur_cost = delta_u[blkPos];
cur_change = -1;
}
}
else if (n < first_nz_pos_in_cg && ((coef[blkPos] >= 0) ? 0 : 1) != signbit) {
cur_cost = 0x7fffffff;
}
else {
cur_cost = -delta_u[blkPos];
cur_change = 1;
}
if (cur_cost < min_cost_inc) {
min_cost_inc = cur_cost;
final_change = cur_change;
min_pos = blkPos;
}
} // CG loop
if (q_coef[min_pos] == 32767 || q_coef[min_pos] == -32768) {
final_change = -1;
}
if (coef[min_pos] >= 0) q_coef[min_pos] += final_change;
else q_coef[min_pos] -= final_change;
} // Hide
}
if (last_cg == 1) last_cg = 0;
}
#undef SCAN_SET_SIZE
#undef LOG2_SCAN_SET_SIZE
}
}
void kvz_quant_avx2(const encoder_state_t * const state, coeff_t *coef, coeff_t *q_coef, int32_t width,
int32_t height, int8_t type, int8_t scan_idx, int8_t block_type)
{
if (state->encoder_control->scaling_list.enable){
kvz_quant_generic(state, coef, q_coef, width, height, type, scan_idx, block_type);
}
else {
kvz_quant_flat_avx2(state, coef, q_coef, width, height, type, scan_idx, block_type);
}
}
#endif //COMPILE_INTEL_AVX2
int kvz_strategy_register_quant_avx2(void* opaque, uint8_t bitdepth)
{
bool success = true;
#if COMPILE_INTEL_AVX2
success &= kvz_strategyselector_register(opaque, "quant", "avx2", 40, &kvz_quant_avx2);
#endif //COMPILE_INTEL_AVX2
return success;
}