/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "strategies/avx2/sao-avx2.h" #if COMPILE_INTEL_AVX2 #include #include "cu.h" #include "encoder.h" #include "encoderstate.h" #include "kvazaar.h" #include "sao.h" #include "strategyselector.h" // These optimizations are based heavily on sao-generic.c. // Might be useful to check that if (when) this file // is difficult to understand. static INLINE __m256i load_6_offsets(const int* offsets){ return _mm256_inserti128_si256(_mm256_castsi128_si256(_mm_loadu_si128((__m128i*) offsets)), _mm_loadl_epi64((__m128i*)&(offsets[4])), 1); } static INLINE __m128i load_6_pixels(const kvz_pixel* data){ return _mm_insert_epi16(_mm_cvtsi32_si128(*(int32_t*)&(data[0])), *(int16_t*)&(data[4]), 2); } static INLINE __m256i load_5_offsets(const int* offsets){ return _mm256_inserti128_si256(_mm256_castsi128_si256(_mm_loadu_si128((__m128i*) offsets)), _mm_insert_epi32(_mm_setzero_si128(), offsets[4], 0), 1); } static __m128i sao_calc_eo_cat_avx2(__m128i* a, __m128i* b, __m128i* c) { __m128i v_eo_idx = _mm_set1_epi16(2); __m128i v_a = _mm_cvtepu8_epi16(*a); __m128i v_c = _mm_cvtepu8_epi16(*c); __m128i v_b = _mm_cvtepu8_epi16(*b); __m128i temp_a = _mm_sign_epi16(_mm_set1_epi16(1), _mm_sub_epi16(v_c, v_a)); __m128i temp_b = _mm_sign_epi16(_mm_set1_epi16(1), _mm_sub_epi16(v_c, v_b)); v_eo_idx = _mm_add_epi16(v_eo_idx, temp_a); v_eo_idx = _mm_add_epi16(v_eo_idx, temp_b); v_eo_idx = _mm_packus_epi16(v_eo_idx, v_eo_idx); __m128i v_cat_lookup = _mm_setr_epi8(1,2,0,3,4,0,0,0,0,0,0,0,0,0,0,0); __m128i v_cat = _mm_shuffle_epi8(v_cat_lookup, v_eo_idx); return v_cat; } int kvz_sao_edge_ddistortion_avx2(const kvz_pixel *orig_data, const kvz_pixel *rec_data, int block_width, int block_height, int eo_class, int offsets[NUM_SAO_EDGE_CATEGORIES]) { int y, x; int sum = 0; vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1]; __m256i v_accum = { 0 }; for (y = 1; y < block_height - 1; ++y) { for (x = 1; x < block_width - 8; x+=8) { const kvz_pixel *c_data = &rec_data[y * block_width + x]; __m128i v_c_data = _mm_loadl_epi64((__m128i*)c_data); __m128i v_a = _mm_loadl_epi64((__m128i*)(&c_data[a_ofs.y * block_width + a_ofs.x])); __m128i v_c = v_c_data; __m128i v_b = _mm_loadl_epi64((__m128i*)(&c_data[b_ofs.y * block_width + b_ofs.x])); __m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c)); __m256i v_offset = _mm256_loadu_si256((__m256i*) offsets); v_offset = _mm256_permutevar8x32_epi32(v_offset, v_cat); __m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(orig_data[y * block_width + x]))); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c)); __m256i v_diff_minus_offset = _mm256_sub_epi32(v_diff, v_offset); __m256i v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff)); v_accum = _mm256_add_epi32(v_accum, v_temp_sum); } //Handle last 6 pixels separately to prevent reading over boundary const kvz_pixel *c_data = &rec_data[y * block_width + x]; __m128i v_c_data = load_6_pixels(c_data); const kvz_pixel* a_ptr = &c_data[a_ofs.y * block_width + a_ofs.x]; const kvz_pixel* b_ptr = &c_data[b_ofs.y * block_width + b_ofs.x]; __m128i v_a = load_6_pixels(a_ptr); __m128i v_c = v_c_data; __m128i v_b = load_6_pixels(b_ptr); __m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c)); __m256i v_offset = load_6_offsets(offsets); v_offset = _mm256_permutevar8x32_epi32(v_offset, v_cat); const kvz_pixel* orig_ptr = &(orig_data[y * block_width + x]); __m256i v_diff = _mm256_cvtepu8_epi32(load_6_pixels(orig_ptr)); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c)); __m256i v_diff_minus_offset = _mm256_sub_epi32(v_diff, v_offset); __m256i v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff)); v_accum = _mm256_add_epi32(v_accum, v_temp_sum); } //Full horizontal sum v_accum = _mm256_add_epi32(v_accum, _mm256_castsi128_si256(_mm256_extracti128_si256(v_accum, 1))); v_accum = _mm256_add_epi32(v_accum, _mm256_shuffle_epi32(v_accum, _MM_SHUFFLE(2, 3, 0, 1))); v_accum = _mm256_add_epi32(v_accum, _mm256_shuffle_epi32(v_accum, _MM_SHUFFLE(1, 0, 1, 0))); sum += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_accum)); return sum; } static INLINE void accum_count_eo_cat_avx2(__m256i* __restrict v_diff_accum, __m256i* __restrict v_count, __m256i* __restrict v_cat, __m256i* __restrict v_diff, int eo_cat){ __m256i v_mask = _mm256_cmpeq_epi32(*v_cat, _mm256_set1_epi32(eo_cat)); *v_diff_accum = _mm256_add_epi32(*v_diff_accum, _mm256_and_si256(*v_diff, v_mask)); *v_count = _mm256_sub_epi32(*v_count, v_mask); } #define ACCUM_COUNT_EO_CAT_AVX2(EO_CAT, V_CAT) \ \ accum_count_eo_cat_avx2(&(v_diff_accum[ EO_CAT ]), &(v_count[ EO_CAT ]), &V_CAT , &v_diff, EO_CAT); void kvz_calc_sao_edge_dir_avx2(const kvz_pixel *orig_data, const kvz_pixel *rec_data, int eo_class, int block_width, int block_height, int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES]) { int y, x; vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1]; // Don't sample the edge pixels because this function doesn't have access to // their neighbours. __m256i v_diff_accum[NUM_SAO_EDGE_CATEGORIES] = { { 0 } }; __m256i v_count[NUM_SAO_EDGE_CATEGORIES] = { { 0 } }; for (y = 1; y < block_height - 1; ++y) { //Calculation for 8 pixels per round for (x = 1; x < block_width - 8; x += 8) { const kvz_pixel *c_data = &rec_data[y * block_width + x]; __m128i v_c_data = _mm_loadl_epi64((__m128i* __restrict)c_data); __m128i v_a = _mm_loadl_epi64((__m128i* __restrict)(&c_data[a_ofs.y * block_width + a_ofs.x])); __m128i v_c = v_c_data; __m128i v_b = _mm_loadl_epi64((__m128i* __restrict)(&c_data[b_ofs.y * block_width + b_ofs.x])); __m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c)); __m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x]))); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c)); //Accumulate differences and occurrences for each category ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat); } //Handle last 6 pixels separately to prevent reading over boundary const kvz_pixel *c_data = &rec_data[y * block_width + x]; __m128i v_c_data = load_6_pixels(c_data); const kvz_pixel* a_ptr = &c_data[a_ofs.y * block_width + a_ofs.x]; const kvz_pixel* b_ptr = &c_data[b_ofs.y * block_width + b_ofs.x]; __m128i v_a = load_6_pixels(a_ptr); __m128i v_c = v_c_data; __m128i v_b = load_6_pixels(b_ptr); __m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c)); //Set the last two elements to a non-existing category to cause //the accumulate-count macro to discard those values. __m256i v_mask = _mm256_setr_epi32(0, 0, 0, 0, 0, 0, -1, -1); v_cat = _mm256_or_si256(v_cat, v_mask); const kvz_pixel* orig_ptr = &(orig_data[y * block_width + x]); __m256i v_diff = _mm256_cvtepu8_epi32(load_6_pixels(orig_ptr)); v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c)); //Accumulate differences and occurrences for each category ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat); ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat); } for (int eo_cat = 0; eo_cat < NUM_SAO_EDGE_CATEGORIES; ++eo_cat) { int accum = 0; int count = 0; //Full horizontal sum of accumulated values v_diff_accum[eo_cat] = _mm256_add_epi32(v_diff_accum[eo_cat], _mm256_castsi128_si256(_mm256_extracti128_si256(v_diff_accum[eo_cat], 1))); v_diff_accum[eo_cat] = _mm256_add_epi32(v_diff_accum[eo_cat], _mm256_shuffle_epi32(v_diff_accum[eo_cat], _MM_SHUFFLE(2, 3, 0, 1))); v_diff_accum[eo_cat] = _mm256_add_epi32(v_diff_accum[eo_cat], _mm256_shuffle_epi32(v_diff_accum[eo_cat], _MM_SHUFFLE(1, 0, 1, 0))); accum += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_diff_accum[eo_cat])); //Full horizontal sum of accumulated values v_count[eo_cat] = _mm256_add_epi32(v_count[eo_cat], _mm256_castsi128_si256(_mm256_extracti128_si256(v_count[eo_cat], 1))); v_count[eo_cat] = _mm256_add_epi32(v_count[eo_cat], _mm256_shuffle_epi32(v_count[eo_cat], _MM_SHUFFLE(2, 3, 0, 1))); v_count[eo_cat] = _mm256_add_epi32(v_count[eo_cat], _mm256_shuffle_epi32(v_count[eo_cat], _MM_SHUFFLE(1, 0, 1, 0))); count += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_count[eo_cat])); cat_sum_cnt[0][eo_cat] += accum; cat_sum_cnt[1][eo_cat] += count; } } void kvz_sao_reconstruct_color_avx2(const encoder_control_t * const encoder, const kvz_pixel *rec_data, kvz_pixel *new_rec_data, const sao_info_t *sao, int stride, int new_stride, int block_width, int block_height, color_t color_i) { int y, x; // Arrays orig_data and rec_data are quarter size for chroma. int offset_v = color_i == COLOR_V ? 5 : 0; if(sao->type == SAO_TYPE_BAND) { int offsets[1<eo_class][0]; vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1]; const kvz_pixel *c_data = &rec_data[y * stride + x]; kvz_pixel *new_data = &new_rec_data[y * new_stride + x]; const kvz_pixel* a_ptr = &c_data[a_ofs.y * stride + a_ofs.x]; const kvz_pixel* c_ptr = &c_data[0]; const kvz_pixel* b_ptr = &c_data[b_ofs.y * stride + b_ofs.x]; __m128i v_a = _mm_loadl_epi64((__m128i*)a_ptr); __m128i v_b = _mm_loadl_epi64((__m128i*)b_ptr); __m128i v_c = _mm_loadl_epi64((__m128i*)c_ptr); __m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c) ); __m256i v_offset_v = load_5_offsets(sao->offsets + offset_v); __m256i v_new_data = _mm256_permutevar8x32_epi32(v_offset_v, v_cat); v_new_data = _mm256_add_epi32(v_new_data, _mm256_cvtepu8_epi32(v_c)); __m128i v_new_data_128 = _mm_packus_epi32(_mm256_castsi256_si128(v_new_data), _mm256_extracti128_si256(v_new_data, 1)); v_new_data_128 = _mm_packus_epi16(v_new_data_128, v_new_data_128); if ((block_width - x) >= 8) { _mm_storel_epi64((__m128i*)new_data, v_new_data_128); } else { kvz_pixel arr[8]; _mm_storel_epi64((__m128i*)arr, v_new_data_128); for (int i = 0; i < block_width - x; ++i) new_data[i] = arr[i]; } } } } } int kvz_sao_band_ddistortion_avx2(const encoder_state_t * const state, const kvz_pixel *orig_data, const kvz_pixel *rec_data, int block_width, int block_height, int band_pos, int sao_bands[4]) { int y, x; int shift = state->encoder_control->bitdepth-5; int sum = 0; __m256i v_accum = { 0 }; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; x+=8) { __m256i v_band = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(rec_data[y * block_width + x]))); v_band = _mm256_srli_epi32(v_band, shift); v_band = _mm256_sub_epi32(v_band, _mm256_set1_epi32(band_pos)); __m256i v_offset = { 0 }; __m256i v_mask = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_set1_epi32(~3), v_band), _mm256_setzero_si256()); v_offset = _mm256_permutevar8x32_epi32(_mm256_castsi128_si256(_mm_loadu_si128((__m128i*)sao_bands)), v_band); v_offset = _mm256_and_si256(v_offset, v_mask); __m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(orig_data[y * block_width + x]))); __m256i v_rec = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(rec_data[y * block_width + x]))); v_diff = _mm256_sub_epi32(v_diff, v_rec); __m256i v_diff_minus_offset = _mm256_sub_epi32(v_diff, v_offset); __m256i v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff)); v_accum = _mm256_add_epi32(v_accum, v_temp_sum); } } //Full horizontal sum v_accum = _mm256_add_epi32(v_accum, _mm256_castsi128_si256(_mm256_extracti128_si256(v_accum, 1))); v_accum = _mm256_add_epi32(v_accum, _mm256_shuffle_epi32(v_accum, _MM_SHUFFLE(2, 3, 0, 1))); v_accum = _mm256_add_epi32(v_accum, _mm256_shuffle_epi32(v_accum, _MM_SHUFFLE(1, 0, 1, 0))); sum += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_accum)); return sum; } #endif //COMPILE_INTEL_AVX2 int kvz_strategy_register_sao_avx2(void* opaque, uint8_t bitdepth) { bool success = true; #if COMPILE_INTEL_AVX2 if (bitdepth == 8) { success &= kvz_strategyselector_register(opaque, "sao_edge_ddistortion", "avx2", 40, &kvz_sao_edge_ddistortion_avx2); success &= kvz_strategyselector_register(opaque, "calc_sao_edge_dir", "avx2", 40, &kvz_calc_sao_edge_dir_avx2); success &= kvz_strategyselector_register(opaque, "sao_reconstruct_color", "avx2", 40, &kvz_sao_reconstruct_color_avx2); success &= kvz_strategyselector_register(opaque, "sao_band_ddistortion", "avx2", 40, &kvz_sao_band_ddistortion_avx2); } #endif //COMPILE_INTEL_AVX2 return success; }