/** * \file * * \author Marko Viitanen ( fador@iki.fi ), * Tampere University of Technology, * Department of Pervasive Computing. * \author Ari Koivula ( ari@koivu.la ), * Tampere University of Technology, * Department of Pervasive Computing. */ #include "encoder.h" #include #include #include #include #include #include "config.h" #include "cabac.h" #include "picture.h" #include "nal.h" #include "context.h" #include "transform.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "search.h" int16_t g_lambda_cost[55]; uint32_t* g_sig_last_scan[3][7]; /* Local functions. */ static void add_checksum(encoder_control* encoder); void init_sig_last_scan(uint32_t *buff_d, uint32_t *buff_h, uint32_t *buff_v, int32_t width, int32_t height) { uint32_t num_scan_pos = width * width; uint32_t next_scan_pos = 0; int32_t xx, yy, x, y; uint32_t scan_line; uint32_t blk_y, blk_x; uint32_t blk; uint32_t cnt = 0; if (width < 16) { uint32_t *buff_tmp = buff_d; if (width == 8) { buff_tmp = (uint32_t *)g_sig_last_scan_32x32; } for (scan_line = 0; next_scan_pos < num_scan_pos; scan_line++) { int primary_dim = scan_line; int second_dim = 0; while (primary_dim >= width) { second_dim++; primary_dim--; } while (primary_dim >= 0 && second_dim < width) { buff_tmp[next_scan_pos] = primary_dim * width + second_dim ; next_scan_pos++; second_dim++; primary_dim--; } } } if (width > 4) { uint32_t num_blk_side = width >> 2; uint32_t num_blks = num_blk_side * num_blk_side; uint32_t log2_blk = g_convert_to_bit[num_blk_side] + 1; for (blk = 0; blk < num_blks; blk++) { uint32_t init_blk_pos = g_sig_last_scan[SCAN_DIAG][log2_blk][blk]; next_scan_pos = 0; if (width == 32) { init_blk_pos = g_sig_last_scan_32x32[blk]; } { uint32_t offset_y = init_blk_pos / num_blk_side; uint32_t offset_x = init_blk_pos - offset_y * num_blk_side; uint32_t offset_d = 4 * (offset_x + offset_y * width); uint32_t offset_scan = 16 * blk; for (scan_line = 0; next_scan_pos < 16; scan_line++) { int primary_dim = scan_line; int second_dim = 0; //TODO: optimize while (primary_dim >= 4) { second_dim++; primary_dim--; } while (primary_dim >= 0 && second_dim < 4) { buff_d[next_scan_pos + offset_scan] = primary_dim * width + second_dim + offset_d; next_scan_pos++; second_dim++; primary_dim--; } } } } } if (width > 2) { uint32_t num_blk_side = width >> 2; for (blk_y = 0; blk_y < num_blk_side; blk_y++) { for (blk_x = 0; blk_x < num_blk_side; blk_x++) { uint32_t offset = blk_y * 4 * width + blk_x * 4; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { buff_h[cnt] = y * width + x + offset; cnt ++; } } } } cnt = 0; for (blk_x = 0; blk_x < num_blk_side; blk_x++) { for (blk_y = 0; blk_y < num_blk_side; blk_y++) { uint32_t offset = blk_y * 4 * width + blk_x * 4; for (x = 0; x < 4; x++) { for (y = 0; y < 4; y++) { buff_v[cnt] = y * width + x + offset; cnt ++; } } } } } else { for (yy = 0; yy < height; yy++) { for (xx = 0; xx < width; xx++) { buff_h[cnt] = yy * width + xx; cnt ++; } } cnt = 0; for (xx = 0; xx < width; xx++) { for (yy = 0; yy < height; yy++) { buff_v[cnt] = yy * width + xx; cnt ++; } } } } void init_tables(void) { int i; int c = 0; memset( g_convert_to_bit,-1, sizeof( g_convert_to_bit ) ); for (i = 4; i < (1 << 7); i *= 2) { g_convert_to_bit[i] = c; c++; } g_convert_to_bit[i] = c; c = 2; for (i = 0; i < 7; i++) { g_sig_last_scan[0][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t)); g_sig_last_scan[1][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t)); g_sig_last_scan[2][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t)); init_sig_last_scan(g_sig_last_scan[0][i], g_sig_last_scan[1][i], g_sig_last_scan[2][i], c, c); c <<= 1; } // Lambda cost // TODO: cleanup //g_lambda_cost = (int16_t*)malloc(sizeof(int16_t)*55); for (i = 0; i < 55; i++) { if (i < 12) { g_lambda_cost[i] = 0; } else { g_lambda_cost[i] = (int16_t)sqrt(0.57 * pow(2.0, (i - 12) / 3)); } //g_lambda_cost[i] = g_lambda_cost[i]*g_lambda_cost[i]; } } void init_encoder_control(encoder_control* control,bitstream* output) { control->stream = output; } void init_encoder_input(encoder_input *input, FILE *inputfile, int32_t width, int32_t height) { input->file = inputfile; input->width = width; input->height = height; input->real_width = width; input->real_height = height; // If input dimensions are not divisible by the smallest block size, add // pixels to the dimensions, so that they are. These extra pixels will be // compressed along with the real ones but they will be cropped out before // rendering. if (width % CU_MIN_SIZE_PIXELS) { input->width += CU_MIN_SIZE_PIXELS - (width % CU_MIN_SIZE_PIXELS); } if (height % CU_MIN_SIZE_PIXELS) { input->height += CU_MIN_SIZE_PIXELS - (height % CU_MIN_SIZE_PIXELS); } input->height_in_lcu = input->height / LCU_WIDTH; input->width_in_lcu = input->width / LCU_WIDTH; // Add one extra LCU when image not divisible by LCU_WIDTH if (input->height_in_lcu * LCU_WIDTH < height) { input->height_in_lcu++; } if (input->width_in_lcu * LCU_WIDTH < width) { input->width_in_lcu++; } // Allocate the picture and CU array input->cur_pic = picture_init(input->width, input->height, input->width_in_lcu, input->height_in_lcu); if (!input->cur_pic) { printf("Error allocating picture!\r\n"); exit(1); } #ifdef _DEBUG if (width != input->width || height != input->height) { printf("Picture buffer has been extended to be a multiple of the smallest block size:\r\n"); printf(" Width = %d (%d), Height = %d (%d)\r\n", width, input->width, height, input->height); } #endif } void encode_one_frame(encoder_control* encoder) { // output parameters before first frame if (encoder->frame == 0) { // Video Parameter Set (VPS) encode_vid_parameter_set(encoder); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_VPS_NUT, 0); bitstream_clear_buffer(encoder->stream); // Sequence Parameter Set (SPS) encode_seq_parameter_set(encoder); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_SPS_NUT, 0); bitstream_clear_buffer(encoder->stream); // Picture Parameter Set (PPS) encode_pic_parameter_set(encoder); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_PPS_NUT, 0); bitstream_clear_buffer(encoder->stream); // First slice is IDR cabac_start(&cabac); encoder->in.cur_pic->slicetype = SLICE_I; encoder->in.cur_pic->type = NAL_IDR_W_RADL; search_slice_data(encoder); encode_slice_header(encoder); bitstream_align(encoder->stream); encode_slice_data(encoder); cabac_flush(&cabac); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_IDR_W_RADL, 0); bitstream_clear_buffer(encoder->stream); } else { cabac_start(&cabac); encoder->in.cur_pic->slicetype = SLICE_P; encoder->in.cur_pic->type = NAL_TRAIL_R; search_slice_data(encoder); encode_slice_header(encoder); bitstream_align(encoder->stream); encode_slice_data(encoder); cabac_flush(&cabac); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_TRAIL_R, 0); bitstream_clear_buffer(encoder->stream); } // Filtering if(encoder->deblock_enable) { filter_deblock(encoder); } // Calculate checksum add_checksum(encoder); } void fill_after_frame(FILE *file, unsigned height, unsigned array_width, unsigned array_height, pixel *data) { pixel* p = data + height * array_width; pixel* end = data + array_width * array_height; while (p < end) { // Fill the line by copying the line above. memcpy(p, p - array_width, array_width); p += array_width; } } void read_and_fill_frame_data(FILE *file, unsigned width, unsigned height, unsigned array_width, pixel *data) { pixel* p = data; pixel* end = data + array_width * height; pixel fill_char; unsigned i; while (p < end) { // Read the beginning of the line from input. fread(p, sizeof(unsigned char), width, file); // Fill the rest with the last pixel value. fill_char = p[width - 1]; for (i = width; i < array_width; ++i) { p[i] = fill_char; } p += array_width; } } void read_one_frame(FILE* file, encoder_control* encoder) { encoder_input* in = &encoder->in; unsigned width = in->real_width; unsigned height = in->real_height; unsigned array_width = in->cur_pic->width; unsigned array_height = in->cur_pic->height; if (width != array_width) { // In the case of frames not being aligned on 8 bit borders, bits need to be copied to fill them in. read_and_fill_frame_data(file, width, height, array_width, in->cur_pic->y_data); read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1, in->cur_pic->u_data); read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1, in->cur_pic->v_data); } else { // Otherwise the data can be read directly to the array. fread(in->cur_pic->y_data, sizeof(unsigned char), width * height, file); fread(in->cur_pic->u_data, sizeof(unsigned char), (width >> 1) * (height >> 1), file); fread(in->cur_pic->v_data, sizeof(unsigned char), (width >> 1) * (height >> 1), file); } if (height != array_height) { fill_after_frame(file, height, array_width, array_height, in->cur_pic->y_data); fill_after_frame(file, height >> 1, array_width >> 1, array_height >> 1, in->cur_pic->u_data); fill_after_frame(file, height >> 1, array_width >> 1, array_height >> 1, in->cur_pic->v_data); } } /** * \brief Add a checksum SEI message to the bitstream. * \param encoder The encoder. * \returns Void */ static void add_checksum(encoder_control* encoder) { unsigned char checksum[3][SEI_HASH_MAX_LENGTH]; uint32_t checksum_val; unsigned int i; picture_checksum(encoder->in.cur_pic, checksum); WRITE_U(encoder->stream, 132, 8, "sei_type"); WRITE_U(encoder->stream, 13, 8, "size"); WRITE_U(encoder->stream, 2, 8, "hash_type"); // 2 = checksum for (i = 0; i < 3; ++i) { // Pack bits into a single 32 bit uint instead of pushing them one byte // at a time. checksum_val = (checksum[i][0] << 24) + (checksum[i][1] << 16) + (checksum[i][2] << 8) + (checksum[i][3]); WRITE_U(encoder->stream, checksum_val, 32, "picture_checksum"); } bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_SUFFIT_SEI_NUT, 0); bitstream_clear_buffer(encoder->stream); } void encode_pic_parameter_set(encoder_control* encoder) { #ifdef _DEBUG printf("=========== Picture Parameter Set ID: 0 ===========\n"); #endif WRITE_UE(encoder->stream, 0, "pic_parameter_set_id"); WRITE_UE(encoder->stream, 0, "seq_parameter_set_id"); WRITE_U(encoder->stream, 0, 1, "dependent_slice_segments_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "output_flag_present_flag"); WRITE_U(encoder->stream, 0, 3, "num_extra_slice_header_bits"); WRITE_U(encoder->stream, ENABLE_SIGN_HIDING, 1, "sign_data_hiding_flag"); WRITE_U(encoder->stream, 0, 1, "cabac_init_present_flag"); WRITE_UE(encoder->stream, 0, "num_ref_idx_l0_default_active_minus1"); WRITE_UE(encoder->stream, 0, "num_ref_idx_l1_default_active_minus1"); WRITE_SE(encoder->stream, ((int8_t)encoder->QP)-26, "pic_init_qp_minus26"); WRITE_U(encoder->stream, 0, 1, "constrained_intra_pred_flag"); WRITE_U(encoder->stream, 0, 1, "transform_skip_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "cu_qp_delta_enabled_flag"); //if cu_qp_delta_enabled_flag //WRITE_UE(encoder->stream, 0, "diff_cu_qp_delta_depth"); //TODO: add QP offsets WRITE_SE(encoder->stream, 0, "pps_cb_qp_offset"); WRITE_SE(encoder->stream, 0, "pps_cr_qp_offset"); WRITE_U(encoder->stream, 0, 1, "pps_slice_chroma_qp_offsets_present_flag"); WRITE_U(encoder->stream, 0, 1, "weighted_pred_flag"); WRITE_U(encoder->stream, 0, 1, "weighted_bipred_idc"); //WRITE_U(encoder->stream, 0, 1, "dependent_slices_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "transquant_bypass_enable_flag"); WRITE_U(encoder->stream, 0, 1, "tiles_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "entropy_coding_sync_enabled_flag"); //TODO: enable tiles for concurrency //IF tiles //ENDIF WRITE_U(encoder->stream, 0, 1, "loop_filter_across_slice_flag"); WRITE_U(encoder->stream, 1, 1, "deblocking_filter_control_present_flag"); //IF deblocking_filter WRITE_U(encoder->stream, 0, 1, "deblocking_filter_override_enabled_flag"); WRITE_U(encoder->stream, encoder->deblock_enable ? 0 : 1, 1, "pps_disable_deblocking_filter_flag"); //IF !disabled if (encoder->deblock_enable) { WRITE_SE(encoder->stream, encoder->beta_offset_div2, "beta_offset_div2"); WRITE_SE(encoder->stream, encoder->tc_offset_div2, "tc_offset_div2"); } //ENDIF //ENDIF WRITE_U(encoder->stream, 0, 1, "pps_scaling_list_data_present_flag"); //IF scaling_list //ENDIF WRITE_U(encoder->stream, 0, 1, "lists_modification_present_flag"); WRITE_UE(encoder->stream, 0, "log2_parallel_merge_level_minus2"); WRITE_U(encoder->stream, 0, 1, "slice_segment_header_extension_present_flag"); WRITE_U(encoder->stream, 0, 1, "pps_extension_flag"); } void encode_PTL(encoder_control *encoder) { int i; // PTL // Profile Tier WRITE_U(encoder->stream, 0, 2, "XXX_profile_space[]"); WRITE_U(encoder->stream, 0, 1, "XXX_tier_flag[]"); WRITE_U(encoder->stream, 0, 5, "XXX_profile_idc[]"); WRITE_U(encoder->stream, 0, 32, "XXX_profile_compatibility_flag[][j]"); WRITE_U(encoder->stream, 1, 1, "general_progressive_source_flag"); WRITE_U(encoder->stream, 0, 1, "general_interlaced_source_flag"); WRITE_U(encoder->stream, 0, 1, "general_non_packed_constraint_flag"); WRITE_U(encoder->stream, 0, 1, "general_frame_only_constraint_flag"); WRITE_U(encoder->stream, 0, 32, "XXX_reserved_zero_44bits[0..31]"); WRITE_U(encoder->stream, 0, 12, "XXX_reserved_zero_44bits[32..43]"); // end Profile Tier WRITE_U(encoder->stream, 0, 8, "general_level_idc"); WRITE_U(encoder->stream, 0, 1, "sub_layer_profile_present_flag"); WRITE_U(encoder->stream, 0, 1, "sub_layer_level_present_flag"); for (i = 1; i < 8; i++) { WRITE_U(encoder->stream, 0, 2, "reserved_zero_2bits"); } // end PTL } void encode_seq_parameter_set(encoder_control* encoder) { encoder_input* const in = &encoder->in; #ifdef _DEBUG printf("=========== Sequence Parameter Set ID: 0 ===========\n"); #endif // TODO: profile IDC and level IDC should be defined later on WRITE_U(encoder->stream, 0, 4, "sps_video_parameter_set_id"); WRITE_U(encoder->stream, 1, 3, "sps_max_sub_layers_minus1"); WRITE_U(encoder->stream, 0, 1, "sps_temporal_id_nesting_flag"); encode_PTL(encoder); WRITE_UE(encoder->stream, 0, "sps_seq_parameter_set_id"); WRITE_UE(encoder->stream, encoder->in.video_format, "chroma_format_idc"); if (encoder->in.video_format == 3) { WRITE_U(encoder->stream, 0, 1, "separate_colour_plane_flag"); } WRITE_UE(encoder->stream, encoder->in.width, "pic_width_in_luma_samples"); WRITE_UE(encoder->stream, encoder->in.height, "pic_height_in_luma_samples"); if (in->width != in->real_width || in->height != in->real_height) { // The standard does not seem to allow setting conf_win values such that // the number of luma samples is not a multiple of 2. Options are to either // hide one line or show an extra line of non-video. Neither seems like a // very good option, so let's not even try. assert(!(in->width % 2)); WRITE_U(encoder->stream, 1, 1, "conformance_window_flag"); WRITE_UE(encoder->stream, 0, "conf_win_left_offset"); WRITE_UE(encoder->stream, (in->width - in->real_width) >> 1, "conf_win_right_offset"); WRITE_UE(encoder->stream, 0, "conf_win_top_offset"); WRITE_UE(encoder->stream, (in->height - in->real_height) >> 1, "conf_win_bottom_offset"); } else { WRITE_U(encoder->stream, 0, 1, "conformance_window_flag"); } //IF window flag //END IF WRITE_UE(encoder->stream, encoder->bitdepth-8, "bit_depth_luma_minus8"); WRITE_UE(encoder->stream, encoder->bitdepth-8, "bit_depth_chroma_minus8"); WRITE_UE(encoder->stream, 0, "log2_max_pic_order_cnt_lsb_minus4"); WRITE_U(encoder->stream, 0, 1, "sps_sub_layer_ordering_info_present_flag"); //for each layer WRITE_UE(encoder->stream, 0, "sps_max_dec_pic_buffering"); WRITE_UE(encoder->stream, 0, "sps_num_reorder_pics"); WRITE_UE(encoder->stream, 0, "sps_max_latency_increase"); //end for WRITE_UE(encoder->stream, MIN_SIZE-3, "log2_min_coding_block_size_minus3"); WRITE_UE(encoder->stream, MAX_DEPTH, "log2_diff_max_min_coding_block_size"); WRITE_UE(encoder->stream, 0, "log2_min_transform_block_size_minus2"); // 4x4 WRITE_UE(encoder->stream, 3, "log2_diff_max_min_transform_block_size"); // 4x4...32x32 WRITE_UE(encoder->stream, 2, "max_transform_hierarchy_depth_inter"); WRITE_UE(encoder->stream, 2, "max_transform_hierarchy_depth_intra"); // Use default scaling list WRITE_U(encoder->stream, ENABLE_SCALING_LIST, 1, "scaling_list_enable_flag"); #if ENABLE_SCALING_LIST == 1 WRITE_U(encoder->stream, 0, 1, "sps_scaling_list_data_present_flag"); #endif WRITE_U(encoder->stream, 0, 1, "amp_enabled_flag"); WRITE_U(encoder->stream, encoder->sao_enable ? 1 : 0, 1, "sample_adaptive_offset_enabled_flag"); WRITE_U(encoder->stream, ENABLE_PCM, 1, "pcm_enabled_flag"); #if ENABLE_PCM == 1 WRITE_U(encoder->stream, 7, 4, "pcm_sample_bit_depth_luma_minus1"); WRITE_U(encoder->stream, 7, 4, "pcm_sample_bit_depth_chroma_minus1"); WRITE_UE(encoder->stream, 0, "log2_min_pcm_coding_block_size_minus3"); WRITE_UE(encoder->stream, 2, "log2_diff_max_min_pcm_coding_block_size"); WRITE_U(encoder->stream, 1, 1, "pcm_loop_filter_disable_flag"); #endif WRITE_UE(encoder->stream, 0, "num_short_term_ref_pic_sets"); //IF num short term ref pic sets //ENDIF WRITE_U(encoder->stream, 0, 1, "long_term_ref_pics_present_flag"); //IF long_term_ref_pics_present //ENDIF WRITE_U(encoder->stream, ENABLE_TEMPORAL_MVP, 1, "sps_temporal_mvp_enable_flag"); WRITE_U(encoder->stream, 0, 1, "sps_strong_intra_smoothing_enable_flag"); WRITE_U(encoder->stream, 0, 1, "vui_parameters_present_flag"); //TODO: VUI? //encode_VUI(encoder); WRITE_U(encoder->stream, 0, 1, "sps_extension_flag"); } void encode_vid_parameter_set(encoder_control* encoder) { int i; #ifdef _DEBUG printf("=========== Video Parameter Set ID: 0 ===========\n"); #endif WRITE_U(encoder->stream, 0, 4, "vps_video_parameter_set_id"); WRITE_U(encoder->stream, 3, 2, "vps_reserved_three_2bits" ); WRITE_U(encoder->stream, 0, 6, "vps_reserved_zero_6bits" ); WRITE_U(encoder->stream, 1, 3, "vps_max_sub_layers_minus1"); WRITE_U(encoder->stream, 0, 1, "vps_temporal_id_nesting_flag"); WRITE_U(encoder->stream, 0xffff, 16, "vps_reserved_ffff_16bits"); encode_PTL(encoder); WRITE_U(encoder->stream, 0, 1, "vps_sub_layer_ordering_info_present_flag"); //for each layer for (i = 0; i < 1; i++) { WRITE_UE(encoder->stream, 1, "vps_max_dec_pic_buffering"); WRITE_UE(encoder->stream, 0, "vps_num_reorder_pics"); WRITE_UE(encoder->stream, 0, "vps_max_latency_increase"); } WRITE_U(encoder->stream, 0, 6, "vps_max_nuh_reserved_zero_layer_id"); WRITE_UE(encoder->stream, 0, "vps_max_op_sets_minus1"); WRITE_U(encoder->stream, 0, 1, "vps_timing_info_present_flag"); //IF timing info //END IF WRITE_U(encoder->stream, 0, 1, "vps_extension_flag"); } void encode_VUI(encoder_control* encoder) { #ifdef _DEBUG printf("=========== VUI Set ID: 0 ===========\n"); #endif WRITE_U(encoder->stream, 0, 1, "aspect_ratio_info_present_flag"); //IF aspect ratio info //ENDIF WRITE_U(encoder->stream, 0, 1, "overscan_info_present_flag"); //IF overscan info //ENDIF WRITE_U(encoder->stream, 0, 1, "video_signal_type_present_flag"); //IF video type //ENDIF WRITE_U(encoder->stream, 0, 1, "chroma_loc_info_present_flag"); //IF chroma loc info //ENDIF WRITE_U(encoder->stream, 0, 1, "neutral_chroma_indication_flag"); WRITE_U(encoder->stream, 0, 1, "field_seq_flag"); WRITE_U(encoder->stream, 0, 1, "frame_field_info_present_flag"); WRITE_U(encoder->stream, 0, 1, "default_display_window_flag"); //IF default display window //ENDIF WRITE_U(encoder->stream, 0, 1, "vui_timing_info_present_flag"); //IF timing info //ENDIF WRITE_U(encoder->stream, 0, 1, "bitstream_restriction_flag"); //IF bitstream restriction //ENDIF } void encode_slice_header(encoder_control* encoder) { #ifdef _DEBUG printf("=========== Slice ===========\n"); #endif WRITE_U(encoder->stream, 1, 1, "first_slice_segment_in_pic_flag"); if (encoder->in.cur_pic->type >= NAL_BLA_W_LP && encoder->in.cur_pic->type <= NAL_RSV_IRAP_VCL23) { WRITE_U(encoder->stream, 1, 1, "no_output_of_prior_pics_flag"); } WRITE_UE(encoder->stream, 0, "slice_pic_parameter_set_id"); //WRITE_U(encoder->stream, 0, 1, "dependent_slice_segment_flag"); WRITE_UE(encoder->stream, encoder->in.cur_pic->slicetype, "slice_type"); // if !entropy_slice_flag //if output_flag_present_flag //WRITE_U(encoder->stream, 1, 1, "pic_output_flag"); //end if //if( IdrPicFlag ) <- nal_unit_type == 5 if (encoder->in.cur_pic->type != NAL_IDR_W_RADL && encoder->in.cur_pic->type != NAL_IDR_N_LP) { int j; int ref_negative = 1; int ref_positive = 0; WRITE_U(encoder->stream, encoder->frame&0xf, 4, "pic_order_cnt_lsb"); WRITE_U(encoder->stream, 0, 1, "short_term_ref_pic_set_sps_flag"); WRITE_UE(encoder->stream, ref_negative, "num_negative_pics"); WRITE_UE(encoder->stream, ref_positive, "num_positive_pics"); for (j = 0; j < ref_negative; j++) { WRITE_UE(encoder->stream, 0, "delta_poc_s0_minus1"); WRITE_U(encoder->stream,1,1, "used_by_curr_pic_s0_flag"); } //WRITE_UE(encoder->stream, 0, "short_term_ref_pic_set_idx"); } //end if //end if if (encoder->sao_enable) { WRITE_U(encoder->stream, 1,1, "slice_sao_luma_flag"); WRITE_U(encoder->stream, 0,1, "slice_sao_chroma_flag"); } if (encoder->in.cur_pic->slicetype != SLICE_I) { WRITE_U(encoder->stream, 0, 1, "num_ref_idx_active_override_flag"); WRITE_UE(encoder->stream, 5-MRG_MAX_NUM_CANDS, "five_minus_max_num_merge_cand"); } if (encoder->in.cur_pic->slicetype == SLICE_B) { WRITE_U(encoder->stream, 0, 1, "mvd_l1_zero_flag"); } // Skip flags that are not present // if !entropy_slice_flag WRITE_SE(encoder->stream, 0, "slice_qp_delta"); //WRITE_U(encoder->stream, 1, 1, "alignment"); } void encode_slice_data(encoder_control* encoder) { uint16_t x_ctb, y_ctb; scalinglist_process(); init_contexts(encoder,encoder->in.cur_pic->slicetype); // Loop through every LCU in the slice for (y_ctb = 0; y_ctb < encoder->in.height_in_lcu; y_ctb++) { uint8_t last_cu_y = (y_ctb == (encoder->in.height_in_lcu - 1)) ? 1 : 0; for (x_ctb = 0; x_ctb < encoder->in.width_in_lcu; x_ctb++) { uint8_t last_cu_x = (x_ctb == (encoder->in.width_in_lcu - 1)) ? 1 : 0; uint8_t depth = 0; // Recursive function for looping through all the sub-blocks encode_coding_tree(encoder, x_ctb << MAX_DEPTH, y_ctb << MAX_DEPTH, depth); // signal Terminating bit if (!last_cu_x || !last_cu_y) { cabac_encode_bin_trm(&cabac, 0); } } } } void encode_coding_tree(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { cu_info *cur_cu = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; uint8_t split_flag = GET_SPLITDATA(cur_cu, depth); uint8_t split_model = 0; // Check for slice border uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border = border_x | border_y; /*!< are we in any border CU */ // When not in MAX_DEPTH, insert split flag and split the blocks if needed if (depth != MAX_DEPTH) { // Implisit split flag when on border if (!border) { // Get left and top block split_flags and if they are present and true, increase model number if (x_ctb > 0 && GET_SPLITDATA(&(encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb - 1 + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]), depth) == 1) { split_model++; } if (y_ctb > 0 && GET_SPLITDATA(&(encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb + (y_ctb - 1) * (encoder->in.width_in_lcu << MAX_DEPTH)]), depth) == 1) { split_model++; } cabac.ctx = &g_split_flag_model[split_model]; CABAC_BIN(&cabac, split_flag, "SplitFlag"); } if (split_flag || border) { // Split blocks and remember to change x and y block positions uint8_t change = 1<<(MAX_DEPTH-1-depth); encode_coding_tree(encoder, x_ctb, y_ctb, depth + 1); // x,y // TODO: fix when other half of the block would not be completely over the border if (!border_x || border_split_x) { encode_coding_tree(encoder, x_ctb + change, y_ctb, depth + 1); } if (!border_y || border_split_y) { encode_coding_tree(encoder, x_ctb, y_ctb + change, depth + 1); } if (!border || (border_split_x && border_split_y)) { encode_coding_tree(encoder, x_ctb + change, y_ctb + change, depth + 1); } return; } } // Encode skip flag if (encoder->in.cur_pic->slicetype != SLICE_I) { int8_t ctx_skip = 0; // uiCtxSkip = aboveskipped + leftskipped; cabac.ctx = &g_cu_skip_flag_model[ctx_skip]; CABAC_BIN(&cabac, (cur_cu->type == CU_SKIP) ? 1 : 0, "SkipFlag"); } // IF SKIP if (cur_cu->type == CU_SKIP) { // Encode merge index //TODO: calculate/fetch merge candidates int16_t unary_idx = 0; //pcCU->getMergeIndex( uiAbsPartIdx ); int16_t num_cand = 0; //pcCU->getSlice()->getMaxNumMergeCand(); int32_t ui; if (num_cand > 1) { for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui == unary_idx) ? 0 : 1; if (ui == 0) { cabac.ctx = &g_cu_merge_idx_ext_model; CABAC_BIN(&cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(&cabac,symbol,"MergeIndex"); } if (symbol == 0) { break; } } } return; } // ENDIF SKIP // Prediction mode if (encoder->in.cur_pic->slicetype != SLICE_I) { cabac.ctx = &g_cu_pred_mode_model; CABAC_BIN(&cabac, (cur_cu->type == CU_INTRA) ? 1 : 0, "PredMode"); } // Signal PartSize on max depth if (depth == MAX_DEPTH || cur_cu->type != CU_INTRA) { // TODO: Handle inter sizes other than 2Nx2N cabac.ctx = &g_part_size_model[0]; CABAC_BIN(&cabac, 1, "PartSize"); // TODO: add AMP modes } //end partsize if (cur_cu->type == CU_INTER) { // FOR each part // Mergeflag uint8_t merge_flag = 0; int16_t unary_idx = 0; int16_t merge_cand[MRG_MAX_NUM_CANDS][2]; int16_t num_cand = inter_get_merge_cand(encoder, x_ctb, y_ctb, depth, merge_cand); for(unary_idx = 0; unary_idx < num_cand; unary_idx++) { if(merge_cand[unary_idx][0] == cur_cu->inter.mv[0] && merge_cand[unary_idx][1] == cur_cu->inter.mv[1]) { //merge_flag = 1; break; } } cabac.ctx = &g_cu_merge_flag_ext_model; CABAC_BIN(&cabac, merge_flag, "MergeFlag"); if (merge_flag) { //merge if (num_cand > 1) { int32_t ui; for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != unary_idx); if (ui == 0) { cabac.ctx = &g_cu_merge_idx_ext_model; CABAC_BIN(&cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(&cabac,symbol,"MergeIndex"); } if (symbol == 0) break; } } } else { uint32_t ref_list_idx; int16_t mv_cand[2][2]; /* // Void TEncSbac::codeInterDir( TComDataCU* pcCU, UInt uiAbsPartIdx ) if(encoder->in.cur_pic->slicetype == SLICE_B) { // Code Inter Dir const UInt uiInterDir = pcCU->getInterDir( uiAbsPartIdx ) - 1; const UInt uiCtx = pcCU->getCtxInterDir( uiAbsPartIdx ); ContextModel *pCtx = m_cCUInterDirSCModel.get( 0 ); if (pcCU->getPartitionSize(uiAbsPartIdx) == SIZE_2Nx2N || pcCU->getHeight(uiAbsPartIdx) != 8 ) { m_pcBinIf->encodeBin( uiInterDir == 2 ? 1 : 0, *( pCtx + uiCtx ) ); } if (uiInterDir < 2) { m_pcBinIf->encodeBin( uiInterDir, *( pCtx + 4 ) ); } } */ for (ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) { //if(encoder->ref_idx_num[uiRefListIdx] > 0) { if (cur_cu->inter.mv_dir & (1 << ref_list_idx)) { if (0) { //encoder->ref_idx_num[uiRefListIdx] != 1)//NumRefIdx != 1) // parseRefFrmIdx int32_t ref_frame = cur_cu->inter.mv_ref; cabac.ctx = &g_cu_ref_pic_model[0]; CABAC_BIN(&cabac, (ref_frame == 0) ? 0 : 1, "ref_frame_flag"); if (ref_frame > 0) { uint32_t i; uint32_t ref_num = encoder->ref_idx_num[ref_list_idx] - 2; cabac.ctx = &g_cu_ref_pic_model[1]; ref_frame--; for (i = 0; i < ref_num; ++i) { const uint32_t symbol = (i == ref_frame) ? 0 : 1; if (i == 0) { CABAC_BIN(&cabac, symbol, "ref_frame_flag2"); } else { CABAC_BIN_EP(&cabac, symbol, "ref_frame_flag2"); } if (symbol == 0) break; } } } // Get MV candidates inter_get_mv_cand(encoder, x_ctb, y_ctb, depth, mv_cand); // Select better candidate cur_cu->inter.mv_ref = 0; // Default to candidate 0 // Only check when candidates are different if (mv_cand[0][0] != mv_cand[1][0] || mv_cand[0][1] != mv_cand[1][1]) { uint16_t cand_1_diff = abs(cur_cu->inter.mv[0] - mv_cand[0][0]) + abs( cur_cu->inter.mv[1] - mv_cand[0][1]); uint16_t cand_2_diff = abs(cur_cu->inter.mv[0] - mv_cand[1][0]) + abs( cur_cu->inter.mv[1] - mv_cand[1][1]); // Select candidate 1 if it's closer if (cand_2_diff < cand_1_diff) { cur_cu->inter.mv_ref = 1; } } if (!(/*pcCU->getSlice()->getMvdL1ZeroFlag() &&*/ encoder->ref_list == REF_PIC_LIST_1 && cur_cu->inter.mv_dir == 3)) { const int32_t mvd_hor = cur_cu->inter.mv[0] - mv_cand[cur_cu->inter.mv_ref][0]; const int32_t mvd_ver = cur_cu->inter.mv[1] - mv_cand[cur_cu->inter.mv_ref][1]; const int8_t hor_abs_gr0 = mvd_hor != 0; const int8_t ver_abs_gr0 = mvd_ver != 0; const uint32_t mvd_hor_abs = abs(mvd_hor); const uint32_t mvd_ver_abs = abs(mvd_ver); cabac.ctx = &g_cu_mvd_model[0]; CABAC_BIN(&cabac, (mvd_hor!=0)?1:0, "abs_mvd_greater0_flag_hor"); CABAC_BIN(&cabac, (mvd_ver!=0)?1:0, "abs_mvd_greater0_flag_ver"); cabac.ctx = &g_cu_mvd_model[1]; if (hor_abs_gr0) { CABAC_BIN(&cabac, (mvd_hor_abs>1)?1:0, "abs_mvd_greater1_flag_hor"); } if (ver_abs_gr0) { CABAC_BIN(&cabac, (mvd_ver_abs>1)?1:0, "abs_mvd_greater1_flag_ver"); } if (hor_abs_gr0) { if (mvd_hor_abs > 1) { cabac_write_ep_ex_golomb(&cabac,mvd_hor_abs-2, 1); } CABAC_BIN_EP(&cabac, (mvd_hor>0)?0:1, "mvd_sign_flag_hor"); } if (ver_abs_gr0) { if (mvd_ver_abs > 1) { cabac_write_ep_ex_golomb(&cabac,mvd_ver_abs-2, 1); } CABAC_BIN_EP(&cabac, (mvd_ver>0)?0:1, "mvd_sign_flag_ver"); } } // Signal which candidate MV to use cabac_write_unary_max_symbol(&cabac, g_mvp_idx_model, cur_cu->inter.mv_ref, 1, AMVP_MAX_NUM_CANDS - 1); } } } // for ref_list } // if !merge // Inter reconstruction inter_recon(encoder->ref->pics[0], x_ctb * CU_MIN_SIZE_PIXELS, y_ctb * CU_MIN_SIZE_PIXELS, LCU_WIDTH >> depth, cur_cu->inter.mv, encoder->in.cur_pic); // Mark this block as "coded" (can be used for predictions..) picture_set_block_coded(encoder->in.cur_pic, x_ctb, y_ctb, depth, 1); { pixel *base_y = &encoder->in.cur_pic->y_data[x_ctb*(LCU_WIDTH>>(MAX_DEPTH)) + (y_ctb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width]; pixel *base_u = &encoder->in.cur_pic->u_data[x_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (y_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)]; pixel *base_v = &encoder->in.cur_pic->v_data[x_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (y_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)]; uint32_t width = LCU_WIDTH>>depth; /* INTRAPREDICTION VARIABLES */ int16_t pred[LCU_WIDTH*LCU_WIDTH+1]; int16_t predU[LCU_WIDTH*LCU_WIDTH>>2]; int16_t predV[LCU_WIDTH*LCU_WIDTH>>2]; pixel *recbase_y = &encoder->in.cur_pic->y_recdata[x_ctb*(LCU_WIDTH>>(MAX_DEPTH)) + (y_ctb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width]; pixel *recbase_u = &encoder->in.cur_pic->u_recdata[x_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (y_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)]; pixel *recbase_v = &encoder->in.cur_pic->v_recdata[x_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)) + (y_ctb*(LCU_WIDTH>>(MAX_DEPTH+1)))*(encoder->in.width>>1)]; /* TODO: dynamic memory allocation */ int16_t coeff_y[LCU_WIDTH*LCU_WIDTH*2]; int16_t coeff_u[LCU_WIDTH*LCU_WIDTH>>1]; int16_t coeff_v[LCU_WIDTH*LCU_WIDTH>>1]; int8_t residual = 0; /* Initialize helper structure for transform */ transform_info ti; memset(&ti, 0, sizeof(transform_info)); ti.x_ctb = x_ctb; ti.y_ctb = y_ctb; /* Base pointers */ ti.base = base_y; ti.base_u = base_u; ti.base_v = base_v; ti.base_stride = encoder->in.width; // Prediction pointers ti.pred = pred; ti.pred_u = predU; ti.pred_v = predV; ti.pred_stride = (LCU_WIDTH>>depth); // Reconstruction pointers ti.recbase = recbase_y; ti.recbase_u = recbase_u; ti.recbase_v = recbase_v; ti.recbase_stride = encoder->in.width; // Coeff pointers ti.coeff[0] = coeff_y; ti.coeff[1] = coeff_u; ti.coeff[2] = coeff_v; ti.block_type = CU_INTER; // Handle transforms, quant and reconstruction ti.idx = 0; encode_transform_tree(encoder,&ti, depth); // Coded block pattern ti.cb_top[0] = (ti.cb[0] & 0x1 || ti.cb[1] & 0x1 || ti.cb[2] & 0x1 || ti.cb[3] & 0x1)?1:0; ti.cb_top[1] = (ti.cb[0] & 0x2 || ti.cb[1] & 0x2 || ti.cb[2] & 0x2 || ti.cb[3] & 0x2)?1:0; ti.cb_top[2] = (ti.cb[0] & 0x4 || ti.cb[1] & 0x4 || ti.cb[2] & 0x4 || ti.cb[3] & 0x4)?1:0; residual = ti.cb_top[0] | ti.cb_top[1] | ti.cb_top[2]; if(depth == 0) { picture_set_block_residual(encoder->in.cur_pic,x_ctb ,y_ctb ,depth+1,ti.cb[0] & 0x1); picture_set_block_residual(encoder->in.cur_pic,x_ctb + 4,y_ctb ,depth+1,ti.cb[1] & 0x1); picture_set_block_residual(encoder->in.cur_pic,x_ctb ,y_ctb + 4,depth+1,ti.cb[2] & 0x1); picture_set_block_residual(encoder->in.cur_pic,x_ctb + 4,y_ctb + 4,depth+1,ti.cb[3] & 0x1); } else { picture_set_block_residual(encoder->in.cur_pic,x_ctb,y_ctb,depth,ti.cb_top[0]); } cabac.ctx = &g_cu_qt_root_cbf_model; CABAC_BIN(&cabac, residual, "rqt_root_cbf"); // Code (possible) coeffs to bitstream ti.idx = 0; if(residual) { encode_transform_coeff(encoder, &ti,depth, 0); } } // END for each part } else if (cur_cu->type == CU_INTRA) { uint8_t intra_pred_mode = cur_cu->intra.mode; uint8_t intra_pred_mode_chroma = 36; // 36 = Chroma derived from luma int8_t intra_preds[3] = { -1, -1, -1}; int8_t mpm_preds = -1; int i; uint32_t flag; pixel *base_y = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width]; pixel *base_u = &encoder->in.cur_pic->u_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)]; pixel *base_v = &encoder->in.cur_pic->v_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)]; uint32_t width = LCU_WIDTH>>depth; // INTRAPREDICTION VARIABLES int16_t pred_y[LCU_WIDTH * LCU_WIDTH + 1]; int16_t pred_u[LCU_WIDTH * LCU_WIDTH >> 2]; int16_t pred_v[LCU_WIDTH * LCU_WIDTH >> 2]; pixel *recbase_y = &encoder->in.cur_pic->y_recdata[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width]; pixel *recbase_u = &encoder->in.cur_pic->u_recdata[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)]; pixel *recbase_v = &encoder->in.cur_pic->v_recdata[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)]; // SEARCH BEST INTRA MODE (AGAIN) int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)]; int16_t *rec_shift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1]; intra_build_reference_border(encoder->in.cur_pic, x_ctb, y_ctb, (LCU_WIDTH >> (depth)) * 2 + 8, rec, (LCU_WIDTH >> (depth)) * 2 + 8, 0); cur_cu->intra.mode = (int8_t)intra_prediction(encoder->in.cur_pic->y_data, encoder->in.width, rec_shift, (LCU_WIDTH >> (depth)) * 2 + 8, x_ctb * (LCU_WIDTH >> (MAX_DEPTH)), y_ctb * (LCU_WIDTH >> (MAX_DEPTH)), width, pred_y, width, &cur_cu->intra.cost); intra_pred_mode = cur_cu->intra.mode; intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth, intra_pred_mode); #if ENABLE_PCM == 1 // Code must start after variable initialization cabac_encode_bin_trm(&cabac, 0); // IPCMFlag == 0 #endif // PREDINFO CODING // If intra prediction mode is found from the predictors, // it can be signaled with two EP's. Otherwise we can send // 5 EP bins with the full predmode intra_get_dir_luma_predictor(encoder->in.cur_pic, x_ctb, y_ctb, depth, intra_preds); for (i = 0; i < 3; i++) { if (intra_preds[i] == intra_pred_mode) { mpm_preds = i; break; } } // For each part { flag = (mpm_preds == -1) ? 0 : 1; cabac.ctx = &g_intra_mode_model; CABAC_BIN(&cabac,flag,"IntraPred"); // } End for each part // Intrapredmode signaling // If found from predictors, we can simplify signaling if (flag) { flag = (mpm_preds == 0) ? 0 : 1; CABAC_BIN_EP(&cabac, flag, "intraPredMode"); if (mpm_preds != 0) { flag = (mpm_preds == 1) ? 0 : 1; CABAC_BIN_EP(&cabac, flag, "intraPredMode"); } } else { // we signal the "full" predmode int32_t intra_pred_mode_temp = intra_pred_mode; if (intra_preds[0] > intra_preds[1]) { SWAP(intra_preds[0], intra_preds[1], int8_t); } if (intra_preds[0] > intra_preds[2]) { SWAP(intra_preds[0], intra_preds[2], int8_t); } if (intra_preds[1] > intra_preds[2]) { SWAP(intra_preds[1], intra_preds[2], int8_t); } for (i = 2; i >= 0; i--) { intra_pred_mode_temp = intra_pred_mode_temp > intra_preds[i] ? intra_pred_mode_temp - 1 : intra_pred_mode_temp; } CABAC_BINS_EP(&cabac, intra_pred_mode_temp, 5, "intraPredMode"); } // If we have chroma, signal it if (encoder->in.video_format != FORMAT_400) { // Chroma intra prediction cabac.ctx = &g_chroma_pred_model[0]; CABAC_BIN(&cabac, ((intra_pred_mode_chroma != 36) ? 1 : 0), "IntraPredChroma"); // If not copied from luma, signal it if (intra_pred_mode_chroma != 36) { int8_t intra_pred_mode_chroma_temp = intra_pred_mode_chroma; // Default chroma predictors uint32_t allowed_chroma_dir[5] = { 0, 26, 10, 1, 36 }; // If intra is the same as one of the default predictors, replace it for (i = 0; i < 4; i++) { if (intra_pred_mode == allowed_chroma_dir[i]) { allowed_chroma_dir[i] = 34; /* VER+8 mode */ break; } } for (i = 0; i < 4; i++) { if (intra_pred_mode_chroma_temp == allowed_chroma_dir[i]) { intra_pred_mode_chroma_temp = i; break; } } CABAC_BINS_EP(&cabac, intra_pred_mode_chroma_temp, 2, "intraPredModeChroma"); } } // END OF PREDINFO CODING // Coeff // Transform tree { // TODO: dynamic memory allocation int16_t coeff_y[LCU_WIDTH * LCU_WIDTH * 2]; int16_t coeff_u[LCU_WIDTH * LCU_WIDTH >> 1]; int16_t coeff_v[LCU_WIDTH * LCU_WIDTH >> 1]; // Initialize helper structure for transform transform_info ti; memset(&ti, 0, sizeof(transform_info)); ti.x_ctb = x_ctb; ti.y_ctb = y_ctb; // Base pointers ti.base = base_y; ti.base_u = base_u; ti.base_v = base_v; ti.base_stride = encoder->in.width; // Prediction pointers ti.pred = pred_y; ti.pred_u = pred_u; ti.pred_v = pred_v; ti.pred_stride = (LCU_WIDTH>>depth); // Reconstruction pointers ti.recbase = recbase_y; ti.recbase_u = recbase_u; ti.recbase_v = recbase_v; ti.recbase_stride = encoder->in.width; // Coeff pointers ti.coeff[0] = coeff_y; ti.coeff[1] = coeff_u; ti.coeff[2] = coeff_v; // Prediction info ti.intra_pred_mode = intra_pred_mode; ti.intra_pred_mode_chroma = intra_pred_mode_chroma; // Handle transforms, quant and reconstruction ti.idx = 0; ti.block_type = CU_INTRA; encode_transform_tree(encoder,&ti, depth); // Coded block pattern ti.cb_top[0] = (ti.cb[0] & 0x1 || ti.cb[1] & 0x1 || ti.cb[2] & 0x1 || ti.cb[3] & 0x1) ? 1 : 0; ti.cb_top[1] = (ti.cb[0] & 0x2 || ti.cb[1] & 0x2 || ti.cb[2] & 0x2 || ti.cb[3] & 0x2) ? 1 : 0; ti.cb_top[2] = (ti.cb[0] & 0x4 || ti.cb[1] & 0x4 || ti.cb[2] & 0x4 || ti.cb[3] & 0x4) ? 1 : 0; // Code (possible) coeffs to bitstream ti.idx = 0; encode_transform_coeff(encoder, &ti,depth, 0); } // end Transform tree // end Coeff } #if ENABLE_PCM == 1 // Code IPCM block if (cur_cu->type == CU_PCM) { cabac_encode_bin_trm(&cabac, 1); // IPCMFlag == 1 cabac_finish(&cabac); bitstream_align(cabac.stream); // PCM sample { unsigned y, x; pixel *base_y = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width]; pixel *base_u = &encoder->in.cur_pic->u_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)]; pixel *base_v = &encoder->in.cur_pic->v_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)]; // Luma for (y = 0; y < LCU_WIDTH >> depth; y++) { for (x = 0; x < LCU_WIDTH >> depth; x++) { bitstream_put(cabac.stream, base_y[x + y * encoder->in.width], 8); } } // Chroma if (encoder->in.video_format != FORMAT_400) { for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { bitstream_put(cabac.stream, base_u[x + y * (encoder->in.width >> 1)], 8); } } for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { bitstream_put(cabac.stream, base_v[x + y * (encoder->in.width >> 1)], 8); } } } } // end PCM sample cabac_start(&cabac); } // end Code IPCM block #endif /* END ENABLE_PCM */ else { /* Should not happend */ printf("UNHANDLED TYPE!\r\n"); exit(1); } /* end prediction unit */ /* end coding_unit */ } void encode_transform_tree(encoder_control *encoder, transform_info *ti, uint8_t depth) { // we have 64>>depth transform size int x,y,i; int32_t width = LCU_WIDTH>>depth; if (depth == 0) { // Split 64x64 // Prepare for multi-level splitting ti->split[ti->idx] = 1<split[ti->idx] & (1 << depth)) { uint8_t change = 1<<(MAX_DEPTH-1-depth); ti->idx = 0; encode_transform_tree(encoder,ti,depth+1); ti->x_ctb += change; ti->idx = 1; encode_transform_tree(encoder,ti,depth+1); ti->x_ctb -= change; ti->y_ctb += change; ti->idx = 2; encode_transform_tree(encoder,ti,depth+1); ti->x_ctb += change; ti->idx = 3; encode_transform_tree(encoder,ti,depth+1); return; } { uint8_t cb_y = 0, cb_u = 0, cb_v = 0; int32_t coeff_fourth = ((LCU_WIDTH>>(depth))*(LCU_WIDTH>>(depth)))+1; int32_t base_stride = ti->base_stride; int32_t recbase_stride = ti->recbase_stride; int32_t pred_stride = ti->pred_stride; int32_t recbase_offset[4] = { 0, width, ti->recbase_stride * width, ti->recbase_stride * width + width }; int32_t base_offset[4] = { 0, width, ti->base_stride * width, ti->base_stride * width + width }; int32_t pred_offset[4] = { 0, width, ti->pred_stride * width, ti->pred_stride * width + width }; int32_t recbase_offset_c[4] = { 0, width >> 1, (ti->recbase_stride >> 1) * (width >> 1), (ti->recbase_stride >> 1) *(width >> 1) + (width >> 1) }; int32_t base_offset_c[4] = { 0, width >> 1, (ti->base_stride >> 1) * (width >> 1), (ti->base_stride >> 1) * (width >> 1) + (width >> 1) }; int32_t pred_offset_c[4] = { 0, width >> 1, (ti->pred_stride >> 1) * (width >> 1), (ti->pred_stride >> 1) * (width >> 1) + (width >> 1) }; pixel *base_y = &ti->base[base_offset[ti->idx]]; pixel *base_u = &ti->base_u[base_offset_c[ti->idx]]; pixel *base_v = &ti->base_v[base_offset_c[ti->idx]]; pixel *recbase_y = &ti->recbase[recbase_offset[ti->idx]]; pixel *recbase_u = &ti->recbase_u[recbase_offset_c[ti->idx]]; pixel *recbase_v = &ti->recbase_v[recbase_offset_c[ti->idx]]; int16_t *pred_y = &ti->pred[pred_offset[ti->idx]]; int16_t *pred_u = &ti->pred_u[pred_offset_c[ti->idx]]; int16_t *pred_v = &ti->pred_v[pred_offset_c[ti->idx]]; int16_t *coeff_y = &ti->coeff[0][ti->idx * coeff_fourth]; int16_t *coeff_u = &ti->coeff[1][ti->idx * coeff_fourth >> 1]; int16_t *coeff_v = &ti->coeff[2][ti->idx * coeff_fourth >> 1]; // Quant and transform here... int16_t block[LCU_WIDTH*LCU_WIDTH>>2]; int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2]; // INTRA PREDICTION // TODO: split to a function! int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)]; int16_t *rec_shift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1]; int16_t *rec_shift_u = &rec[(LCU_WIDTH >> (depth + 1)) * 2 + 8 + 1]; uint32_t ac_sum = 0; uint32_t ctx_idx; uint32_t scan_idx_luma = SCAN_DIAG; uint32_t scan_idx_chroma = SCAN_DIAG; uint8_t dir_mode; #if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD uint32_t residual_sum = 0; #endif switch (width) { case 2: ctx_idx = 6; break; case 4: ctx_idx = 5; break; case 8: ctx_idx = 4; break; case 16: ctx_idx = 3; break; case 32: ctx_idx = 2; break; case 64: ctx_idx = 1; break; default: ctx_idx = 0; break; } if(ti->block_type == CU_INTRA) { //if multiple scans supported for transform size if (ctx_idx > 3 && ctx_idx < 6) { scan_idx_luma = abs((int32_t) ti->intra_pred_mode - 26) < 5 ? 1 : (abs((int32_t)ti->intra_pred_mode - 10) < 5 ? 2 : 0); } // Chroma scanmode ctx_idx++; dir_mode = ti->intra_pred_mode_chroma; if (dir_mode == 36) { // TODO: support NxN dir_mode = ti->intra_pred_mode; } if (ctx_idx > 4 && ctx_idx < 7) { // if multiple scans supported for transform size scan_idx_chroma = abs((int32_t) dir_mode - 26) < 5 ? 1 : (abs((int32_t)dir_mode - 10) < 5 ? 2 : 0); } // Build reconstructed block to use in prediction with extrapolated borders intra_build_reference_border(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb, (LCU_WIDTH >> (depth)) * 2 + 8, rec, (LCU_WIDTH >> (depth)) * 2 + 8, 0); intra_recon(rec_shift, (LCU_WIDTH >> (depth)) * 2 + 8, ti->x_ctb * (LCU_WIDTH >> (MAX_DEPTH)), ti->y_ctb * (LCU_WIDTH >> (MAX_DEPTH)), width, pred_y, pred_stride, ti->intra_pred_mode, 0); // Filter DC-prediction if (ti->intra_pred_mode == 1 && width < 32) { intra_dc_pred_filtering(rec_shift, (LCU_WIDTH >> (depth)) * 2 + 8, pred_y, width, LCU_WIDTH >> depth, LCU_WIDTH >> depth); } if (ti->intra_pred_mode_chroma != 36 && ti->intra_pred_mode_chroma == ti->intra_pred_mode) { ti->intra_pred_mode_chroma = 36; } intra_build_reference_border(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb, (LCU_WIDTH >> (depth + 1)) * 2 + 8, rec, (LCU_WIDTH >> (depth + 1)) * 2 + 8, 1); intra_recon(rec_shift_u, (LCU_WIDTH >> (depth + 1)) * 2 + 8, ti->x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)), ti->y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)), width >> 1, pred_u, pred_stride >> 1, ti->intra_pred_mode_chroma != 36 ? ti->intra_pred_mode_chroma : ti->intra_pred_mode, 1); intra_build_reference_border(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb, (LCU_WIDTH >> (depth + 1)) * 2 + 8, rec, (LCU_WIDTH >> (depth + 1)) * 2 + 8, 2); intra_recon(rec_shift_u, (LCU_WIDTH >> (depth + 1)) * 2 + 8, ti->x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)), ti->y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)), width >> 1, pred_v, pred_stride >> 1, ti->intra_pred_mode_chroma != 36 ? ti->intra_pred_mode_chroma : ti->intra_pred_mode, 1); // This affects reconstruction, do after that picture_set_block_coded(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb, depth, 1); } else { // Inter mode for(y = 0; y < LCU_WIDTH>>depth; y++) { for(x = 0; x < LCU_WIDTH>>depth; x++) { pred_y[x+y*pred_stride]=recbase_y[x+y*base_stride]; } } for(y = 0; y < LCU_WIDTH>>(depth+1); y++) { for(x = 0; x < LCU_WIDTH>>(depth+1); x++) { pred_u[x+y*(pred_stride>>1)]=recbase_u[x+y*(base_stride>>1)]; pred_v[x+y*(pred_stride>>1)]=recbase_v[x+y*(base_stride>>1)]; } } } // INTRA PREDICTION ENDS HERE // Get residual by subtracting prediction i = 0; ac_sum = 0; for (y = 0; y < LCU_WIDTH >> depth; y++) { for (x = 0; x < LCU_WIDTH >> depth; x++) { block[i] = ((int16_t)base_y[x + y * base_stride]) - pred_y[x + y * pred_stride]; #if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD residual_sum += block[i]; #endif i++; } } #if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD #define RESIDUAL_THRESHOLD 500 if(residual_sum < RESIDUAL_THRESHOLD/(LCU_WIDTH >> depth)) { memset(block, 0, sizeof(int16_t)*(LCU_WIDTH >> depth)*(LCU_WIDTH >> depth)); } #endif // Transform and quant residual to coeffs transform2d(block,pre_quant_coeff,width,0); quant(encoder, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0, scan_idx_luma, ti->block_type); // Check for non-zero coeffs for (i = 0; i < width * width; i++) { if (coeff_y[i] != 0) { // Found one, we can break here cb_y = 1; break; } } // if non-zero coeffs if (cb_y) { // RECONSTRUCT for predictions dequant(encoder, coeff_y, pre_quant_coeff, width, width, 0, ti->block_type); itransform2d(block,pre_quant_coeff,width,0); i = 0; for (y = 0; y < LCU_WIDTH >> depth; y++) { for (x = 0; x < LCU_WIDTH >> depth; x++) { int16_t val = block[i++] + pred_y[x + y * pred_stride]; //TODO: support 10+bits recbase_y[x + y * recbase_stride] = (uint8_t)CLIP(0, 255, val); } } // END RECONTRUCTION } else { // without coeffs, we only use the prediction for (y = 0; y < LCU_WIDTH >> depth; y++) { for (x = 0; x < LCU_WIDTH >> depth; x++) { recbase_y[x + y * recbase_stride] = (uint8_t)CLIP(0, 255, pred_y[x + y * pred_stride]); } } } if (encoder->in.video_format != FORMAT_400) { // Chroma U i = 0; ac_sum = 0; for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { block[i] = ((int16_t)base_u[x + y * (base_stride >> 1)]) - pred_u[x + y * (pred_stride >> 1)]; i++; } } transform2d(block,pre_quant_coeff,LCU_WIDTH>>(depth+1),65535); quant(encoder, pre_quant_coeff, coeff_u, width >> 1, width >> 1, &ac_sum, 2, scan_idx_chroma, ti->block_type); for (i = 0; i < width *width >> 2; i++) { if (coeff_u[i] != 0) { // Found one, we can break here cb_u = 1; break; } } // Chroma V i = 0; ac_sum = 0; for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { block[i] = ((int16_t)base_v[x + y * (base_stride >> 1)]) - pred_v[x + y * (pred_stride >> 1)]; i++; } } transform2d(block,pre_quant_coeff,LCU_WIDTH>>(depth+1),65535); quant(encoder, pre_quant_coeff, coeff_v, width >> 1, width >> 1, &ac_sum, 3, scan_idx_chroma, ti->block_type); for (i = 0; i < width *width >> 2; i++) { if (coeff_v[i] != 0) { // Found one, we can break here cb_v = 1; break; } } if (cb_u) { // RECONSTRUCT for predictions dequant(encoder, coeff_u, pre_quant_coeff, width >> 1, width >> 1, 2, ti->block_type); itransform2d(block,pre_quant_coeff,LCU_WIDTH>>(depth+1),65535); i = 0; for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { int16_t val = block[i++] + pred_u[x + y * (pred_stride >> 1)]; //TODO: support 10+bits recbase_u[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255, val); } } // END RECONTRUCTION } else { // without coeffs, we only use the prediction for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { recbase_u[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255, pred_u[x + y * (pred_stride >> 1)]); } } } if (cb_v) { // RECONSTRUCT for predictions dequant(encoder, coeff_v, pre_quant_coeff, width >> 1, width >> 1, 3, ti->block_type); itransform2d(block,pre_quant_coeff,LCU_WIDTH>>(depth+1),65535); i = 0; for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { int16_t val = block[i++] + pred_v[x + y * (pred_stride >> 1)]; //TODO: support 10+bits recbase_v[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255, val); } } // END RECONTRUCTION } else { // without coeffs, we only use the prediction for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { recbase_v[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255, pred_v[x + y * (pred_stride >> 1)]); } } } } // Store coded block pattern ti->cb[ti->idx] = cb_y | (cb_u << 1) | (cb_v << 2); // END INTRAPREDICTION return; } // end Residual Coding } void encode_transform_coeff(encoder_control *encoder, transform_info *ti, int8_t depth, int8_t tr_depth) { int8_t width = LCU_WIDTH>>depth; int8_t split = ((ti->split[ti->idx]&(1<>(depth))*(LCU_WIDTH>>(depth)))+1; if (depth != 0 && depth != MAX_DEPTH + 1) { cabac.ctx = &g_trans_subdiv_model[5 - ((g_convert_to_bit[LCU_WIDTH] + 2) - depth)]; CABAC_BIN(&cabac,split,"TransformSubdivFlag"); } // Signal if chroma data is present // Chroma data is also signaled BEFORE transform split // Chroma data is not signaled if it was set to 0 before split if (encoder->in.video_format != FORMAT_400) { // Non-zero chroma U Tcoeffs int8_t cb_flag = (tr_depth == 0) ? ti->cb_top[1] : ((ti->cb[ti->idx] & 0x2) ? 1 : 0); cabac.ctx = &g_qt_cbf_model_chroma[tr_depth]; if (tr_depth == 0 || ti->cb_top[1]) { CABAC_BIN(&cabac, cb_flag, "cbf_chroma_u"); } // Non-zero chroma V Tcoeffs // NOTE: Using the same ctx as before cb_flag = (tr_depth == 0) ? ti->cb_top[2] : ((ti->cb[ti->idx] & 0x4) ? 1 : 0); if (tr_depth == 0 || ti->cb_top[2]) { CABAC_BIN(&cabac, cb_flag, "cbf_chroma_v"); } } if (split) { ti->idx = 0; encode_transform_coeff(encoder, ti, depth + 1, tr_depth + 1); ti->idx = 1; encode_transform_coeff(encoder, ti, depth + 1, tr_depth + 1); ti->idx = 2; encode_transform_coeff(encoder, ti, depth + 1, tr_depth + 1); ti->idx = 3; encode_transform_coeff(encoder, ti, depth + 1, tr_depth + 1); return; } cb_y = ti->cb[ti->idx] & 0x1; cb_u = (ti->cb[ti->idx] & 0x2) ? 1 : 0; cb_v = (ti->cb[ti->idx] & 0x4) ? 1 : 0; if(ti->block_type == CU_INTRA || tr_depth || cb_u || cb_v) { // Non-zero luma Tcoeffs cabac.ctx = &g_qt_cbf_model_luma[tr_depth ? 0 : 1]; CABAC_BIN(&cabac, cb_y, "cbf_luma"); } { uint32_t ctx_idx; uint32_t scan_idx = SCAN_DIAG; uint32_t dir_mode; switch (width) { case 2: ctx_idx = 6; break; case 4: ctx_idx = 5; break; case 8: ctx_idx = 4; break; case 16: ctx_idx = 3; break; case 32: ctx_idx = 2; break; case 64: ctx_idx = 1; break; default: ctx_idx = 0; break; } ctx_idx -= tr_depth; // CoeffNxN // Residual Coding if (cb_y) { if (ti->block_type == CU_INTER) { scan_idx = SCAN_DIAG; } else { // Luma (Intra) scanmode dir_mode = ti->intra_pred_mode; //if multiple scans supported for transform size if (ctx_idx > 3 && ctx_idx < 6) { scan_idx = abs((int32_t) dir_mode - 26) < 5 ? 1 : (abs((int32_t)dir_mode - 10) < 5 ? 2 : 0); } } encode_coeff_nxn(encoder, &ti->coeff[0][ti->idx * coeff_fourth], width, 0, scan_idx); } if (cb_u || cb_v) { int8_t chroma_width = width >> 1; if(ti->block_type == CU_INTER) { scan_idx = SCAN_DIAG; } else { // Chroma scanmode ctx_idx++; dir_mode = ti->intra_pred_mode_chroma; if (dir_mode == 36) { // TODO: support NxN dir_mode = ti->intra_pred_mode; } scan_idx = SCAN_DIAG; if (ctx_idx > 4 && ctx_idx < 7) { // if multiple scans supported for transform size scan_idx = abs((int32_t) dir_mode - 26) < 5 ? 1 : (abs((int32_t)dir_mode - 10) < 5 ? 2 : 0); } } if (cb_u) { encode_coeff_nxn(encoder, &ti->coeff[1][ti->idx * coeff_fourth >> 1], chroma_width, 2, scan_idx); } if (cb_v) { encode_coeff_nxn(encoder, &ti->coeff[2][ti->idx * coeff_fourth >> 1], chroma_width, 2, scan_idx); } } } } void encode_coeff_nxn(encoder_control *encoder, int16_t *coeff, uint8_t width, uint8_t type, int8_t scan_mode) { int c1 = 1; uint8_t last_coeff_x = 0; uint8_t last_coeff_y = 0; int32_t i; uint32_t sig_coeffgroup_flag[64]; uint32_t num_nonzero = 0; int32_t scan_pos_last = -1; int32_t pos_last = 0; int32_t shift = 4>>1; int8_t be_valid = ENABLE_SIGN_HIDING; int32_t scan_pos_sig; int32_t last_scan_set; uint32_t go_rice_param = 0; uint32_t blk_pos, pos_y, pos_x, sig, ctx_sig; // CONSTANTS const uint32_t num_blk_side = width >> shift; const uint32_t log2_block_size = g_convert_to_bit[width] + 2; const uint32_t *scan = g_sig_last_scan[scan_mode][log2_block_size - 1]; const uint32_t *scan_cg = NULL; // Init base contexts according to block type cabac_ctx *base_coeff_group_ctx = &g_cu_sig_coeff_group_model[type]; cabac_ctx *baseCtx = (type == 0) ? &g_cu_sig_model_luma[0] : &g_cu_sig_model_chroma[0]; memset(sig_coeffgroup_flag,0,sizeof(uint32_t)*64); // Count non-zero coeffs for (i = 0; i < width * width; i++) { if (coeff[i] != 0) { num_nonzero++; } } scan_cg = g_sig_last_scan[scan_mode][log2_block_size > 3 ? log2_block_size - 3 : 0]; if (log2_block_size == 3) { scan_cg = g_sig_last_scan_8x8[scan_mode]; } else if (log2_block_size == 5) { scan_cg = g_sig_last_scan_32x32; } scan_pos_last = -1; // Significance mapping while (num_nonzero > 0) { pos_last = scan[++scan_pos_last]; #define POSY (pos_last >> log2_block_size) #define POSX (pos_last - ( POSY << log2_block_size )) if (coeff[pos_last] != 0) { sig_coeffgroup_flag[(num_blk_side * (POSY >> shift) + (POSX >> shift))] = 1; } num_nonzero -= (coeff[pos_last] != 0) ? 1 : 0; #undef POSY #undef POSX } last_coeff_x = pos_last & (width - 1); last_coeff_y = pos_last >> log2_block_size; // Code last_coeff_x and last_coeff_y encode_last_significant_xy(encoder, last_coeff_x, last_coeff_y, width, width, type, scan_mode); scan_pos_sig = scan_pos_last; last_scan_set = (scan_pos_last >> 4); // significant_coeff_flag for (i = last_scan_set; i >= 0; i--) { int32_t sub_pos = i << 4; // LOG2_SCAN_SET_SIZE; int32_t abs_coeff[16]; int32_t cg_blk_pos = scan_cg[i]; int32_t cg_pos_y = cg_blk_pos / num_blk_side; int32_t cg_pos_x = cg_blk_pos - (cg_pos_y * num_blk_side); uint32_t coeff_signs = 0; int32_t last_nz_pos_in_cg = -1; int32_t first_nz_pos_in_cg = 16; int32_t num_non_zero = 0; go_rice_param = 0; if (scan_pos_sig == scan_pos_last) { abs_coeff[0] = abs(coeff[pos_last]); coeff_signs = (coeff[pos_last] < 0); num_non_zero = 1; last_nz_pos_in_cg = scan_pos_sig; first_nz_pos_in_cg = scan_pos_sig; scan_pos_sig--; } if (i == last_scan_set || i == 0) { sig_coeffgroup_flag[cg_blk_pos] = 1; } else { uint32_t sig_coeff_group = (sig_coeffgroup_flag[cg_blk_pos] != 0); uint32_t ctx_sig = context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); cabac.ctx = &base_coeff_group_ctx[ctx_sig]; CABAC_BIN(&cabac, sig_coeff_group, "significant_coeff_group"); } if (sig_coeffgroup_flag[cg_blk_pos]) { int32_t pattern_sig_ctx = context_calc_pattern_sig_ctx(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); for (; scan_pos_sig >= sub_pos; scan_pos_sig--) { blk_pos = scan[scan_pos_sig]; pos_y = blk_pos >> log2_block_size; pos_x = blk_pos - (pos_y << log2_block_size); sig = (coeff[blk_pos] != 0) ? 1 : 0; if (scan_pos_sig > sub_pos || i == 0 || num_non_zero) { ctx_sig = context_get_sig_ctx_inc(pattern_sig_ctx, scan_mode, pos_x, pos_y, log2_block_size, width, type); cabac.ctx = &baseCtx[ctx_sig]; CABAC_BIN(&cabac, sig, "significant_coeff_flag"); } if (sig) { abs_coeff[num_non_zero] = abs(coeff[blk_pos]); coeff_signs = 2 * coeff_signs + (coeff[blk_pos] < 0); num_non_zero++; if (last_nz_pos_in_cg == -1) { last_nz_pos_in_cg = scan_pos_sig; } first_nz_pos_in_cg = scan_pos_sig; } } } else { scan_pos_sig = sub_pos - 1; } if (num_non_zero > 0) { int8_t sign_hidden = (last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 /*SBH_THRESHOLD*/) ? 1 : 0; uint32_t ctx_set = (i > 0 && type == 0) ? 2 : 0; cabac_ctx *base_ctx_mod; int32_t num_c1_flag, first_c2_flag_idx, idx, first_coeff2; if (c1 == 0) { ctx_set++; } c1 = 1; base_ctx_mod = (type == 0) ? &g_cu_one_model_luma[4 * ctx_set] : &g_cu_one_model_chroma[4 * ctx_set]; num_c1_flag = MIN(num_non_zero, C1FLAG_NUMBER); first_c2_flag_idx = -1; for (idx = 0; idx < num_c1_flag; idx++) { uint32_t symbol = (abs_coeff[idx] > 1) ? 1 : 0; cabac.ctx = &base_ctx_mod[c1]; CABAC_BIN(&cabac, symbol, "significant_coeff2_flag"); if (symbol) { c1 = 0; if (first_c2_flag_idx == -1) { first_c2_flag_idx = idx; } } else if ((c1 < 3) && (c1 > 0)) { c1++; } } if (c1 == 0) { base_ctx_mod = (type == 0) ? &g_cu_abs_model_luma[ctx_set] : &g_cu_abs_model_chroma[ctx_set]; if (first_c2_flag_idx != -1) { uint8_t symbol = (abs_coeff[first_c2_flag_idx] > 2) ? 1 : 0; cabac.ctx = &base_ctx_mod[0]; CABAC_BIN(&cabac,symbol,"first_c2_flag"); } } if (be_valid && sign_hidden) { CABAC_BINS_EP(&cabac, (coeff_signs >> 1), (num_non_zero - 1), ""); } else { CABAC_BINS_EP(&cabac, coeff_signs, num_non_zero, ""); } if (c1 == 0 || num_non_zero > C1FLAG_NUMBER) { first_coeff2 = 1; for (idx = 0; idx < num_non_zero; idx++) { int32_t base_level = (idx < C1FLAG_NUMBER) ? (2 + first_coeff2) : 1; if (abs_coeff[idx] >= base_level) { cabac_write_coeff_remain(&cabac, abs_coeff[idx] - base_level, go_rice_param); if (abs_coeff[idx] > 3 * (1 << go_rice_param)) { go_rice_param = MIN(go_rice_param + 1, 4); } } if (abs_coeff[idx] >= 2) { first_coeff2 = 0; } } } } } } /*! \brief Encode (X,Y) position of the last significant coefficient \param lastpos_x X component of last coefficient \param lastpos_y Y component of last coefficient \param width Block width \param height Block height \param type plane type / luminance or chrominance \param scan scan type (diag, hor, ver) This method encodes the X and Y component within a block of the last significant coefficient. */ void encode_last_significant_xy(encoder_control *encoder, uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan) { uint8_t offset_x = type?0:((TOBITS(width)*3) + ((TOBITS(width)+1)>>2)),offset_y = offset_x; uint8_t shift_x = type?(TOBITS(width)):((TOBITS(width)+3)>>2), shift_y = shift_x; int group_idx_x; int group_idx_y; int last_x,last_y,i; cabac_ctx *base_ctx_x = (type ? g_cu_ctx_last_x_chroma : g_cu_ctx_last_x_luma); cabac_ctx *base_ctx_y = (type ? g_cu_ctx_last_y_chroma : g_cu_ctx_last_y_luma); if (scan == SCAN_VER) { SWAP( lastpos_x, lastpos_y,uint8_t ); } group_idx_x = g_group_idx[lastpos_x]; group_idx_y = g_group_idx[lastpos_y]; // Last X binarization for (last_x = 0; last_x < group_idx_x ; last_x++) { cabac.ctx = &base_ctx_x[offset_x + (last_x >> shift_x)]; CABAC_BIN(&cabac,1,"LastSignificantX"); } if (group_idx_x < g_group_idx[width - 1]) { cabac.ctx = &base_ctx_x[offset_x + (last_x >> shift_x)]; CABAC_BIN(&cabac,0,"LastSignificantX"); } // Last Y binarization for (last_y = 0; last_y < group_idx_y ; last_y++) { cabac.ctx = &base_ctx_y[offset_y + (last_y >> shift_y)]; CABAC_BIN(&cabac,1,"LastSignificantY"); } if (group_idx_y < g_group_idx[height - 1]) { cabac.ctx = &base_ctx_y[offset_y + (last_y >> shift_y)]; CABAC_BIN(&cabac,0,"LastSignificantY"); } // Last X if (group_idx_x > 3) { lastpos_x -= g_min_in_group[group_idx_x]; for (i = ((group_idx_x - 2) >> 1) - 1; i >= 0; i--) { CABAC_BIN_EP(&cabac,(lastpos_x>>i) & 1,"LastSignificantX"); } } // Last Y if (group_idx_y > 3) { lastpos_y -= g_min_in_group[group_idx_y]; for (i = ((group_idx_y - 2) >> 1) - 1; i >= 0; i--) { CABAC_BIN_EP(&cabac,(lastpos_y>>i) & 1,"LastSignificantY"); } } // end LastSignificantXY }