/** * \file * * \author Marko Viitanen ( fador@iki.fi ), * Tampere University of Technology, * Department of Pervasive Computing. * \author Ari Koivula ( ari@koivu.la ), * Tampere University of Technology, * Department of Pervasive Computing. */ #include "inter.h" #include #include #include #include "config.h" #include "filter.h" /** * \brief Set block info to the CU structure * \param pic picture to use * \param x_cu x CU position (smallest CU) * \param y_cu y CU position (smallest CU) * \param depth current CU depth * \param cur_cu CU to take the settings from * \returns Void */ void inter_set_block(picture* pic, uint32_t x_cu, uint32_t y_cu, uint8_t depth, cu_info* cur_cu) { uint32_t x, y; // Width in smallest CU int width_in_scu = pic->width_in_lcu<>depth)/(LCU_WIDTH>>MAX_DEPTH); // Loop through all the block in the area of cur_cu for (y = y_cu; y < y_cu + block_scu_width; y++) { int cu_pos = y * width_in_scu; //!< calculate y-position once, use with every x for (x = x_cu; x < x_cu + block_scu_width; x++) { // Set all SCU's to this blocks values at the bottom most depth. pic->cu_array[MAX_DEPTH][cu_pos + x].depth = depth; pic->cu_array[MAX_DEPTH][cu_pos + x].type = CU_INTER; pic->cu_array[MAX_DEPTH][cu_pos + x].inter.mode = cur_cu->inter.mode; pic->cu_array[MAX_DEPTH][cu_pos + x].inter.mv[0] = cur_cu->inter.mv[0]; pic->cu_array[MAX_DEPTH][cu_pos + x].inter.mv[1] = cur_cu->inter.mv[1]; pic->cu_array[MAX_DEPTH][cu_pos + x].inter.mv_dir = cur_cu->inter.mv_dir; } } } /** * \brief Reconstruct inter block * \param ref picture to copy the data from * \param xpos block x position * \param ypos block y position * \param width block width * \param mv[2] motion vector * \param dst destination picture * \returns Void */ void inter_recon(picture* ref,int32_t xpos, int32_t ypos,int32_t width, const int16_t mv_param[2], picture *dst) { int x,y,coord_x,coord_y; int16_t mv[2] = { mv_param[0], mv_param[1] }; int32_t dst_width_c = dst->width>>1; //!< Destination picture width in chroma pixels int32_t ref_width_c = ref->width>>1; //!< Reference picture width in chroma pixels // negative overflow flag int8_t overflow_neg_x = (xpos + (mv[0]>>2) < 0)?1:0; int8_t overflow_neg_y = (ypos + (mv[1]>>2) < 0)?1:0; // positive overflow flag int8_t overflow_pos_x = (xpos + (mv[0]>>2) + width > ref->width )?1:0; int8_t overflow_pos_y = (ypos + (mv[1]>>2) + width > ref->height)?1:0; // Chroma half-pel #define HALFPEL_CHROMA_WIDTH ((LCU_WIDTH>>1) + 8) int8_t chroma_halfpel = ((mv[0]>>2)&1) || ((mv[1]>>2)&1); //!< (luma integer mv) lsb is set -> chroma is half-pel int16_t halfpel_src_u[HALFPEL_CHROMA_WIDTH * HALFPEL_CHROMA_WIDTH]; //!< U source block for interpolation int16_t halfpel_src_v[HALFPEL_CHROMA_WIDTH * HALFPEL_CHROMA_WIDTH]; //!< V source block for interpolation int16_t *halfpel_src_off_u = &halfpel_src_u[HALFPEL_CHROMA_WIDTH*4 + 4]; //!< halfpel_src_u with offset (4,4) int16_t *halfpel_src_off_v = &halfpel_src_v[HALFPEL_CHROMA_WIDTH*4 + 4]; //!< halfpel_src_v with offset (4,4) int16_t halfpel_u[LCU_WIDTH * LCU_WIDTH]; //!< interpolated 2W x 2H block (u) int16_t halfpel_v[LCU_WIDTH * LCU_WIDTH]; //!< interpolated 2W x 2H block (v) // TODO: Fractional pixel support mv[0] >>= 2; mv[1] >>= 2; // Chroma half-pel // get half-pel interpolated block and push it to output if(chroma_halfpel) { int halfpel_y, halfpel_x; int abs_mv_x = mv[0]&1; int abs_mv_y = mv[1]&1; int8_t overflow_neg_y_temp,overflow_pos_y_temp,overflow_neg_x_temp,overflow_pos_x_temp; // Fill source blocks with data from reference, -4...width+4 for (halfpel_y = 0, y = (ypos>>1) - 4; y < ((ypos + width)>>1) + 4; halfpel_y++, y++) { // calculate y-pixel offset coord_y = y + (mv[1]>>1); // On y-overflow set coord_y accordingly overflow_neg_y_temp = (coord_y < 0) ? 1 : 0; overflow_pos_y_temp = (coord_y >= ref->height>>1) ? 1 : 0; if (overflow_neg_y_temp) coord_y = 0; else if (overflow_pos_y_temp) coord_y = (ref->height>>1) - 1; coord_y *= ref_width_c; for (halfpel_x = 0, x = (xpos>>1) - 4; x < ((xpos + width)>>1) + 4; halfpel_x++, x++) { coord_x = x + (mv[0]>>1); // On x-overflow set coord_x accordingly overflow_neg_x_temp = (coord_x < 0) ? 1 : 0; overflow_pos_x_temp = (coord_x >= ref_width_c) ? 1 : 0; if (overflow_neg_x_temp) coord_x = 0; else if (overflow_pos_x_temp) coord_x = ref_width_c - 1; // Store source block data (with extended borders) halfpel_src_u[halfpel_y*HALFPEL_CHROMA_WIDTH + halfpel_x] = ref->u_recdata[coord_y + coord_x]; halfpel_src_v[halfpel_y*HALFPEL_CHROMA_WIDTH + halfpel_x] = ref->v_recdata[coord_y + coord_x]; } } // Filter the block to half-pel resolution filter_inter_halfpel_chroma(halfpel_src_off_u, HALFPEL_CHROMA_WIDTH, width>>1, width>>1, halfpel_u, LCU_WIDTH, abs_mv_x, abs_mv_y); filter_inter_halfpel_chroma(halfpel_src_off_v, HALFPEL_CHROMA_WIDTH, width>>1, width>>1, halfpel_v, LCU_WIDTH, abs_mv_x, abs_mv_y); // Assign filtered pixels to output, take every second half-pel sample with offset of abs_mv_y/x for (halfpel_y = abs_mv_y, y = ypos>>1; y < (ypos + width)>>1; halfpel_y += 2, y++) { for (halfpel_x = abs_mv_x, x = xpos>>1; x < (xpos + width)>>1; halfpel_x += 2, x++) { dst->u_recdata[y*dst_width_c + x] = (uint8_t)halfpel_u[halfpel_y*LCU_WIDTH + halfpel_x]; dst->v_recdata[y*dst_width_c + x] = (uint8_t)halfpel_v[halfpel_y*LCU_WIDTH + halfpel_x]; } } } // With overflow present, more checking if (overflow_neg_x || overflow_neg_y || overflow_pos_x || overflow_pos_y) { // Copy Luma with boundary checking for (y = ypos; y < ypos + width; y++) { for (x = xpos; x < xpos + width; x++) { coord_x = x + mv[0]; coord_y = y + mv[1]; overflow_neg_x = (coord_x < 0)?1:0; overflow_neg_y = (coord_y < 0)?1:0; overflow_pos_x = (coord_x >= ref->width )?1:0; overflow_pos_y = (coord_y >= ref->height)?1:0; // On x-overflow set coord_x accordingly if (overflow_neg_x) { coord_x = 0; } else if (overflow_pos_x) { coord_x = ref->width - 1; } // On y-overflow set coord_y accordingly if (overflow_neg_y) { coord_y = 0; } else if (overflow_pos_y) { coord_y = ref->height - 1; } // set destination to (corrected) pixel value from the reference dst->y_recdata[y * dst->width + x] = ref->y_recdata[coord_y*ref->width + coord_x]; } } if(!chroma_halfpel) { // Copy Chroma with boundary checking // TODO: chroma fractional pixel interpolation for (y = ypos>>1; y < (ypos + width)>>1; y++) { for (x = xpos>>1; x < (xpos + width)>>1; x++) { coord_x = x + (mv[0]>>1); coord_y = y + (mv[1]>>1); overflow_neg_x = (coord_x < 0)?1:0; overflow_neg_y = (y + (mv[1]>>1) < 0)?1:0; overflow_pos_x = (coord_x >= ref->width>>1 )?1:0; overflow_pos_y = (coord_y >= ref->height>>1)?1:0; // On x-overflow set coord_x accordingly if(overflow_neg_x) { coord_x = 0; } else if(overflow_pos_x) { coord_x = (ref->width>>1) - 1; } // On y-overflow set coord_y accordingly if(overflow_neg_y) { coord_y = 0; } else if(overflow_pos_y) { coord_y = (ref->height>>1) - 1; } // set destinations to (corrected) pixel value from the reference dst->u_recdata[y*dst_width_c + x] = ref->u_recdata[coord_y*ref_width_c + coord_x]; dst->v_recdata[y*dst_width_c + x] = ref->v_recdata[coord_y*ref_width_c + coord_x]; } } } } else { //If no overflow, we can copy without checking boundaries // Copy Luma for (y = ypos; y < ypos + width; y++) { coord_y = (y + mv[1]) * ref->width; // pre-calculate for (x = xpos; x < xpos + width; x++) { dst->y_recdata[y * dst->width + x] = ref->y_recdata[coord_y + x + mv[0]]; } } if(!chroma_halfpel) { // Copy Chroma // TODO: chroma fractional pixel interpolation for (y = ypos>>1; y < (ypos + width)>>1; y++) { coord_y = (y + (mv[1]>>1)) * ref_width_c; // pre-calculate for (x = xpos>>1; x < (xpos + width)>>1; x++) { dst->u_recdata[y*dst_width_c + x] = ref->u_recdata[coord_y + x + (mv[0]>>1)]; dst->v_recdata[y*dst_width_c + x] = ref->v_recdata[coord_y + x + (mv[0]>>1)]; } } } } } /** * \brief Get merge candidates for current block * \param encoder encoder control struct to use * \param x_cu block x position in SCU * \param y_cu block y position in SCU * \param depth current block depth * \param b0 candidate b0 * \param b1 candidate b1 * \param b2 candidate b2 * \param a0 candidate a0 * \param a1 candidate a1 */ void inter_get_spatial_merge_candidates(encoder_control *encoder, int32_t x_cu, int32_t y_cu, int8_t depth, cu_info **b0, cu_info **b1,cu_info **b2,cu_info **a0,cu_info **a1) { uint8_t cur_block_in_scu = (LCU_WIDTH>>depth) / CU_MIN_SIZE_PIXELS; //!< the width of the current block on SCU /* Predictor block locations ____ _______ |B2|______|B1|B0| | | | Cur CU | __| | |A1|_________| |A0| */ // A0 and A1 availability testing if (x_cu != 0) { *a1 = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu - 1 + (y_cu + cur_block_in_scu - 1) * (encoder->in.width_in_lcu<coded) *a1 = NULL; if (y_cu + cur_block_in_scu < encoder->in.height_in_lcu<in.cur_pic->cu_array[MAX_DEPTH][x_cu - 1 + (y_cu + cur_block_in_scu) * (encoder->in.width_in_lcu<coded) *a0 = NULL; } } // B0, B1 and B2 availability testing if (y_cu != 0) { if (x_cu + cur_block_in_scu < encoder->in.width_in_lcu<in.cur_pic->cu_array[MAX_DEPTH][x_cu + cur_block_in_scu + (y_cu - 1) * (encoder->in.width_in_lcu<coded) *b0 = NULL; } *b1 = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu + cur_block_in_scu - 1 + (y_cu - 1) * (encoder->in.width_in_lcu<coded) *b1 = NULL; if (x_cu != 0) { *b2 = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu - 1 + (y_cu - 1) * (encoder->in.width_in_lcu<coded) *b2 = NULL; } } } /** * \brief Get MV prediction for current block * \param encoder encoder control struct to use * \param x_cu block x position in SCU * \param y_cu block y position in SCU * \param depth current block depth * \param mv_pred[2][2] 2x motion vector prediction */ void inter_get_mv_cand(encoder_control *encoder, int32_t x_cu, int32_t y_cu, int8_t depth, int16_t mv_cand[2][2]) { uint8_t candidates = 0; cu_info *b0, *b1, *b2, *a0, *a1; b0 = b1 = b2 = a0 = a1 = NULL; inter_get_spatial_merge_candidates(encoder, x_cu, y_cu, depth, &b0, &b1, &b2, &a0, &a1); // Left predictors if (a0 && a0->type == CU_INTER) { mv_cand[candidates][0] = a0->inter.mv[0]; mv_cand[candidates][1] = a0->inter.mv[1]; candidates++; } else if (a1 && a1->type == CU_INTER) { mv_cand[candidates][0] = a1->inter.mv[0]; mv_cand[candidates][1] = a1->inter.mv[1]; candidates++; } // Top predictors if (b0 && b0->type == CU_INTER) { mv_cand[candidates][0] = b0->inter.mv[0]; mv_cand[candidates][1] = b0->inter.mv[1]; candidates++; } else if (b1 && b1->type == CU_INTER) { mv_cand[candidates][0] = b1->inter.mv[0]; mv_cand[candidates][1] = b1->inter.mv[1]; candidates++; } else if(b2 && b2->type == CU_INTER) { mv_cand[candidates][0] = b2->inter.mv[0]; mv_cand[candidates][1] = b2->inter.mv[1]; candidates++; } // Remove identical candidate if(candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) { candidates = 1; } #if ENABLE_TEMPORAL_MVP if(candidates < AMVP_MAX_NUM_CANDS) { //TODO: add temporal mv predictor } #endif // Fill with (0,0) while (candidates < AMVP_MAX_NUM_CANDS) { mv_cand[candidates][0] = 0; mv_cand[candidates][1] = 0; candidates++; } } /** * \brief Get merge predictions for current block * \param encoder encoder control struct to use * \param x_cu block x position in SCU * \param y_cu block y position in SCU * \param depth current block depth * \param mv_pred[MRG_MAX_NUM_CANDS][2] MRG_MAX_NUM_CANDS motion vector prediction */ uint8_t inter_get_merge_cand(encoder_control *encoder, int32_t x_cu, int32_t y_cu, int8_t depth, int16_t mv_cand[MRG_MAX_NUM_CANDS][2]) { uint8_t candidates = 0; uint8_t i = 0; int8_t duplicate = 0; cu_info *b0, *b1, *b2, *a0, *a1; b0 = b1 = b2 = a0 = a1 = NULL; inter_get_spatial_merge_candidates(encoder, x_cu, y_cu, depth, &b0, &b1, &b2, &a0, &a1); #define CHECK_DUPLICATE(CU1,CU2) {duplicate = 0; if ((CU2) && (CU2)->type == CU_INTER && \ (CU1)->inter.mv[0] == (CU2)->inter.mv[0] && \ (CU1)->inter.mv[1] == (CU2)->inter.mv[1]) duplicate = 1; } if (a1 && a1->type == CU_INTER) { mv_cand[candidates][0] = a1->inter.mv[0]; mv_cand[candidates][1] = a1->inter.mv[1]; candidates++; } if (b1 && b1->type == CU_INTER) { if(candidates) CHECK_DUPLICATE(b1, a1); if(!duplicate) { mv_cand[candidates][0] = b1->inter.mv[0]; mv_cand[candidates][1] = b1->inter.mv[1]; candidates++; } } if (b0 && b0->type == CU_INTER) { if(candidates) CHECK_DUPLICATE(b0,b1); if(!duplicate) { mv_cand[candidates][0] = b0->inter.mv[0]; mv_cand[candidates][1] = b0->inter.mv[1]; candidates++; } } if (a0 && a0->type == CU_INTER) { if(candidates) CHECK_DUPLICATE(a0,a1); if(!duplicate) { mv_cand[candidates][0] = a0->inter.mv[0]; mv_cand[candidates][1] = a0->inter.mv[1]; candidates++; } } if (candidates != 4) { if(b2 && b2->type == CU_INTER) { CHECK_DUPLICATE(b2,a1); if(!duplicate) { CHECK_DUPLICATE(b2,b1); if(!duplicate) { mv_cand[candidates][0] = b2->inter.mv[0]; mv_cand[candidates][1] = b2->inter.mv[1]; candidates++; } } } } #if ENABLE_TEMPORAL_MVP if(candidates < AMVP_MAX_NUM_CANDS) { //TODO: add temporal mv predictor } #endif // Add (0,0) prediction if (candidates != 5) { mv_cand[candidates][0] = 0; mv_cand[candidates][1] = 0; candidates++; } return candidates; }