/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
#include "inter.h"
#include
#include
#include "encoder.h"
#include "imagelist.h"
#include "strategies/generic/picture-generic.h"
#include "strategies/strategies-ipol.h"
#include "videoframe.h"
static void inter_recon_frac_luma(const encoder_state_t * const state,
const kvz_picture * const ref,
int32_t xpos,
int32_t ypos,
int32_t block_width,
int32_t block_height,
const int16_t mv_param[2],
lcu_t *lcu)
{
int mv_frac_x = (mv_param[0] & 3);
int mv_frac_y = (mv_param[1] & 3);
#define FILTER_SIZE_Y 8 //Luma filter size
// Fractional luma 1/4-pel
kvz_extended_block src = {0, 0, 0, 0};
// Fractional luma
kvz_get_extended_block(xpos,
ypos,
mv_param[0] >> 2,
mv_param[1] >> 2,
state->tile->lcu_offset_x * LCU_WIDTH,
state->tile->lcu_offset_y * LCU_WIDTH,
ref->y,
ref->width,
ref->height,
FILTER_SIZE_Y,
block_width,
block_height,
&src);
kvz_sample_quarterpel_luma(state->encoder_control,
src.orig_topleft,
src.stride,
block_width,
block_height,
lcu->rec.y + (ypos%LCU_WIDTH)*LCU_WIDTH + (xpos%LCU_WIDTH),
LCU_WIDTH,
mv_frac_x,
mv_frac_y,
mv_param);
if (src.malloc_used) free(src.buffer);
}
static void inter_recon_14bit_frac_luma(const encoder_state_t * const state,
const kvz_picture * const ref,
int32_t xpos,
int32_t ypos,
int32_t block_width,
int32_t block_height,
const int16_t mv_param[2],
hi_prec_buf_t *hi_prec_out)
{
int mv_frac_x = (mv_param[0] & 3);
int mv_frac_y = (mv_param[1] & 3);
#define FILTER_SIZE_Y 8 //Luma filter size
// Fractional luma 1/4-pel
kvz_extended_block src = { 0, 0, 0, 0 };
// Fractional luma
kvz_get_extended_block(xpos,
ypos,
mv_param[0] >> 2,
mv_param[1] >> 2,
state->tile->lcu_offset_x * LCU_WIDTH,
state->tile->lcu_offset_y * LCU_WIDTH,
ref->y,
ref->width,
ref->height,
FILTER_SIZE_Y,
block_width,
block_height,
&src);
kvz_sample_14bit_quarterpel_luma(state->encoder_control,
src.orig_topleft,
src.stride,
block_width,
block_height,
hi_prec_out->y + (ypos%LCU_WIDTH)*LCU_WIDTH + (xpos%LCU_WIDTH),
LCU_WIDTH,
mv_frac_x,
mv_frac_y,
mv_param);
if (src.malloc_used) free(src.buffer);
}
static void inter_recon_frac_chroma(const encoder_state_t * const state,
const kvz_picture * const ref,
int32_t xpos,
int32_t ypos,
int32_t block_width,
int32_t block_height,
const int16_t mv_param[2],
lcu_t *lcu)
{
int mv_frac_x = (mv_param[0] & 7);
int mv_frac_y = (mv_param[1] & 7);
// Translate to chroma
xpos >>= 1;
ypos >>= 1;
block_width >>= 1;
block_height >>= 1;
#define FILTER_SIZE_C 4 //Chroma filter size
// Fractional chroma 1/8-pel
kvz_extended_block src_u = { 0, 0, 0, 0 };
kvz_extended_block src_v = { 0, 0, 0, 0 };
//Fractional chroma U
kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->lcu_offset_x * LCU_WIDTH_C, state->tile->lcu_offset_y * LCU_WIDTH_C,
ref->u, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_u);
kvz_sample_octpel_chroma(state->encoder_control, src_u.orig_topleft, src_u.stride, block_width,
block_height, lcu->rec.u + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param);
//Fractional chroma V
kvz_get_extended_block(xpos, ypos, (mv_param[0] >> 2) >> 1, (mv_param[1] >> 2) >> 1, state->tile->lcu_offset_x * LCU_WIDTH_C, state->tile->lcu_offset_y * LCU_WIDTH_C,
ref->v, ref->width >> 1, ref->height >> 1, FILTER_SIZE_C, block_width, block_height, &src_v);
kvz_sample_octpel_chroma(state->encoder_control, src_v.orig_topleft, src_v.stride, block_width,
block_height, lcu->rec.v + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C), LCU_WIDTH_C, mv_frac_x, mv_frac_y, mv_param);
if (src_u.malloc_used) free(src_u.buffer);
if (src_v.malloc_used) free(src_v.buffer);
}
static void inter_recon_14bit_frac_chroma(const encoder_state_t * const state,
const kvz_picture * const ref,
int32_t xpos,
int32_t ypos,
int32_t block_width,
int32_t block_height,
const int16_t mv_param[2],
hi_prec_buf_t *hi_prec_out)
{
int mv_frac_x = (mv_param[0] & 7);
int mv_frac_y = (mv_param[1] & 7);
// Translate to chroma
xpos >>= 1;
ypos >>= 1;
block_width >>= 1;
block_height >>= 1;
#define FILTER_SIZE_C 4 //Chroma filter size
// Fractional chroma 1/8-pel
kvz_extended_block src_u = { 0, 0, 0, 0 };
kvz_extended_block src_v = { 0, 0, 0, 0 };
//Fractional chroma U
kvz_get_extended_block(xpos,
ypos,
(mv_param[0] >> 2) >> 1,
(mv_param[1] >> 2) >> 1,
state->tile->lcu_offset_x * LCU_WIDTH_C,
state->tile->lcu_offset_y * LCU_WIDTH_C,
ref->u,
ref->width >> 1,
ref->height >> 1,
FILTER_SIZE_C,
block_width,
block_height,
&src_u);
kvz_sample_14bit_octpel_chroma(state->encoder_control,
src_u.orig_topleft,
src_u.stride,
block_width,
block_height,
hi_prec_out->u + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C),
LCU_WIDTH_C,
mv_frac_x,
mv_frac_y,
mv_param);
//Fractional chroma V
kvz_get_extended_block(xpos,
ypos,
(mv_param[0] >> 2) >> 1,
(mv_param[1] >> 2) >> 1,
state->tile->lcu_offset_x * LCU_WIDTH_C,
state->tile->lcu_offset_y * LCU_WIDTH_C,
ref->v,
ref->width >> 1,
ref->height >> 1,
FILTER_SIZE_C,
block_width,
block_height,
&src_v);
kvz_sample_14bit_octpel_chroma(state->encoder_control,
src_v.orig_topleft,
src_v.stride,
block_width,
block_height,
hi_prec_out->v + (ypos % LCU_WIDTH_C)*LCU_WIDTH_C + (xpos % LCU_WIDTH_C),
LCU_WIDTH_C,
mv_frac_x,
mv_frac_y,
mv_param);
if (src_u.malloc_used) free(src_u.buffer);
if (src_v.malloc_used) free(src_v.buffer);
}
/**
* \brief Reconstruct inter block
*
* \param state encoder state
* \param ref picture to copy the data from
* \param xpos block x position
* \param ypos block y position
* \param width block width
* \param height block height
* \param mv_param motion vector
* \param lcu destination lcu
* \param hi_prec_out destination of high precision output (null if not needed)
*/
void kvz_inter_recon_lcu(const encoder_state_t * const state,
const kvz_picture * const ref,
int32_t xpos,
int32_t ypos,
int32_t width,
int32_t height,
const int16_t mv_param[2],
lcu_t *lcu,
hi_prec_buf_t *hi_prec_out)
{
int x,y,coord_x,coord_y;
int16_t mv[2] = { mv_param[0], mv_param[1] };
int32_t dst_width_c = LCU_WIDTH>>1; //!< Destination picture width in chroma pixels
int32_t ref_width_c = ref->width>>1; //!< Reference picture width in chroma pixels
// negative overflow flag
int8_t overflow_neg_x = (state->tile->lcu_offset_x * LCU_WIDTH + xpos + (mv[0]>>2) < 0)?1:0;
int8_t overflow_neg_y = (state->tile->lcu_offset_y * LCU_WIDTH + ypos + (mv[1]>>2) < 0)?1:0;
// positive overflow flag
int8_t overflow_pos_x = (state->tile->lcu_offset_x * LCU_WIDTH + xpos + (mv[0]>>2) + width > ref->width )?1:0;
int8_t overflow_pos_y = (state->tile->lcu_offset_y * LCU_WIDTH + ypos + (mv[1]>>2) + height > ref->height)?1:0;
int8_t chroma_halfpel = ((mv[0]>>2)&1) || ((mv[1]>>2)&1); //!< (luma integer mv) lsb is set -> chroma is half-pel
// Luma quarter-pel
int8_t fractional_mv = (mv[0]&1) || (mv[1]&1) || (mv[0]&2) || (mv[1]&2); // either of 2 lowest bits of mv set -> mv is fractional
if(fractional_mv) {
if (state->encoder_control->cfg->bipred && hi_prec_out){
inter_recon_14bit_frac_luma(state, ref, xpos, ypos, width, height, mv_param, hi_prec_out);
inter_recon_14bit_frac_chroma(state, ref, xpos, ypos, width, height, mv_param, hi_prec_out);
} else {
inter_recon_frac_luma(state, ref, xpos, ypos, width, height, mv_param, lcu);
inter_recon_frac_chroma(state, ref, xpos, ypos, width, height, mv_param, lcu);
}
}
mv[0] >>= 2;
mv[1] >>= 2;
// Chroma half-pel
// get half-pel interpolated block and push it to output
if(!fractional_mv) {
if(chroma_halfpel) {
if (state->encoder_control->cfg->bipred && hi_prec_out){
inter_recon_14bit_frac_chroma(state, ref, xpos, ypos, width, height, mv_param, hi_prec_out);
} else {
inter_recon_frac_chroma(state, ref, xpos, ypos, width, height, mv_param, lcu);
}
}
// With overflow present, more checking
if (overflow_neg_x || overflow_neg_y || overflow_pos_x || overflow_pos_y) {
// Copy Luma with boundary checking
for (y = ypos; y < ypos + height; y++) {
for (x = xpos; x < xpos + width; x++) {
int x_in_lcu = (x & ((LCU_WIDTH)-1));
int y_in_lcu = (y & ((LCU_WIDTH)-1));
coord_x = (x + state->tile->lcu_offset_x * LCU_WIDTH) + mv[0];
coord_y = (y + state->tile->lcu_offset_y * LCU_WIDTH) + mv[1];
overflow_neg_x = (coord_x < 0)?1:0;
overflow_neg_y = (coord_y < 0)?1:0;
overflow_pos_x = (coord_x >= ref->width )?1:0;
overflow_pos_y = (coord_y >= ref->height)?1:0;
// On x-overflow set coord_x accordingly
if (overflow_neg_x) {
coord_x = 0;
} else if (overflow_pos_x) {
coord_x = ref->width - 1;
}
// On y-overflow set coord_y accordingly
if (overflow_neg_y) {
coord_y = 0;
} else if (overflow_pos_y) {
coord_y = ref->height - 1;
}
// set destination to (corrected) pixel value from the reference
lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = ref->y[coord_y*ref->width + coord_x];
}
}
if(!chroma_halfpel) {
// Copy Chroma with boundary checking
for (y = ypos>>1; y < (ypos + height)>>1; y++) {
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
int x_in_lcu = (x & ((LCU_WIDTH>>1)-1));
int y_in_lcu = (y & ((LCU_WIDTH>>1)-1));
coord_x = (x + state->tile->lcu_offset_x * (LCU_WIDTH >> 1)) + (mv[0]>>1);
coord_y = (y + state->tile->lcu_offset_y * (LCU_WIDTH >> 1)) + (mv[1]>>1);
overflow_neg_x = (coord_x < 0)?1:0;
overflow_neg_y = (coord_y < 0)?1:0;
overflow_pos_x = (coord_x >= ref->width>>1 )?1:0;
overflow_pos_y = (coord_y >= ref->height>>1)?1:0;
// On x-overflow set coord_x accordingly
if(overflow_neg_x) {
coord_x = 0;
} else if(overflow_pos_x) {
coord_x = (ref->width>>1) - 1;
}
// On y-overflow set coord_y accordingly
if(overflow_neg_y) {
coord_y = 0;
} else if(overflow_pos_y) {
coord_y = (ref->height>>1) - 1;
}
// set destinations to (corrected) pixel value from the reference
lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = ref->u[coord_y * ref_width_c + coord_x];
lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = ref->v[coord_y * ref_width_c + coord_x];
}
}
}
} else { //If no overflow, we can copy without checking boundaries
// Copy Luma
for (y = ypos; y < ypos + height; y++) {
int y_in_lcu = (y & ((LCU_WIDTH)-1));
coord_y = ((y + state->tile->lcu_offset_y * LCU_WIDTH) + mv[1]) * ref->width; // pre-calculate
for (x = xpos; x < xpos + width; x+=sizeof(int32_t)/sizeof(kvz_pixel)) {
int x_in_lcu = (x & ((LCU_WIDTH)-1));
kvz_pixel *dst = &(lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu]);
kvz_pixel *src = &(ref->y[coord_y + (x + state->tile->lcu_offset_x * LCU_WIDTH) + mv[0]]);
//Copy one or many pixels simultaneously
*(int32_t*)dst = *(int32_t*)src;
}
}
if(!chroma_halfpel) {
// Copy Chroma
// TODO: chroma fractional pixel interpolation
for (y = ypos>>1; y < (ypos + height)>>1; y++) {
int y_in_lcu = (y & ((LCU_WIDTH>>1)-1));
coord_y = ((y + state->tile->lcu_offset_y * (LCU_WIDTH>>1)) + (mv[1]>>1)) * ref_width_c; // pre-calculate
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
int x_in_lcu = (x & ((LCU_WIDTH>>1)-1));
lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = ref->u[coord_y + (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1)];
lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = ref->v[coord_y + (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1)];
}
}
}
}
}
}
/**
* \brief Reconstruct bi-pred inter block
*
* \param state encoder state
* \param ref1 reference picture to copy the data from
* \param ref2 other reference picture to copy the data from
* \param xpos block x position
* \param ypos block y position
* \param width block width
* \param height block height
* \param mv_param motion vectors
* \param lcu destination lcu
*/
void kvz_inter_recon_lcu_bipred(const encoder_state_t * const state,
const kvz_picture * ref1,
const kvz_picture * ref2,
int32_t xpos,
int32_t ypos,
int32_t width,
int32_t height,
int16_t mv_param[2][2],
lcu_t* lcu)
{
kvz_pixel temp_lcu_y[LCU_WIDTH*LCU_WIDTH];
kvz_pixel temp_lcu_u[LCU_WIDTH_C*LCU_WIDTH_C];
kvz_pixel temp_lcu_v[LCU_WIDTH_C*LCU_WIDTH_C];
int temp_x, temp_y;
int shift = 15 - KVZ_BIT_DEPTH;
int offset = 1 << (shift - 1);
const int hi_prec_luma_rec0 = mv_param[0][0] & 3 || mv_param[0][1] & 3;
const int hi_prec_luma_rec1 = mv_param[1][0] & 3 || mv_param[1][1] & 3;
const int hi_prec_chroma_rec0 = mv_param[0][0] & 7 || mv_param[0][1] & 7;
const int hi_prec_chroma_rec1 = mv_param[1][0] & 7 || mv_param[1][1] & 7;
hi_prec_buf_t* high_precision_rec0 = 0;
hi_prec_buf_t* high_precision_rec1 = 0;
if (hi_prec_chroma_rec0) high_precision_rec0 = kvz_hi_prec_buf_t_alloc(LCU_WIDTH*LCU_WIDTH);
if (hi_prec_chroma_rec1) high_precision_rec1 = kvz_hi_prec_buf_t_alloc(LCU_WIDTH*LCU_WIDTH);
//Reconstruct both predictors
kvz_inter_recon_lcu(state, ref1, xpos, ypos, width, height, mv_param[0], lcu, high_precision_rec0);
if (!hi_prec_luma_rec0){
memcpy(temp_lcu_y, lcu->rec.y, sizeof(kvz_pixel) * 64 * 64);
}
if (!hi_prec_chroma_rec0){
memcpy(temp_lcu_u, lcu->rec.u, sizeof(kvz_pixel) * 32 * 32);
memcpy(temp_lcu_v, lcu->rec.v, sizeof(kvz_pixel) * 32 * 32);
}
kvz_inter_recon_lcu(state, ref2, xpos, ypos, width, height, mv_param[1], lcu, high_precision_rec1);
// After reconstruction, merge the predictors by taking an average of each pixel
for (temp_y = 0; temp_y < height; ++temp_y) {
int y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1));
for (temp_x = 0; temp_x < width; ++temp_x) {
int x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1));
int16_t sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift);
}
}
for (temp_y = 0; temp_y < height >> 1; ++temp_y) {
int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1));
for (temp_x = 0; temp_x < width >> 1; ++temp_x) {
int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1));
int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift);
int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift);
}
}
if (high_precision_rec0 != 0) kvz_hi_prec_buf_t_free(high_precision_rec0);
if (high_precision_rec1 != 0) kvz_hi_prec_buf_t_free(high_precision_rec1);
}
/**
* \brief Clear unused L0/L1 motion vectors and reference
* \param cu coding unit to clear
*/
static void inter_clear_cu_unused(cu_info_t* cu)
{
for (unsigned i = 0; i < 2; ++i) {
if (cu->inter.mv_dir & (1 << i)) continue;
cu->inter.mv[i][0] = 0;
cu->inter.mv[i][1] = 0;
cu->inter.mv_ref[i] = 255;
}
}
/**
* \brief Check whether a0 mv cand block is coded before the current block.
* \param x x-coordinate of the current block (in pixels)
* \param y y-coordinate of the current block (in pixels)
* \param width width of the current block (in pixels)
* \param height height of the current block (in pixels)
* \return True, if the a0 mv candidate block is coded before the
* current block. Otherwise false.
*/
static bool is_a0_cand_coded(int x, int y, int width, int height)
{
int size = MIN(width & ~(width - 1), height & ~(height - 1));
if (height != size) {
// For SMP and AMP blocks the situation is equivalent to a square block
// at the lower left corner of the PU.
y = y + height - size;
}
while (size < LCU_WIDTH) {
const int parent_size = 2 * size;
const int cu_index = (x % parent_size != 0) + 2 * (y % parent_size != 0);
switch (cu_index) {
case 0:
// A0 is in the CU directly left of the parent CU so it has been
// coded already.
// +---+---+
// | X | |
// |---+---+
// A0 | | |
// +---+---+
return true;
case 1:
// A0 is in the CU that will be coded after the current CU.
// +---+---+
// | | X |
// |---+---+
// |A0 | |
// +---+---+
return false;
case 2:
// +---+---+
// | | |
// |---+---+
// | X | |
// +---+---+
// A0
// Move to the parent block.
y -= size;
size = parent_size;
break;
case 3:
// A0 is in the CU directly down of the parent CU so is has not
// been coded yet.
// +---+---+
// | | |
// |---+---+
// | | X |
// +---+---+
// A0
return false;
}
}
// For 64x64 blocks A0 candidate is located outside the LCU.
return false;
}
/**
* \brief Check whether b0 mv cand block is coded before the current block.
* \param x x-coordinate of the current block (in pixels)
* \param y y-coordinate of the current block (in pixels)
* \param width width of the current block (in pixels)
* \param height height of the current block (in pixels)
* \return True, if the b0 mv candidate block is coded before the
* current block. Otherwise false.
*/
static bool is_b0_cand_coded(int x, int y, int width, int height)
{
int size = MIN(width & ~(width - 1), height & ~(height - 1));
if (width != size) {
// For SMP and AMP blocks the situation is equivalent to a square block
// at the upper right corner of the PU.
x = x + width - size;
}
while (size < LCU_WIDTH) {
const int parent_size = 2 * size;
const int cu_index = (x % parent_size != 0) + 2 * (y % parent_size != 0);
switch (cu_index) {
case 0:
// B0 is in the CU directly above the parent CU so it has been
// coded already.
// B0
// +---+---+
// | X | |
// |---+---+
// | | |
// +---+---+
return true;
case 1:
// B0
// +---+---+
// | | X |
// |---+---+
// | | |
// +---+---+
// Move to the parent block.
x -= size;
size = parent_size;
break;
case 2:
// +---+---+
// | |B0 |
// |---+---+
// | X | |
// +---+---+
return true;
case 3:
// B0 is in the CU directly right of the parent CU so is has not
// been coded yet.
// +---+---+
// | | | B0
// |---+---+
// | | X |
// +---+---+
return false;
}
}
// The LCU to the right and up of the current LCU has been coded already.
return true;
}
/**
* \brief Get merge candidates for current block
* \param encoder encoder control struct to use
* \param x block x position in SCU
* \param y block y position in SCU
* \param width current block width
* \param height current block height
* \param H candidate H
* \param C1 candidate C1
*/
void kvz_inter_get_temporal_merge_candidates(const encoder_state_t * const state,
int32_t x,
int32_t y,
int32_t width,
int32_t height,
cu_info_t **C3,
cu_info_t **H) {
/*
Predictor block locations
_________
|CurrentPU|
| |C0|__ |
| |C3| |
|_________|_
|H|
*/
*C3 = NULL;
*H = NULL;
// Find temporal reference, closest POC
if (state->global->ref->used_size) {
uint32_t poc_diff = UINT_MAX;
int32_t closest_ref = 0;
for (int temporal_cand = 0; temporal_cand < state->global->ref->used_size; temporal_cand++) {
int td = state->global->poc - state->global->ref->pocs[temporal_cand];
td = td < 0 ? -td : td;
if (td < poc_diff) {
closest_ref = temporal_cand;
poc_diff = td;
}
}
cu_array_t *ref_cu_array = state->global->ref->cu_arrays[closest_ref];
int32_t x_lcu = x / LCU_WIDTH;
int32_t y_lcu = y / LCU_WIDTH;
int cu_per_width = state->encoder_control->in.width_in_lcu* LCU_WIDTH / LCU_CU_WIDTH;
uint32_t xColBr = x + width;
uint32_t yColBr = y + height;
// H must be available
if (xColBr < state->encoder_control->in.width &&
yColBr < state->encoder_control->in.height) {
int32_t H_offset = -1;
// Y inside the current CTU / LCU
if (yColBr % LCU_WIDTH != 0) {
H_offset = ((xColBr >> 4) << 4) / LCU_CU_WIDTH +
(((yColBr >> 4) << 4) / LCU_CU_WIDTH) * cu_per_width;
}
if (H_offset >= 0) {
// Only use when it's inter block
if (ref_cu_array->data[H_offset].type == CU_INTER) {
*H = &ref_cu_array->data[H_offset];
}
}
}
uint32_t xColCtr = x + (width / 2);
uint32_t yColCtr = y + (height / 2);
// C3 must be inside the LCU, in the center position of current CU
if (xColCtr < state->encoder_control->in.width && yColCtr < state->encoder_control->in.height) {
uint32_t C3_offset = ((xColCtr >> 4) << 4) / LCU_CU_WIDTH + ((((yColCtr >> 4) << 4) / LCU_CU_WIDTH) * cu_per_width);
if (ref_cu_array->data[C3_offset].type == CU_INTER) {
*C3 = &ref_cu_array->data[C3_offset];
}
}
}
}
/**
* \brief Get merge candidates for current block.
*
* The output parameters b0, b1, b2, a0, a1 are pointed to the
* corresponding cu_info_t struct in lcu->cu, or set to NULL, if the
* candidate is not available.
*
* \param x block x position in pixels
* \param y block y position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param picture_width tile width in pixels
* \param picture_height tile height in pixels
* \param b0 Returns the b0 candidate.
* \param b1 Returns the b1 candidate.
* \param b2 Returns the b2 candidate.
* \param a0 Returns the a0 candidate.
* \param a1 Returns the a1 candidate.
* \param lcu current LCU
*/
static void get_spatial_merge_candidates(int32_t x,
int32_t y,
int32_t width,
int32_t height,
int32_t picture_width,
int32_t picture_height,
cu_info_t **b0,
cu_info_t **b1,
cu_info_t **b2,
cu_info_t **a0,
cu_info_t **a1,
lcu_t *lcu)
{
/*
Predictor block locations
____ _______
|B2|______|B1|B0|
| |
| Cur CU |
__| |
|A1|_________|
|A0|
*/
int32_t x_local = SUB_SCU(x); //!< coordinates from top-left of this LCU
int32_t y_local = SUB_SCU(y);
// A0 and A1 availability testing
if (x != 0) {
*a1 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local + height - 1);
// Do not check (*a1)->coded because the block above is always coded before
// the current one and the flag is not set when searching an SMP block.
if ((*a1)->type == CU_INTER) {
inter_clear_cu_unused(*a1);
} else {
*a1 = NULL;
}
if (y_local + height < LCU_WIDTH && y + height < picture_height) {
*a0 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local + height);
if ((*a0)->type == CU_INTER && is_a0_cand_coded(x, y, width, height)) {
inter_clear_cu_unused(*a0);
} else {
*a0 = NULL;
}
}
}
// B0, B1 and B2 availability testing
if (y != 0) {
if (x + width < picture_width) {
if (x_local + width < LCU_WIDTH) {
*b0 = LCU_GET_CU_AT_PX(lcu, x_local + width, y_local - 1);
} else if (y_local == 0) {
// Special case, top-right CU
*b0 = LCU_GET_TOP_RIGHT_CU(lcu);
}
}
if ((*b0) && (*b0)->type == CU_INTER && is_b0_cand_coded(x, y, width, height)) {
inter_clear_cu_unused(*b0);
} else {
*b0 = NULL;
}
*b1 = LCU_GET_CU_AT_PX(lcu, x_local + width - 1, y_local - 1);
// Do not check (*b1)->coded because the block to the left is always coded
// before the current one and the flag is not set when searching an SMP
// block.
if ((*b1)->type == CU_INTER) {
inter_clear_cu_unused(*b1);
} else {
*b1 = NULL;
}
if (x != 0) {
*b2 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local - 1);
// Do not check (*b2)->coded because the block above and to the left is
// always coded before the current one.
if ((*b2)->type == CU_INTER) {
inter_clear_cu_unused(*b2);
} else {
*b2 = NULL;
}
}
}
}
/**
* \brief Get merge candidates for current block.
*
* The output parameters b0, b1, b2, a0, a1 are pointed to the
* corresponding cu_info_t struct in lcu->cu, or set to NULL, if the
* candidate is not available.
*
* \param cua cu information
* \param x block x position in pixels
* \param y block y position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param picture_width tile width in pixels
* \param picture_height tile height in pixels
* \param b0 Returns the b0 candidate.
* \param b1 Returns the b1 candidate.
* \param b2 Returns the b2 candidate.
* \param a0 Returns the a0 candidate.
* \param a1 Returns the a1 candidate.
*/
static void get_spatial_merge_candidates_cua(const cu_array_t *cua,
int32_t x,
int32_t y,
int32_t width,
int32_t height,
int32_t picture_width,
int32_t picture_height,
const cu_info_t **b0,
const cu_info_t **b1,
const cu_info_t **b2,
const cu_info_t **a0,
const cu_info_t **a1)
{
/*
Predictor block locations
____ _______
|B2|______|B1|B0|
| |
| Cur CU |
__| |
|A1|_________|
|A0|
*/
int32_t x_local = SUB_SCU(x); //!< coordinates from top-left of this LCU
int32_t y_local = SUB_SCU(y);
// A0 and A1 availability testing
if (x != 0) {
*a1 = kvz_cu_array_at_const(cua, x - 1, y + height - 1);
// The block above is always coded before the current one.
if ((*a1)->type != CU_INTER) {
*a1 = NULL;
}
if (y_local + height < LCU_WIDTH && y + height < picture_height) {
*a0 = kvz_cu_array_at_const(cua, x - 1, y + height);
if ((*a0)->type != CU_INTER || !is_a0_cand_coded(x, y, width, height)) {
*a0 = NULL;
}
}
}
// B0, B1 and B2 availability testing
if (y != 0) {
if (x + width < picture_width && (x_local + width < LCU_WIDTH || y_local == 0)) {
*b0 = kvz_cu_array_at_const(cua, x + width, y - 1);
if ((*b0)->type != CU_INTER || !is_b0_cand_coded(x, y, width, height)) {
*b0 = NULL;
}
}
*b1 = kvz_cu_array_at_const(cua, x + width - 1, y - 1);
// The block to the left is always coded before the current one.
if ((*b1)->type != CU_INTER) {
*b1 = NULL;
}
if (x != 0) {
*b2 = kvz_cu_array_at_const(cua, x - 1, y - 1);
// The block above and to the left is always coded before the current
// one.
if ((*b2)->type != CU_INTER) {
*b2 = NULL;
}
}
}
}
/**
* \brief Pick two mv candidates from the spatial candidates.
*/
static void get_mv_cand_from_spatial(const encoder_state_t * const state,
int32_t x,
int32_t y,
int32_t width,
int32_t height,
const cu_info_t *b0,
const cu_info_t *b1,
const cu_info_t *b2,
const cu_info_t *a0,
const cu_info_t *a1,
const cu_info_t *c3,
const cu_info_t *h,
const cu_info_t *cur_cu,
int8_t reflist,
int16_t mv_cand[2][2])
{
uint8_t candidates = 0;
uint8_t b_candidates = 0;
int8_t reflist2nd = !reflist;
#define CALCULATE_SCALE(cu,tb,td) ((tb * ((0x4000 + (abs(td)>>1))/td) + 32) >> 6)
#define APPLY_MV_SCALING(cu, cand, list) {int td = state->frame->poc - state->frame->ref->pocs[(cu)->inter.mv_ref[list]];\
int tb = state->frame->poc - state->frame->ref->pocs[cur_cu->inter.mv_ref[reflist]];\
if (td != tb) { \
int scale = CALCULATE_SCALE(cu,tb,td); \
mv_cand[cand][0] = ((scale * (cu)->inter.mv[list][0] + 127 + (scale * (cu)->inter.mv[list][0] < 0)) >> 8 ); \
mv_cand[cand][1] = ((scale * (cu)->inter.mv[list][1] + 127 + (scale * (cu)->inter.mv[list][1] < 0)) >> 8 ); }}
// Left predictors
if (a0 && (
((a0->inter.mv_dir & 1) && a0->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((a0->inter.mv_dir & 2) && a0->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (a0->inter.mv_dir & (1 << reflist) && a0->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = a0->inter.mv[reflist][0];
mv_cand[candidates][1] = a0->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = a0->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = a0->inter.mv[reflist2nd][1];
}
candidates++;
} else if (a1 && (
((a1->inter.mv_dir & 1) && a1->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((a1->inter.mv_dir & 2) && a1->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (a1->inter.mv_dir & (1 << reflist) && a1->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = a1->inter.mv[reflist][0];
mv_cand[candidates][1] = a1->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = a1->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = a1->inter.mv[reflist2nd][1];
}
candidates++;
}
if(!candidates) {
// Left predictors
if (a0) {
if (a0->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = a0->inter.mv[reflist][0];
mv_cand[candidates][1] = a0->inter.mv[reflist][1];
APPLY_MV_SCALING(a0, candidates, reflist);
} else {
mv_cand[candidates][0] = a0->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = a0->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(a0, candidates, reflist2nd);
}
candidates++;
} else if (a1) {
if (a1->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = a1->inter.mv[reflist][0];
mv_cand[candidates][1] = a1->inter.mv[reflist][1];
APPLY_MV_SCALING(a1, candidates, reflist);
} else {
mv_cand[candidates][0] = a1->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = a1->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(a1, candidates, reflist2nd);
}
candidates++;
}
}
// Top predictors
if (b0 && (
((b0->inter.mv_dir & 1) && b0->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((b0->inter.mv_dir & 2) && b0->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (b0->inter.mv_dir & (1 << reflist) && b0->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = b0->inter.mv[reflist][0];
mv_cand[candidates][1] = b0->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = b0->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b0->inter.mv[reflist2nd][1];
}
b_candidates++;
} else if (b1 && (
((b1->inter.mv_dir & 1) && b1->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((b1->inter.mv_dir & 2) && b1->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (b1->inter.mv_dir & (1 << reflist) && b1->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = b1->inter.mv[reflist][0];
mv_cand[candidates][1] = b1->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = b1->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b1->inter.mv[reflist2nd][1];
}
b_candidates++;
} else if (b2 && (
((b2->inter.mv_dir & 1) && b2->inter.mv_ref[0] == cur_cu->inter.mv_ref[reflist]) ||
((b2->inter.mv_dir & 2) && b2->inter.mv_ref[1] == cur_cu->inter.mv_ref[reflist]))) {
if (b2->inter.mv_dir & (1 << reflist) && b2->inter.mv_ref[reflist] == cur_cu->inter.mv_ref[reflist]) {
mv_cand[candidates][0] = b2->inter.mv[reflist][0];
mv_cand[candidates][1] = b2->inter.mv[reflist][1];
} else {
mv_cand[candidates][0] = b2->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b2->inter.mv[reflist2nd][1];
}
b_candidates++;
}
candidates += b_candidates;
// When a1 or a0 is available, we dont check for secondary B candidates
if (a1 || a0) {
b_candidates = 1;
} else if(candidates != 2) {
b_candidates = 0;
}
if(!b_candidates) {
// Top predictors
if (b0) {
if (b0->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = b0->inter.mv[reflist][0];
mv_cand[candidates][1] = b0->inter.mv[reflist][1];
APPLY_MV_SCALING(b0, candidates, reflist);
} else {
mv_cand[candidates][0] = b0->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b0->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(b0, candidates, reflist2nd);
}
candidates++;
} else if (b1) {
if (b1->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = b1->inter.mv[reflist][0];
mv_cand[candidates][1] = b1->inter.mv[reflist][1];
APPLY_MV_SCALING(b1, candidates, reflist);
} else {
mv_cand[candidates][0] = b1->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b1->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(b1, candidates, reflist2nd);
}
candidates++;
} else if (b2) {
if (b2->inter.mv_dir & (1 << reflist)) {
mv_cand[candidates][0] = b2->inter.mv[reflist][0];
mv_cand[candidates][1] = b2->inter.mv[reflist][1];
APPLY_MV_SCALING(b2, candidates, reflist);
} else {
mv_cand[candidates][0] = b2->inter.mv[reflist2nd][0];
mv_cand[candidates][1] = b2->inter.mv[reflist2nd][1];
APPLY_MV_SCALING(b2, candidates, reflist2nd);
}
candidates++;
}
}
// Remove identical candidate
if(candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) {
candidates = 1;
}
#if ENABLE_TEMPORAL_MVP
/*
Predictor block locations
_________
|CurrentPU|
| |C0|__ |
| |C3| |
|_________|_
|H|
*/
// Find temporal reference, closest POC
if (state->global->poc > 1 && state->global->ref->used_size && candidates < AMVP_MAX_NUM_CANDS) {
uint32_t poc_diff = UINT_MAX;
int32_t closest_ref = 0;
for (int temporal_cand = 0; temporal_cand < state->global->ref->used_size; temporal_cand++) {
int td = state->global->poc - state->global->ref->pocs[temporal_cand];
td = td < 0 ? -td : td;
if (td < poc_diff) {
closest_ref = temporal_cand;
poc_diff = td;
}
}
cu_array_t *ref_cu_array = state->global->ref->cu_arrays[closest_ref];
cu_info_t *selected_CU = NULL;
if (h != NULL) {
selected_CU = h;
} else if (c3 != NULL) {
selected_CU = c3;
}
if (selected_CU) {
int td = state->global->poc - state->global->ref->pocs[closest_ref];
int tb = state->global->poc - state->global->ref->pocs[cur_cu->inter.mv_ref[reflist]];
int scale = 256;// CALCULATE_SCALE(NULL, tb, td);
mv_cand[candidates][0] = ((scale * selected_CU->inter.mv[0][0] + 127 + (scale * selected_CU->inter.mv[0][0] < 0)) >> 8);
mv_cand[candidates][1] = ((scale * selected_CU->inter.mv[0][1] + 127 + (scale * selected_CU->inter.mv[0][1] < 0)) >> 8);
candidates++;
}
}
#endif
// Fill with (0,0)
while (candidates < AMVP_MAX_NUM_CANDS) {
mv_cand[candidates][0] = 0;
mv_cand[candidates][1] = 0;
candidates++;
}
#undef CALCULATE_SCALE
#undef APPLY_MV_SCALING
}
/**
* \brief Get MV prediction for current block.
*
* \param state encoder state
* \param x block x position in pixels
* \param y block y position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param mv_cand Return the motion vector candidates.
* \param cur_cu current CU
* \param lcu current LCU
* \param reflist reflist index (either 0 or 1)
*/
void kvz_inter_get_mv_cand(const encoder_state_t * const state,
int32_t x,
int32_t y,
int32_t width,
int32_t height,
int16_t mv_cand[2][2],
cu_info_t* cur_cu,
lcu_t *lcu,
int8_t reflist)
{
cu_info_t *b0, *b1, *b2, *a0, *a1, *c3, *h;
b0 = b1 = b2 = a0 = a1 = NULL;
get_spatial_merge_candidates(x, y, width, height,
state->tile->frame->width, state->tile->frame->height,
&b0, &b1, &b2, &a0, &a1, lcu);
kvz_inter_get_temporal_merge_candidates(state, x, y, width, height, &c3, &h);
get_mv_cand_from_spatial(state, x, y, width, height, b0, b1, b2, a0, a1, c3, h, cur_cu, reflist, mv_cand);
}
/**
* \brief Get MV prediction for current block using state->tile->frame->cu_array.
*
* \param state encoder state
* \param x block x position in pixels
* \param y block y position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param mv_cand Return the motion vector candidates.
* \param cur_cu current CU
* \param reflist reflist index (either 0 or 1)
*/
void kvz_inter_get_mv_cand_cua(const encoder_state_t * const state,
int32_t x,
int32_t y,
int32_t width,
int32_t height,
int16_t mv_cand[2][2],
const cu_info_t* cur_cu,
int8_t reflist)
{
const cu_info_t *b0, *b1, *b2, *a0, *a1, *c3, *h;
b0 = b1 = b2 = a0 = a1 = NULL;
const cu_array_t *cua = state->tile->frame->cu_array;
get_spatial_merge_candidates_cua(cua,
x, y, width, height,
state->tile->frame->width, state->tile->frame->height,
&b0, &b1, &b2, &a0, &a1);
kvz_inter_get_temporal_merge_candidates(state, x, y, width, height, &c3, &h);
get_mv_cand_from_spatial(state, x, y, width, height, b0, b1, b2, a0, a1, c3, h, cur_cu, reflist, mv_cand);
}
/**
* \brief Get merge predictions for current block
* \param state the encoder state
* \param x block x position in SCU
* \param y block y position in SCU
* \param width block width
* \param height block height
* \param use_a1 true, if candidate a1 can be used
* \param use_b1 true, if candidate b1 can be used
* \param mv_cand Returns the merge candidates.
* \param lcu lcu containing the block
* \return number of merge candidates
*/
uint8_t kvz_inter_get_merge_cand(const encoder_state_t * const state,
int32_t x, int32_t y,
int32_t width, int32_t height,
bool use_a1, bool use_b1,
inter_merge_cand_t mv_cand[MRG_MAX_NUM_CANDS],
lcu_t *lcu)
{
uint8_t candidates = 0;
int8_t duplicate = 0;
cu_info_t *b0, *b1, *b2, *a0, *a1;
int8_t zero_idx = 0;
b0 = b1 = b2 = a0 = a1 = NULL;
get_spatial_merge_candidates(x, y, width, height,
state->tile->frame->width, state->tile->frame->height,
&b0, &b1, &b2, &a0, &a1, lcu);
if (!use_a1) a1 = NULL;
if (!use_b1) b1 = NULL;
#define CHECK_DUPLICATE(CU1,CU2) {duplicate = 0; if ((CU2) && \
(CU1)->inter.mv_dir == (CU2)->inter.mv_dir && \
(!(((CU1)->inter.mv_dir & 1) && ((CU2)->inter.mv_dir & 1)) || \
((CU1)->inter.mv[0][0] == (CU2)->inter.mv[0][0] && \
(CU1)->inter.mv[0][1] == (CU2)->inter.mv[0][1] && \
(CU1)->inter.mv_ref[0] == (CU2)->inter.mv_ref[0]) ) && \
(!(((CU1)->inter.mv_dir & 2) && ((CU2)->inter.mv_dir & 2) ) || \
((CU1)->inter.mv[1][0] == (CU2)->inter.mv[1][0] && \
(CU1)->inter.mv[1][1] == (CU2)->inter.mv[1][1] && \
(CU1)->inter.mv_ref[1] == (CU2)->inter.mv_ref[1]) ) \
) duplicate = 1; }
if (a1) {
mv_cand[candidates].mv[0][0] = a1->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = a1->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = a1->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = a1->inter.mv[1][1];
mv_cand[candidates].ref[0] = a1->inter.mv_ref[0];
mv_cand[candidates].ref[1] = a1->inter.mv_ref[1];
mv_cand[candidates].dir = a1->inter.mv_dir;
candidates++;
}
if (b1) {
if(candidates) CHECK_DUPLICATE(b1, a1);
if(!duplicate) {
mv_cand[candidates].mv[0][0] = b1->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = b1->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = b1->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = b1->inter.mv[1][1];
mv_cand[candidates].ref[0] = b1->inter.mv_ref[0];
mv_cand[candidates].ref[1] = b1->inter.mv_ref[1];
mv_cand[candidates].dir = b1->inter.mv_dir;
candidates++;
}
}
if (b0) {
if(candidates) CHECK_DUPLICATE(b0,b1);
if(!duplicate) {
mv_cand[candidates].mv[0][0] = b0->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = b0->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = b0->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = b0->inter.mv[1][1];
mv_cand[candidates].ref[0] = b0->inter.mv_ref[0];
mv_cand[candidates].ref[1] = b0->inter.mv_ref[1];
mv_cand[candidates].dir = b0->inter.mv_dir;
candidates++;
}
}
if (a0) {
if(candidates) CHECK_DUPLICATE(a0,a1);
if(!duplicate) {
mv_cand[candidates].mv[0][0] = a0->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = a0->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = a0->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = a0->inter.mv[1][1];
mv_cand[candidates].ref[0] = a0->inter.mv_ref[0];
mv_cand[candidates].ref[1] = a0->inter.mv_ref[1];
mv_cand[candidates].dir = a0->inter.mv_dir;
candidates++;
}
}
if (candidates != 4) {
if (b2) {
CHECK_DUPLICATE(b2,a1);
if(!duplicate) {
CHECK_DUPLICATE(b2,b1);
if(!duplicate) {
mv_cand[candidates].mv[0][0] = b2->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = b2->inter.mv[0][1];
mv_cand[candidates].mv[1][0] = b2->inter.mv[1][0];
mv_cand[candidates].mv[1][1] = b2->inter.mv[1][1];
mv_cand[candidates].ref[0] = b2->inter.mv_ref[0];
mv_cand[candidates].ref[1] = b2->inter.mv_ref[1];
mv_cand[candidates].dir = b2->inter.mv_dir;
candidates++;
}
}
}
}
#if ENABLE_TEMPORAL_MVP
if (candidates < MRG_MAX_NUM_CANDS && state->global->ref->used_size) {
uint32_t poc_diff = UINT_MAX;
int32_t closest_ref = 0;
for (int temporal_cand = 0; temporal_cand < state->global->ref->used_size; temporal_cand++) {
int td = state->global->poc - state->global->ref->pocs[temporal_cand];
td = td < 0 ? -td : td;
if (td < poc_diff) {
closest_ref = temporal_cand;
poc_diff = td;
}
}
cu_info_t *C3 = NULL;
cu_info_t *H = NULL;
cu_info_t *selected_CU = NULL;
kvz_inter_get_temporal_merge_candidates(state, x, y, width, height, &C3, &H);
if (H != NULL) {
selected_CU = H;
} else if (C3 != NULL) {
selected_CU = C3;
}
if (selected_CU) {
mv_cand[candidates].mv[0][0] = selected_CU->inter.mv[0][0];
mv_cand[candidates].mv[0][1] = selected_CU->inter.mv[0][1];
mv_cand[candidates].dir = 1;
mv_cand[candidates].ref[0] = 0;
candidates++;
}
}
#endif
if (candidates < MRG_MAX_NUM_CANDS && state->frame->slicetype == KVZ_SLICE_B) {
#define NUM_PRIORITY_LIST 12;
static const uint8_t priorityList0[] = { 0, 1, 0, 2, 1, 2, 0, 3, 1, 3, 2, 3 };
static const uint8_t priorityList1[] = { 1, 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2 };
uint8_t cutoff = candidates;
for (int32_t idx = 0; idx= candidates || j >= candidates) break;
// Find one L0 and L1 candidate according to the priority list
if ((mv_cand[i].dir & 0x1) && (mv_cand[j].dir & 0x2)) {
mv_cand[candidates].dir = 3;
// get Mv from cand[i] and cand[j]
mv_cand[candidates].mv[0][0] = mv_cand[i].mv[0][0];
mv_cand[candidates].mv[0][1] = mv_cand[i].mv[0][1];
mv_cand[candidates].mv[1][0] = mv_cand[j].mv[1][0];
mv_cand[candidates].mv[1][1] = mv_cand[j].mv[1][1];
mv_cand[candidates].ref[0] = mv_cand[i].ref[0];
mv_cand[candidates].ref[1] = mv_cand[j].ref[1];
if (mv_cand[i].ref[0] == mv_cand[j].ref[1] &&
mv_cand[i].mv[0][0] == mv_cand[j].mv[1][0] &&
mv_cand[i].mv[0][1] == mv_cand[j].mv[1][1]) {
// Not a candidate
} else {
candidates++;
}
}
}
}
int num_ref = state->frame->ref->used_size;
if (candidates < MRG_MAX_NUM_CANDS && state->frame->slicetype == KVZ_SLICE_B) {
int j;
int ref_negative = 0;
int ref_positive = 0;
for (j = 0; j < state->frame->ref->used_size; j++) {
if (state->frame->ref->pocs[j] < state->frame->poc) {
ref_negative++;
} else {
ref_positive++;
}
}
num_ref = MIN(ref_negative, ref_positive);
}
// Add (0,0) prediction
while (candidates != MRG_MAX_NUM_CANDS) {
mv_cand[candidates].mv[0][0] = 0;
mv_cand[candidates].mv[0][1] = 0;
mv_cand[candidates].ref[0] = (zero_idx>=num_ref-1)?0:zero_idx;
mv_cand[candidates].ref[1] = mv_cand[candidates].ref[0];
mv_cand[candidates].dir = 1;
if (state->frame->slicetype == KVZ_SLICE_B) {
mv_cand[candidates].mv[1][0] = 0;
mv_cand[candidates].mv[1][1] = 0;
mv_cand[candidates].dir = 3;
}
zero_idx++;
candidates++;
}
return candidates;
}