/** * Part of HEVC Encoder * By Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Pervasive Computing. */ /*! \file context.c \brief Functions for context derication \author Marko Viitanen \date 2013-04 This file contains context derivation functions */ #include "context.h" #include #include #include #include "config.h" /* CONTEXTS */ cabac_ctx g_split_flag_model[3]; /*QP, INIT_MERGE_FLAG_EXT[slice][0]); ctx_init(&g_cu_merge_idx_ext_model, encoder->QP, INIT_MERGE_IDX_EXT[slice][0]); ctx_init(&g_cu_pred_mode_model, encoder->QP, INIT_PRED_MODE[slice][0]); ctx_init(&g_cu_skip_flag_model[0], encoder->QP, INIT_SKIP_FLAG[slice][0]); ctx_init(&g_cu_skip_flag_model[1], encoder->QP, INIT_SKIP_FLAG[slice][1]); ctx_init(&g_cu_skip_flag_model[2], encoder->QP, INIT_SKIP_FLAG[slice][2]); ctx_init(&g_split_flag_model[0], encoder->QP, INIT_SPLIT_FLAG[slice][0]); ctx_init(&g_split_flag_model[1], encoder->QP, INIT_SPLIT_FLAG[slice][1]); ctx_init(&g_split_flag_model[2], encoder->QP, INIT_SPLIT_FLAG[slice][2]); ctx_init(&g_intra_mode_model, encoder->QP, INIT_INTRA_PRED_MODE[slice]); ctx_init(&g_chroma_pred_model[0], encoder->QP, INIT_CHROMA_PRED_MODE[slice][0]); ctx_init(&g_chroma_pred_model[1], encoder->QP, INIT_CHROMA_PRED_MODE[slice][1]); ctx_init(&g_cu_abs_model_chroma[0], encoder->QP, INIT_ABS_FLAG[slice][4]); ctx_init(&g_cu_abs_model_chroma[1], encoder->QP, INIT_ABS_FLAG[slice][5]); //TODO: ignore P/B contexts on intra frame ctx_init(&g_cu_qt_root_cbf_model, encoder->QP, INIT_QT_ROOT_CBF[slice][0]); ctx_init(&g_cu_mvd_model[0], encoder->QP, INIT_MVD[slice][0]); ctx_init(&g_cu_mvd_model[1], encoder->QP, INIT_MVD[slice][1]); ctx_init(&g_cu_ref_pic_model[0], encoder->QP, INIT_REF_PIC[slice][0]); ctx_init(&g_cu_ref_pic_model[1], encoder->QP, INIT_REF_PIC[slice][1]); ctx_init(&g_mvp_idx_model[0], encoder->QP, INIT_MVP_IDX[slice][0]); ctx_init(&g_mvp_idx_model[1], encoder->QP, INIT_MVP_IDX[slice][1]); for(i = 0; i < 4; i++) { ctx_init(&g_cu_sig_coeff_group_model[i], encoder->QP, INIT_SIG_CG_FLAG[slice][i]); ctx_init(&g_cu_abs_model_luma[i], encoder->QP, INIT_ABS_FLAG[slice][i]); ctx_init(&g_part_size_model[i], encoder->QP, INIT_PART_SIZE[slice][i]); } for(i = 0; i < 3; i++) { ctx_init(&g_trans_subdiv_model[i], encoder->QP, INIT_TRANS_SUBDIV_FLAG[slice][i]); ctx_init(&g_qt_cbf_model_luma[i], encoder->QP, INIT_QT_CBF[slice][i]); ctx_init(&g_qt_cbf_model_chroma[i], encoder->QP, INIT_QT_CBF[slice][i+3]); //cxt_init(&g_QtCbfSCModelV[i], encoder->QP, INIT_QT_CBF[SLICE][i]); } for(i = 0; i < 8; i++) { ctx_init(&g_cu_one_model_chroma[i], encoder->QP, INIT_ONE_FLAG[slice][i+16]); } for(i = 0; i < 15; i++) { ctx_init(&g_cu_ctx_last_y_luma[i], encoder->QP, INIT_LAST[slice][i] ); ctx_init(&g_cu_ctx_last_x_luma[i], encoder->QP, INIT_LAST[slice][i] ); ctx_init(&g_cu_ctx_last_y_chroma[i], encoder->QP, INIT_LAST[slice][i+15] ); ctx_init(&g_cu_ctx_last_x_chroma[i], encoder->QP, INIT_LAST[slice][i+15] ); ctx_init(&g_cu_one_model_luma[i], encoder->QP, INIT_ONE_FLAG[slice][i]); } ctx_init(&g_cu_one_model_luma[15], encoder->QP, INIT_ONE_FLAG[slice][15]); for(i = 0; i < 27; i++) { ctx_init(&g_cu_sig_model_luma[i], encoder->QP, INIT_SIG_FLAG[slice][i]); if(i < 15) { ctx_init(&g_cu_sig_model_chroma[i], encoder->QP, INIT_SIG_FLAG[slice][i+27]); } } } uint32_t context_get_sig_coeff_group( uint32_t* sig_coeff_group_flag, uint32_t pos_x, uint32_t pos_y, int32_t width) { uint32_t uiRight = 0; uint32_t uiLower = 0; width >>= 2; if( pos_x < (uint32_t)width - 1 ) uiRight = (sig_coeff_group_flag[ pos_y * width + pos_x + 1 ] != 0); if (pos_y < (uint32_t)width - 1 ) uiLower = (sig_coeff_group_flag[ (pos_y + 1 ) * width + pos_x ] != 0); return (uiRight || uiLower); } /*! \brief Pattern decision for context derivation process of significant_coeff_flag \param sigCoeffGroupFlag pointer to prior coded significant coeff group \param posXCG column of current coefficient group \param posYCG row of current coefficient group \param width width of the block \param height height of the block \returns pattern for current coefficient group */ int32_t context_calc_pattern_sig_ctx( const uint32_t* sig_coeff_group_flag, uint32_t pos_x, uint32_t pos_y, int32_t width) { if( width == 4) return -1; { uint32_t sigRight = 0; uint32_t sigLower = 0; width >>= 2; if( pos_x < (uint32_t)width - 1 ) { sigRight = (sig_coeff_group_flag[ pos_y * width + pos_x + 1 ] != 0); } if (pos_y < (uint32_t)width - 1 ) { sigLower = (sig_coeff_group_flag[ (pos_y + 1 ) * width + pos_x ] != 0); } return sigRight + (sigLower<<1); } } /*! \brief Context derivation process of coeff_abs_significant_flag \param patternSigCtx pattern for current coefficient group \param posX column of current scan position \param posY row of current scan position \param blockType log2 value of block size if square block, or 4 otherwise \param width width of the block \param textureType texture type (TEXT_LUMA...) \returns ctxInc for current scan position */ int32_t context_get_sig_ctx_inc(int32_t pattern_sig_ctx,uint32_t scan_idx,int32_t pos_x, int32_t pos_y,int32_t block_type,int32_t width, int8_t texture_type) { const int32_t ctx_ind_map[16] = { 0, 1, 4, 5, 2, 3, 4, 5, 6, 6, 8, 8, 7, 7, 8, 8 }; if( pos_x + pos_y == 0 ) return 0; if ( block_type == 2 ) return ctx_ind_map[ 4 * pos_y + pos_x ]; { int32_t cnt = 0; int32_t offset = block_type == 3 ? (scan_idx==SCAN_DIAG ? 9 : 15) : (texture_type == 0 ? 21 : 12); int32_t posXinSubset = pos_x-((pos_x>>2)<<2); int32_t posYinSubset = pos_y-((pos_y>>2)<<2); if(pattern_sig_ctx==0) { cnt = posXinSubset+posYinSubset<=2 ? (posXinSubset+posYinSubset==0 ? 2 : 1) : 0; } else if(pattern_sig_ctx==1) { cnt = posYinSubset<=1 ? (posYinSubset==0 ? 2 : 1) : 0; } else if(pattern_sig_ctx==2) { cnt = posXinSubset<=1 ? (posXinSubset==0 ? 2 : 1) : 0; } else { cnt = 2; } return (( texture_type == 0 && ((pos_x>>2) + (pos_y>>2)) > 0 ) ? 3 : 0) + offset + cnt; } }