/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "filter.h" #include #include "cu.h" #include "encoder.h" #include "kvazaar.h" #include "transform.h" #include "videoframe.h" ////////////////////////////////////////////////////////////////////////// // INITIALIZATIONS const uint8_t kvz_g_tc_table_8x8[54] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 }; const uint8_t kvz_g_beta_table_8x8[52] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 }; const int8_t kvz_g_luma_filter[4][8] = { { 0, 0, 0, 64, 0, 0, 0, 0 }, { -1, 4, -10, 58, 17, -5, 1, 0 }, { -1, 4, -11, 40, 40, -11, 4, -1 }, { 0, 1, -5, 17, 58, -10, 4, -1 } }; const int8_t kvz_g_chroma_filter[8][4] = { { 0, 64, 0, 0 }, { -2, 58, 10, -2 }, { -4, 54, 16, -2 }, { -6, 46, 28, -4 }, { -4, 36, 36, -4 }, { -4, 28, 46, -6 }, { -2, 16, 54, -4 }, { -2, 10, 58, -2 } }; ////////////////////////////////////////////////////////////////////////// // FUNCTIONS /** * \brief */ static INLINE void kvz_filter_deblock_luma(const encoder_control_t * const encoder, kvz_pixel *src, int32_t offset, int32_t tc, int8_t sw, int8_t part_P_nofilter, int8_t part_Q_nofilter, int32_t thr_cut, int8_t filter_second_P, int8_t filter_second_Q) { int32_t delta; int16_t m0 = src[-offset * 4]; int16_t m1 = src[-offset * 3]; int16_t m2 = src[-offset * 2]; int16_t m3 = src[-offset]; int16_t m4 = src[0]; int16_t m5 = src[offset]; int16_t m6 = src[offset * 2]; int16_t m7 = src[offset * 3]; if (sw) { src[-offset * 3] = CLIP(m1 - 2*tc, m1 + 2*tc, (2*m0 + 3*m1 + m2 + m3 + m4 + 4) >> 3); src[-offset * 2] = CLIP(m2 - 2*tc, m2 + 2*tc, ( m1 + m2 + m3 + m4 + 2) >> 2); src[-offset] = CLIP(m3 - 2*tc, m3 + 2*tc, ( m1 + 2*m2 + 2*m3 + 2*m4 + m5 + 4) >> 3); src[0] = CLIP(m4 - 2*tc, m4 + 2*tc, ( m2 + 2*m3 + 2*m4 + 2*m5 + m6 + 4) >> 3); src[offset] = CLIP(m5 - 2*tc, m5 + 2*tc, ( m3 + m4 + m5 + m6 + 2) >> 2); src[offset * 2] = CLIP(m6 - 2*tc, m6 + 2*tc, ( m3 + m4 + m5 + 3*m6 + 2*m7 + 4) >> 3); } else { // Weak filter delta = (9*(m4 - m3) - 3*(m5 - m2) + 8) >> 4; if (abs(delta) < thr_cut) { int32_t tc2 = tc >> 1; delta = CLIP(-tc, tc, delta); src[-offset] = CLIP(0, (1 << encoder->bitdepth) - 1, (m3 + delta)); src[0] = CLIP(0, (1 << encoder->bitdepth) - 1, (m4 - delta)); if(filter_second_P) { int32_t delta1 = CLIP(-tc2, tc2, (((m1 + m3 + 1) >> 1) - m2 + delta) >> 1); src[-offset * 2] = CLIP(0, (1 << encoder->bitdepth) - 1, m2 + delta1); } if(filter_second_Q) { int32_t delta2 = CLIP(-tc2, tc2, (((m6 + m4 + 1) >> 1) - m5 - delta) >> 1); src[offset] = CLIP(0, (1 << encoder->bitdepth) - 1, m5 + delta2); } } } if(part_P_nofilter) { src[-offset] = (kvz_pixel)m3; src[-offset * 2] = (kvz_pixel)m2; src[-offset * 3] = (kvz_pixel)m1; } if(part_Q_nofilter) { src[0] = (kvz_pixel)m4; src[offset] = (kvz_pixel)m5; src[offset * 2] = (kvz_pixel)m6; } } /** * \brief */ static INLINE void kvz_filter_deblock_chroma(const encoder_control_t * const encoder, kvz_pixel *src, int32_t offset, int32_t tc, int8_t part_P_nofilter, int8_t part_Q_nofilter) { int32_t delta; int16_t m2 = src[-offset * 2]; int16_t m3 = src[-offset]; int16_t m4 = src[0]; int16_t m5 = src[offset]; delta = CLIP(-tc,tc, (((m4 - m3) << 2) + m2 - m5 + 4 ) >> 3); if(!part_P_nofilter) { src[-offset] = CLIP(0, (1 << encoder->bitdepth) - 1, m3 + delta); } if(!part_Q_nofilter) { src[0] = CLIP(0, (1 << encoder->bitdepth) - 1, m4 - delta); } } /** * \brief Check whether an edge is a TU boundary. * * \param state encoder state * \param x x-coordinate of the scu in pixels * \param y y-coordinate of the scu in pixels * \param dir direction of the edge to check * \return true, if the edge is a TU boundary, otherwise false */ static bool is_tu_boundary(const encoder_state_t *const state, int32_t x, int32_t y, edge_dir dir) { const cu_info_t *const scu = kvz_cu_array_at_const(state->tile->frame->cu_array, x, y); const int tu_width = LCU_WIDTH >> scu->tr_depth; if (dir == EDGE_HOR) { return (y & (tu_width - 1)) == 0; } else { return (x & (tu_width - 1)) == 0; } } /** * \brief Check whether an edge is a PU boundary. * * \param state encoder state * \param x x-coordinate of the scu in pixels * \param y y-coordinate of the scu in pixels * \param dir direction of the edge to check * \return true, if the edge is a TU boundary, otherwise false */ static bool is_pu_boundary(const encoder_state_t *const state, int32_t x, int32_t y, edge_dir dir) { const cu_info_t *const scu = kvz_cu_array_at_const(state->tile->frame->cu_array, x, y); // Get the containing CU. const int32_t cu_width = LCU_WIDTH >> scu->depth; const int32_t x_cu = x & ~(cu_width - 1); const int32_t y_cu = y & ~(cu_width - 1); const cu_info_t *const cu = kvz_cu_array_at_const(state->tile->frame->cu_array, x_cu, y_cu); const int num_pu = kvz_part_mode_num_parts[cu->part_size]; for (int i = 0; i < num_pu; i++) { if (dir == EDGE_HOR) { int y_pu = PU_GET_Y(cu->part_size, cu_width, y_cu, i); if (y_pu == y) return true; } else { int x_pu = PU_GET_X(cu->part_size, cu_width, x_cu, i); if (x_pu == x) return true; } } return false; } /** * \brief Check whether an edge is aligned on a 8x8 grid. * * \param x x-coordinate of the edge * \param y y-coordinate of the edge * \param dir direction of the edge * \return true, if the edge is aligned on a 8x8 grid, otherwise false */ static bool is_on_8x8_grid(int x, int y, edge_dir dir) { if (dir == EDGE_HOR) { return (y & 7) == 0; } else { return (x & 7) == 0; } } /** * \brief Apply the deblocking filter to luma pixels on a single edge. * * The caller should check that the edge is a TU boundary or a PU boundary. * \verbatim .-- filter this edge if dir == EDGE_HOR v +--------+ |o <-- pixel at (x, y) | | |<-- filter this edge if dir == EDGE_VER | | +--------+ \endverbatim * * \param state encoder state * \param x x-coordinate in pixels (see above) * \param y y-coordinate in pixels (see above) * \param length length of the edge in pixels * \param dir direction of the edge to filter * \param tu_boundary whether the edge is a TU boundary */ static void filter_deblock_edge_luma(encoder_state_t * const state, int32_t x, int32_t y, int32_t length, edge_dir dir, bool tu_boundary) { videoframe_t * const frame = state->tile->frame; const encoder_control_t * const encoder = state->encoder_control; { int32_t stride = frame->rec->stride; int32_t beta_offset_div2 = encoder->beta_offset_div2; int32_t tc_offset_div2 = encoder->tc_offset_div2; // TODO: support 10+bits kvz_pixel *orig_src = &frame->rec->y[x + y*stride]; kvz_pixel *src = orig_src; int8_t strength = 0; int32_t qp = state->global->QP; int32_t bitdepth_scale = 1 << (encoder->bitdepth - 8); int32_t b_index = CLIP(0, 51, qp + (beta_offset_div2 << 1)); int32_t beta = kvz_g_beta_table_8x8[b_index] * bitdepth_scale; int32_t side_threshold = (beta + (beta >>1 )) >> 3; int32_t tc_index; int32_t tc; int32_t thr_cut; uint32_t num_4px_parts = length / 4; const int32_t offset = (dir == EDGE_HOR) ? stride : 1; const int32_t step = (dir == EDGE_HOR) ? 1 : stride; // TODO: add CU based QP calculation // For each 4-pixel part in the edge for (uint32_t block_idx = 0; block_idx < num_4px_parts; ++block_idx) { int32_t dp0, dq0, dp3, dq3, d0, d3, dp, dq, d; { // CUs on both sides of the edge cu_info_t *cu_p; cu_info_t *cu_q; if (dir == EDGE_VER) { int32_t y_coord = y + 4 * block_idx; cu_p = kvz_cu_array_at(frame->cu_array, x - 1, y_coord); cu_q = kvz_cu_array_at(frame->cu_array, x, y_coord); } else { int32_t x_coord = x + 4 * block_idx; cu_p = kvz_cu_array_at(frame->cu_array, x_coord, y - 1); cu_q = kvz_cu_array_at(frame->cu_array, x_coord, y ); } bool nonzero_coeffs = cbf_is_set(cu_q->cbf, cu_q->tr_depth, COLOR_Y) || cbf_is_set(cu_p->cbf, cu_p->tr_depth, COLOR_Y); // Filter strength strength = 0; if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) { strength = 2; } else if (tu_boundary && nonzero_coeffs) { // Non-zero residual/coeffs and transform boundary // Neither CU is intra so tr_depth <= MAX_DEPTH. strength = 1; } else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 && ((abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][0] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][0]) >= 4) || (abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][1] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][1]) >= 4))) { // Absolute motion vector diff between blocks >= 1 (Integer pixel) strength = 1; } else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 && cu_q->inter.mv_ref[cu_q->inter.mv_dir - 1] != cu_p->inter.mv_ref[cu_p->inter.mv_dir - 1]) { strength = 1; } // B-slice related checks if(!strength && state->global->slicetype == KVZ_SLICE_B) { // Zero all undefined motion vectors for easier usage if(!(cu_q->inter.mv_dir & 1)) { cu_q->inter.mv[0][0] = 0; cu_q->inter.mv[0][1] = 0; } if(!(cu_q->inter.mv_dir & 2)) { cu_q->inter.mv[1][0] = 0; cu_q->inter.mv[1][1] = 0; } if(!(cu_p->inter.mv_dir & 1)) { cu_p->inter.mv[0][0] = 0; cu_p->inter.mv[0][1] = 0; } if(!(cu_p->inter.mv_dir & 2)) { cu_p->inter.mv[1][0] = 0; cu_p->inter.mv[1][1] = 0; } const int refP0 = (cu_p->inter.mv_dir & 1) ? cu_p->inter.mv_ref[0] : -1; const int refP1 = (cu_p->inter.mv_dir & 2) ? cu_p->inter.mv_ref[1] : -1; const int refQ0 = (cu_q->inter.mv_dir & 1) ? cu_q->inter.mv_ref[0] : -1; const int refQ1 = (cu_q->inter.mv_dir & 2) ? cu_q->inter.mv_ref[1] : -1; const int16_t* mvQ0 = cu_q->inter.mv[0]; const int16_t* mvQ1 = cu_q->inter.mv[1]; const int16_t* mvP0 = cu_p->inter.mv[0]; const int16_t* mvP1 = cu_p->inter.mv[1]; if(( refP0 == refQ0 && refP1 == refQ1 ) || ( refP0 == refQ1 && refP1==refQ0 )) { // Different L0 & L1 if ( refP0 != refP1 ) { if ( refP0 == refQ0 ) { strength = ((abs(mvQ0[0] - mvP0[0]) >= 4) || (abs(mvQ0[1] - mvP0[1]) >= 4) || (abs(mvQ1[0] - mvP1[0]) >= 4) || (abs(mvQ1[1] - mvP1[1]) >= 4)) ? 1 : 0; } else { strength = ((abs(mvQ1[0] - mvP0[0]) >= 4) || (abs(mvQ1[1] - mvP0[1]) >= 4) || (abs(mvQ0[0] - mvP1[0]) >= 4) || (abs(mvQ0[1] - mvP1[1]) >= 4)) ? 1 : 0; } // Same L0 & L1 } else { strength = ((abs(mvQ0[0] - mvP0[0]) >= 4) || (abs(mvQ0[1] - mvP0[1]) >= 4) || (abs(mvQ1[0] - mvP1[0]) >= 4) || (abs(mvQ1[1] - mvP1[1]) >= 4)) && ((abs(mvQ1[0] - mvP0[0]) >= 4) || (abs(mvQ1[1] - mvP0[1]) >= 4) || (abs(mvQ0[0] - mvP1[0]) >= 4) || (abs(mvQ0[1] - mvP1[1]) >= 4)) ? 1 : 0; } } else { strength = 1; } } tc_index = CLIP(0, 51 + 2, (int32_t)(qp + 2*(strength - 1) + (tc_offset_div2 << 1))); tc = kvz_g_tc_table_8x8[tc_index] * bitdepth_scale; thr_cut = tc * 10; } if(!strength) continue; // Check conditions for filtering // TODO: Get rid of these inline defines. #define calc_DP(s,o) abs( (int16_t)s[-o*3] - (int16_t)2*s[-o*2] + (int16_t)s[-o] ) #define calc_DQ(s,o) abs( (int16_t)s[0] - (int16_t)2*s[o] + (int16_t)s[o*2] ) dp0 = calc_DP((src+step*(block_idx*4+0)), offset); dq0 = calc_DQ((src+step*(block_idx*4+0)), offset); dp3 = calc_DP((src+step*(block_idx*4+3)), offset); dq3 = calc_DQ((src+step*(block_idx*4+3)), offset); d0 = dp0 + dq0; d3 = dp3 + dq3; dp = dp0 + dp3; dq = dq0 + dq3; d = d0 + d3; if (d < beta) { int8_t filter_P = (dp < side_threshold) ? 1 : 0; int8_t filter_Q = (dq < side_threshold) ? 1 : 0; // Strong filtering flag checking #define useStrongFiltering(o,d,s) ( ((abs(s[-o*4]-s[-o]) + abs(s[o*3]-s[0])) < (beta>>3)) && (d<(beta>>2)) && ( abs(s[-o]-s[0]) < ((tc*5+1)>>1)) ) int8_t sw = useStrongFiltering(offset, 2*d0, (src+step*(block_idx*4+0))) && useStrongFiltering(offset, 2*d3, (src+step*(block_idx*4+3))); // Filter four rows/columns for (int i = 0; i < 4; i++) { kvz_filter_deblock_luma(encoder, src + step * (4*block_idx + i), offset, tc, sw, 0, 0, thr_cut, filter_P, filter_Q); } } } } } /** * \brief Apply the deblocking filter to chroma pixels on a single edge. * * The caller should check that the edge is a TU boundary or a PU boundary. * \verbatim .-- filter this edge if dir == EDGE_HOR v +--------+ |o <-- pixel at (x, y) | | |<-- filter this edge if dir == EDGE_VER | | +--------+ \endverbatim * * \param state encoder state * \param x x-coordinate in chroma pixels (see above) * \param y y-coordinate in chroma pixels (see above) * \param length length of the edge in chroma pixels * \param dir direction of the edge to filter * \param tu_boundary whether the edge is a TU boundary */ static void filter_deblock_edge_chroma(encoder_state_t * const state, int32_t x, int32_t y, int32_t length, edge_dir dir, bool tu_boundary) { const encoder_control_t * const encoder = state->encoder_control; const videoframe_t * const frame = state->tile->frame; // For each subpart { int32_t stride = frame->rec->stride >> 1; int32_t tc_offset_div2 = encoder->tc_offset_div2; // TODO: support 10+bits kvz_pixel *src[] = { &frame->rec->u[x + y*stride], &frame->rec->v[x + y*stride], }; int8_t strength = 2; int32_t QP = kvz_g_chroma_scale[state->global->QP]; int32_t bitdepth_scale = 1 << (encoder->bitdepth-8); int32_t TC_index = CLIP(0, 51+2, (int32_t)(QP + 2*(strength-1) + (tc_offset_div2 << 1))); int32_t Tc = kvz_g_tc_table_8x8[TC_index]*bitdepth_scale; const uint32_t num_4px_parts = length / 4; const int32_t offset = (dir == EDGE_HOR) ? stride : 1; const int32_t step = (dir == EDGE_HOR) ? 1 : stride; for (uint32_t blk_idx = 0; blk_idx < num_4px_parts; ++blk_idx) { // CUs on both sides of the edge cu_info_t *cu_p; cu_info_t *cu_q; if (dir == EDGE_VER) { int32_t y_coord = (y + 4 * blk_idx) << 1; cu_p = kvz_cu_array_at(frame->cu_array, (x - 1) << 1, y_coord); cu_q = kvz_cu_array_at(frame->cu_array, x << 1, y_coord); } else { int32_t x_coord = (x + 4 * blk_idx) << 1; cu_p = kvz_cu_array_at(frame->cu_array, x_coord, (y - 1) << 1); cu_q = kvz_cu_array_at(frame->cu_array, x_coord, (y ) << 1); } // Only filter when strenght == 2 (one of the blocks is intra coded) if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) { for (int component = 0; component < 2; component++) { for (int i = 0; i < 4; i++) { kvz_filter_deblock_chroma(encoder, src[component] + step * (4*blk_idx + i), offset, Tc, 0, 0); } } } } } } /** * \brief Filter edge of a single PU or TU * * \param state encoder state * \param x block x-position in pixels * \param y block y-position in pixels * \param width block width in pixels * \param height block height in pixels * \param dir direction of the edges to filter * \param tu_boundary whether the edge is a TU boundary */ static void filter_deblock_unit(encoder_state_t * const state, int x, int y, int width, int height, edge_dir dir, bool tu_boundary) { // no filtering on borders (where filter would use pixels outside the picture) if (x == 0 && dir == EDGE_VER) return; if (y == 0 && dir == EDGE_HOR) return; // Length of luma and chroma edges. int32_t length; int32_t length_c; if (dir == EDGE_HOR) { const videoframe_t * const frame = state->tile->frame; const int32_t x_right = x + width; const bool rightmost_4px_of_lcu = x_right % LCU_WIDTH == 0; const bool rightmost_4px_of_frame = x_right == frame->width; if (rightmost_4px_of_lcu && !rightmost_4px_of_frame) { // The last 4 pixels will be deblocked when processing the next LCU. length = width - 4; length_c = (width >> 1) - 4; } else { length = width; length_c = width >> 1; } } else { length = height; length_c = height >> 1; } filter_deblock_edge_luma(state, x, y, length, dir, tu_boundary); // Chroma pixel coordinates. const int32_t x_c = x >> 1; const int32_t y_c = y >> 1; if (is_on_8x8_grid(x_c, y_c, dir)) { filter_deblock_edge_chroma(state, x_c, y_c, length_c, dir, tu_boundary); } } /** * \brief Deblock PU and TU boundaries inside an LCU. * * \param state encoder state * \param x_px block x-position in pixels * \param y_px block y-position in pixels * \param dir direction of the edges to filter * * Recursively traverse the CU/TU quadtree. At the lowest level, apply the * deblocking filter to the left edge (when dir == EDGE_VER) or the top edge * (when dir == EDGE_HOR) as needed. Both luma and chroma are filtered. */ static void filter_deblock_lcu_inside(encoder_state_t * const state, int32_t x, int32_t y, edge_dir dir) { const int end_x = MIN(x + LCU_WIDTH, state->tile->frame->width); const int end_y = MIN(y + LCU_WIDTH, state->tile->frame->height); for (int edge_y = y; edge_y < end_y; edge_y += 8) { for (int edge_x = x; edge_x < end_x; edge_x += 8) { bool tu_boundary = is_tu_boundary(state, edge_x, edge_y, dir); if (tu_boundary || is_pu_boundary(state, edge_x, edge_y, dir)) { filter_deblock_unit(state, edge_x, edge_y, 8, 8, dir, tu_boundary); } } } } /** * \brief Filter rightmost 4 pixels of the horizontal egdes of an LCU. * * \param state encoder state * \param x_px x-coordinate of the *right* edge of the LCU in pixels * \param y_px y-coordinate of the top edge of the LCU in pixels */ static void filter_deblock_lcu_rightmost(encoder_state_t * const state, int32_t x_px, int32_t y_px) { // Luma const int x = x_px - 4; const int end = MIN(y_px + LCU_WIDTH, state->tile->frame->height); for (int y = y_px; y < end; y += 8) { // The top edge of the whole frame is not filtered. bool tu_boundary = is_tu_boundary(state, x, y, EDGE_HOR); bool pu_boundary = is_pu_boundary(state, x, y, EDGE_HOR); if (y > 0 && (tu_boundary || pu_boundary)) { filter_deblock_edge_luma(state, x, y, 4, EDGE_HOR, tu_boundary); } } // Chroma const int x_px_c = x_px >> 1; const int y_px_c = y_px >> 1; const int x_c = x_px_c - 4; const int end_c = MIN(y_px_c + LCU_WIDTH_C, state->tile->frame->height >> 1); for (int y_c = y_px_c; y_c < end_c; y_c += 8) { // The top edge of the whole frame is not filtered. bool tu_boundary = is_tu_boundary(state, x_c << 1, y_c << 1, EDGE_HOR); bool pu_boundary = is_pu_boundary(state, x_c << 1, y_c << 1, EDGE_HOR); if (y_c > 0 && (tu_boundary || pu_boundary)) { filter_deblock_edge_chroma(state, x_c, y_c, 4, EDGE_HOR, tu_boundary); } } } /** * \brief Deblock a single LCU without using data from right or down. * * Filter the following vertical edges (horizontal filtering): * 1. The left edge of the LCU. * 2. All vertical edges within the LCU. * * Filter the following horizontal edges (vertical filtering): * 1. The rightmost 4 pixels of the top edge of the LCU to the left. * 2. The rightmost 4 pixels of all horizontal edges within the LCU to the * left. * 3. The top edge and all horizontal edges within the LCU, excluding the * rightmost 4 pixels. If the LCU is the rightmost LCU of the frame, the * last 4 pixels are also filtered. * * What is not filtered: * - The rightmost 4 pixels of the top edge and all horizontal edges within * the LCU, unless the LCU is the rightmost LCU of the frame. * - The bottom edge of the LCU. * - The right edge of the LCU. * * \param state encoder state * \param x_px x-coordinate of the left edge of the LCU in pixels * \param y_px y-coordinate of the top edge of the LCU in pixels */ void kvz_filter_deblock_lcu(encoder_state_t * const state, int x_px, int y_px) { filter_deblock_lcu_inside(state, x_px, y_px, EDGE_VER); if (x_px > 0) { filter_deblock_lcu_rightmost(state, x_px, y_px); } filter_deblock_lcu_inside(state, x_px, y_px, EDGE_HOR); }