/** * HEVC Encoder * - Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Pervasive Computing. */ /*! \file search.c \brief searching \author Marko Viitanen \date 2013-04 Search related functions */ #include #include #include #include "global.h" #include "config.h" #include "bitstream.h" #include "picture.h" #include "intra.h" #include "encoder.h" #include "filter.h" #include "search.h" void search_buildReferenceBorder(picture* pic, int32_t xCtb, int32_t yCtb,int16_t outwidth, int16_t* dst, int32_t dststride, int8_t chroma) { int32_t leftColumn; /*!< left column iterator */ int16_t val; /*!< variable to store extrapolated value */ int32_t i; /*!< index iterator */ int16_t dcVal = 1<<(g_bitDepth-1); /*!< default predictor value */ int32_t topRow; /*!< top row iterator */ int32_t srcWidth = (pic->width>>(chroma?1:0)); /*!< source picture width */ int32_t srcHeight = (pic->height>>(chroma?1:0));/*!< source picture height */ uint8_t* srcPic = (!chroma)?pic->yData: ((chroma==1)?pic->uData: pic->vData); /*!< input picture pointer */ int16_t SCU_width = LCU_WIDTH>>(MAX_DEPTH+(chroma?1:0)); /*!< Smallest Coding Unit width */ uint8_t* srcShifted = &srcPic[xCtb*SCU_width+(yCtb*SCU_width)*srcWidth]; /*!< input picture pointer shifted to start from the left-top corner of the current block */ int32_t width_in_SCU = srcWidth/SCU_width; /*!< picture width in SCU */ /* Fill left column */ if(xCtb) { /* Loop SCU's */ for(leftColumn = 1; leftColumn < outwidth/SCU_width; leftColumn++) { /* If over the picture height or block not yet coded, stop */ if((yCtb+leftColumn)*SCU_width >= srcHeight || pic->CU[0][xCtb-1+(yCtb+leftColumn)*width_in_SCU].type == CU_NOTSET) { break; } } /* Copy the pixels to output */ for(i = 0; i < leftColumn*SCU_width-1; i ++) { dst[(i+1)*dststride] = srcShifted[i*srcWidth-1]; } /* if the loop was not completed, extrapolate the last pixel pushed to output */ if(leftColumn != outwidth/SCU_width) { val = srcShifted[(leftColumn*SCU_width-1)*srcWidth-1]; for(i = (leftColumn*SCU_width); i < outwidth; i++) { dst[i*dststride] = val; } } } /* If left column not available, copy from toprow or use the default predictor */ else { val = yCtb?srcShifted[-srcWidth]:dcVal; for(i = 0; i < outwidth; i++) { dst[i*dststride] = val; } } if(yCtb) { /* Loop top SCU's */ for(topRow = 1; topRow < outwidth/SCU_width; topRow++) { if((xCtb+topRow)*SCU_width >= srcWidth || pic->CU[0][xCtb+topRow+(yCtb-1)*width_in_SCU].type == CU_NOTSET) { break; } } for(i = 0; i < topRow*SCU_width-1; i ++) { dst[i+1] = srcShifted[i-srcWidth]; } if(topRow != outwidth/SCU_width) { val = srcShifted[(topRow*SCU_width)-srcWidth-1]; for(i = (topRow*SCU_width); i < outwidth; i++) { dst[i] = val; } } } else { val = xCtb?srcShifted[-1]:dcVal; for(i = 1; i < outwidth; i++) { dst[i] = val; } } /* Topleft corner */ dst[0] = (xCtb&&yCtb)?srcShifted[-srcWidth-1]:dst[dststride]; } void search_tree(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth) { uint8_t border_x = ((encoder->in.width)<( xCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0; uint8_t border_y = ((encoder->in.height)<( yCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0; uint8_t border = border_x | border_y; /*!< are we in any border CU */ CU_info *cur_CU = &encoder->in.cur_pic.CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<intra.cost = 0xffffffff; cur_CU->inter.cost = 0xffffffff; /* Force split on border */ if(depth != MAX_DEPTH) { if(border) { /* Split blocks and remember to change x and y block positions */ uint8_t change = 1<<(MAX_DEPTH-1-depth); SET_SPLITDATA(cur_CU,1); search_tree(encoder,xCtb,yCtb,depth+1); if(!border_x) { search_tree(encoder,xCtb+change,yCtb,depth+1); } if(!border_y) { search_tree(encoder,xCtb,yCtb+change,depth+1); } if(!border) { search_tree(encoder,xCtb+change,yCtb+change,depth+1); } /* We don't need to do anything else here */ return; } } if(encoder->in.cur_pic.slicetype != SLICE_I) { } /* INTRA SEARCH */ if(depth >= MIN_SEARCH_DEPTH) { int x = 0,y = 0; uint8_t *base = &encoder->in.cur_pic.yData[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width]; uint32_t width = LCU_WIDTH>>depth; /* INTRAPREDICTION */ /* ToDo: split to a function */ int16_t pred[LCU_WIDTH*LCU_WIDTH]; int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)]; int16_t *recShift = &rec[(LCU_WIDTH>>(depth))*2+8+1]; /* Use original pic as reference border for prediction */ /* if(yCtb) { for(x = 0; x < LCU_WIDTH*2 && x < encoder->in.width-xCtb*(LCU_WIDTH>>(MAX_DEPTH)); x++) { rec[x] = base[x-((LCU_WIDTH>>(depth))*2+8)]; } } for(;x < LCU_WIDTH*2; x++) { rec[x] = 1<<(g_bitDepth-1); } if(xCtb) { for(y = 0; y < LCU_WIDTH*2 && y < encoder->in.height-yCtb*(LCU_WIDTH>>(MAX_DEPTH)); y++) { rec[y*((LCU_WIDTH>>(depth))*2+8)] = base[y*encoder->in.width-1]; } } for(;y < LCU_WIDTH*2; y++) { rec[y*((LCU_WIDTH>>(depth))*2+8)] = 1<<(g_bitDepth-1); } */ /* Build reconstructed block to use in prediction with extrapolated borders */ search_buildReferenceBorder(&encoder->in.cur_pic, xCtb, yCtb,(LCU_WIDTH>>(depth))*2+8, rec, (LCU_WIDTH>>(depth))*2+8, 0); cur_CU->intra.mode = (uint8_t)intra_prediction(encoder->in.cur_pic.yData,encoder->in.width,recShift,(LCU_WIDTH>>(depth))*2+8,xCtb*(LCU_WIDTH>>(MAX_DEPTH)),yCtb*(LCU_WIDTH>>(MAX_DEPTH)),width,pred,width,&cur_CU->intra.cost); } /* Split and search to max_depth */ if(depth != MAX_SEARCH_DEPTH) { /* Split blocks and remember to change x and y block positions */ uint8_t change = 1<<(MAX_DEPTH-1-depth); search_tree(encoder,xCtb,yCtb,depth+1); search_tree(encoder,xCtb+change,yCtb,depth+1); search_tree(encoder,xCtb,yCtb+change,depth+1); search_tree(encoder,xCtb+change,yCtb+change,depth+1); } } uint32_t search_best_mode(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth) { CU_info *cur_CU = &encoder->in.cur_pic.CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<intra.cost; uint32_t cost = 0; uint32_t lambdaCost = 4*g_lambda_cost[encoder->QP]<<5; /* Split and search to max_depth */ if(depth != MAX_SEARCH_DEPTH) { /* Split blocks and remember to change x and y block positions */ uint8_t change = 1<<(MAX_DEPTH-1-depth); cost = search_best_mode(encoder,xCtb,yCtb,depth+1); cost += search_best_mode(encoder,xCtb+change,yCtb,depth+1); cost += search_best_mode(encoder,xCtb,yCtb+change,depth+1); cost += search_best_mode(encoder,xCtb+change,yCtb+change,depth+1); /* We split if the cost is better */ if(cost != 0 && cost+lambdaCost < bestCost) { picture_setBlockSplit(&encoder->in.cur_pic,xCtb,yCtb,depth,1); bestCost = cost+lambdaCost; } /* Else, dont split and recursively set block mode */ else { //cur_CU->split = 0; picture_setBlockSplit(&encoder->in.cur_pic,xCtb,yCtb,depth,0); intra_setBlockMode(&encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode); } } else { picture_setBlockSplit(&encoder->in.cur_pic,xCtb,yCtb,depth,0); intra_setBlockMode(&encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode); } return bestCost; } void search_slice_data(encoder_control* encoder) { uint16_t xCtb,yCtb; /* Loop through every LCU in the slice */ for(yCtb = 0; yCtb < encoder->in.height_in_LCU; yCtb++) { uint8_t lastCUy = (yCtb == (encoder->in.height_in_LCU-1))?1:0; for(xCtb = 0; xCtb < encoder->in.width_in_LCU; xCtb++) { uint8_t lastCUx = (xCtb == (encoder->in.width_in_LCU-1))?1:0; uint8_t depth = 0; /* Recursive function for looping through all the sub-blocks */ search_tree(encoder, xCtb<